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Gábor Somogyi

HUN-REN Wigner Research Centre for Physics
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Precision at colliders

The Standard Model (SM) of particle physics provides a very successful description of
elementary particles and their interactions.

• Data collected at the LHC gives us a spectacular confirmation of the SM!

• Despite its successes, we know that the SM cannot be the ultimate theory of
fundamental interactions (dark matter, baryogenesis, neutrino masses,. . . ).

• However, no direct signals of physics beyond the SM have been seen at the LHC so
far. . .

• Thus, high precision experiments (i.e., the high-luminosity phase of LHC) become
crucial to test the validity of the SM.

• From a theoretical point of view, in order to fully exploit the physics potential of
LHC, QCD (and EW) must be understood and modelled as best as possible.

First indications of New Physics could well be indirect: precision is key!
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Precision at colliders

A hadron-hadron collision is a complicated affair: many aspects of precision

• Incoming protons are beams of partons:
parton distribution functions (PDFs)

• Primary hard scattering: fixed-order
perturbation theory, resummation

• Partonic evolution: parton showers

• Hadronization and heavy hadron decay

• Multiple parton interactions and underlying
event

[A Sherpa artist]

A plethora of directions, will focus on higher orders in perturbation theory.
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Cross sections for hadron collisions

Hadronic cross sections can be computed as convolutions of parton distribution functions
(PDFs) with hard scattering partonic cross sections: collinear factorization theorem.

σAB =
∑
a,b

∫
dxa

∫
dxb fa/A(xa, µF )fb/B(xb, µF )︸ ︷︷ ︸

PDF’s

σab(xa, xb, µF )︸ ︷︷ ︸
partonic x-sect

[
1 +O

(
Λn
QCD

Qn

)]

• fa/A(xa, µF ), fb/B(xb, µF ): non-perturbative PDFs, to be measured in experiment or
computed on the lattice

• dσab(xa, xb, µF ): hard partonic cross section, can be computed in perturbation theory

σab(xa, xb, µF ) = αℓ
s

∞∑
k=0

(αs

2π

)k
σNkLO
ab (xa, xb, µR , µF )

More accurate predictions ≡ More terms in the perturbative series
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QCD at NNLO

Beyond leading order, we must account for extra radiation, both real and virtual.

• Requires the evaluation of Feynman diagrams with extra legs and/or loops with
respect to the Born process.

• Must deal with the problem of infrared (IR) singularities that arise at intermediate
stages. The NNLO correction for a process with m jets at the Born level is a sum of
three terms

σNNLO
ab =

∫
m+2

dσRR
ab Jm+2 +

∫
m+1

(
dσRV

ab + dσC1
ab

)
Jm+1 +

∫
m

(
dσVV

ab + dσC2
ab

)
Jm

• While the sum of these contributions is finite for IR- and collinear-safe observables J,
the three are separately divergent in limits in which one or more partons become
unresolved.

• The sources of singularities are i) divergent phase space integrals due to unresolved
real emission and ii) explicit IR ϵ-poles in loop integrals.

• We must regularize the divergences (dim. reg. in d = 4− 2ϵ dimensions) and render
each contribution finite in d = 4 before any numerical evaluation can take place.

The issue of IR divergences can be solved by local subtraction.
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CoLoRFulNNLO

The basic idea of the subtraction method is to use appropriately chosen subtraction
terms to reshuffle divergences between each contribution of the full higher-order
correction in such a way that each contribution is finite after the reshuffling.

CoLoRFulNNLO is a particular realization of this idea. It is a local, analytic subtraction
scheme for NNLO calculations. Aims:

• Exact perturbative result without slicing parameters
(reduced source of numerical uncertainty)

• Point-by-point subtraction in phase space including spin and color correlations
(no integrals that are finite in d dims., but undefined in 4 dims.)

• Analytic computation of integrated subtraction terms
(rigorously show cancellation of virtual poles)

• Explicit and general expressions
(coding, automation)
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General subtraction procedure

In CoLoRFulNNLO, the complete NNLO cross section is written as

σ
NNLO
ab =

∫
m+2

[
dσ

RR
ab Jm+2−dσ

RR,A1
ab

Jm+1−dσ
RR,A2
ab

Jm+dσ
RR,A12
ab

Jm

]

+

∫
m+1

{[
dσ

RV
ab +dσ

C1
ab

+

∫
1
dσ

RR,A1
ab

]
Jm+1−

[
dσ

RV,A1
ab

+dσ
C1,A1
ab

+

(∫
1
dσ

RR,A1
ab

)A1
]
Jm

}

+

∫
m

{
dσ

VV
ab +dσ

C2
ab

+

∫
2

[
dσ

RR,A2
ab

−dσ
RR,A12
ab

]
+

∫
1

[
dσ

RV,A1
ab

+dσ
C1,A1
ab

]
+

∫
1

(∫
1
dσ

RR,A1
ab

)A1
}
Jm

• The phase space integral on each line is finite in d = 4 dimensions due to the
presence of subtraction terms that remove non-integrable singularities.

• The integrated forms of subtraction terms cancel the explicit IR ϵ-poles in loop
corrections, so each line is also free from ϵ-poles.

• Hence, each line can be computed using standard numerical methods.
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General subtraction procedure

Role of individual terms



dσ
RR,A1
ab

dσ
RR,A2
ab

dσ
RR,A12
ab

dσ
RV,A1
ab

dσ
C1,A1

ab

(∫
1 dσ

RR,A1
ab

)A1



regularizes



dσRR
ab

dσRR
ab

dσ
RR,A2
ab , dσ

RR,A1
ab

dσRV
ab

dσC1
ab

∫
1 dσ

RR,A1
ab



as



1

2

1 , 2

1

1

1



partons are

unresolved
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Construction of the subtraction terms

In the CoLoRFulNNLO scheme, subtraction terms are built from IR factorization
formulae which capture the behaviour of QCD squared matrix elements in IR limits.

Uj |Mab,m+j ({p}m+j )|
2
ℓ−loop =

(αs

2π

)j
ℓ∑

i=0

Sing
(i)
j × |M

âb̂,m
({p̂}m)|2(ℓ−i)−loop︸ ︷︷ ︸

j partons removed

..

..
...

︸ ︷︷ ︸
ℓ−loop

−→
ℓ∑

i=0

..

..
...

︸ ︷︷ ︸
(ℓ−i)−loop

× ...

︸ ︷︷ ︸
i−loop

• Uj : formal operator that takes some j-fold unresolved limit

• Sing
(i)
j : universal IR singular structure for i-loop, j-fold unresolved emission

• |M
âb̂,m

({p̂}m)|2(ℓ−i)−loop
: (ℓ− i)-loop reduced matrix element with j partons removed

However, IR factorization formulae cannot directly be used as subtraction terms.
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From limits to subtraction terms

Issues

1. Unresolved regions in phase space overlap ⇒ care must be taken to avoid multiple
subtraction in overlapping regions.

2. IR limit formulae are only well-defined in the strict limits ⇒ definitions must be
carefully extended over the full phase space away from the limits.

3. Subtraction terms must be integrated over the momenta of unresolved radiation ⇒
many complicated phase space integrals.
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From limits to subtraction terms

1. Overlapping singularities can be addressed by the inclusion-exclusion principle:
subtract each limit once, add back pairwise overlaps, subtract triple overlaps and so
on. E.g., at NLO

A1 =
∑
ir

Cir +
∑
r

Sr −
∑
{ir,r}

Cir ∩ Sr

2. In order to obtain true subtraction terms, two additional steps are needed

• Make |M
âb̂,m

({p̂}m)|2
(l−i)−loop

well-defined ⇒ specify precisely the momenta

entering the reduced matrix elements via momentum mappings that implement
momentum conservation and mass-shell conditions

{p}m+j → {p̃}m , j = 1, 2

• Make Sing
(i)
j well-defined ⇒ the various quantities entering the singular

structures such as momentum fractions, transverse momenta and eikonal
factors need to be precisely specified.

The adopted definitions must be such that they respect the structure of cancellations
in all overlapping limits, which is a constraint for the entire construction.
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From limits to subtraction terms

After these definitions are fixed, the IR limit formula can be promoted to a (sum of)
true subtraction term(s) that is unambiguously defined at any point in phase space,

Uj |Mab,m+j ({p}m+j )|
2
l−loop →

l∑
i=0

U (i,l−i)
j

where
U (i,l−i)
j =

(αs

2π

)j
S̃ing

(i)

j × |M
ãb̃,m

({p̃}m)|2(l−i)−loop

• S̃ing
(i)

j represents the expression of the corresponding singular structure incorporating
the precise definitions of momentum fractions, eikonal factors and so on.

• The matrix element is evaluated over the set of mapped momenta, {p̃}m.

The subtractions are fully local in phase space and include all color and spin correlations.
Cancellations can be tested point-by-point in phase space as any IR limit is approached.
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CoLoRFulNNLO for color-singlet production: A1

For color-singlet production in hadron-hadron collisions, hA + hB → X , we have

dσ
RR,A1
ab = dϕX+2({p}X+2)A

(0)
1

where

A(0)
1 =

∑
r∈F

[
S(0,0)
r +

∑
i∈F
i ̸=r

(
1

2
CFF (0,0)
ir − CFF

ir S(0,0)
r

)
+

∑
c∈I

(
CIF (0,0)
cr − CIF

cr S
(0,0)
r

)]

• I and F denote the sets of initial-state and final-state partons.

• The various subtraction terms correspond to the limit implied by the notation.

• The (0, 0) superscript signals that these terms originate from IR limit formulae that
involve tree-level singular structures multiplying tree-level reduced matrix elements.

• Each term is explicitly defined and can be evaluated in any point of the double real
emission phase space.
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CoLoRFulNNLO for color-singlet production: A2

For color-singlet production in hadron-hadron collisions, hA + hB → X , we have

dσ
RR,A2
ab = dϕX+2({p}X+2)A

(0)
2

where

A(0)
2 =

1

2

∑
r∈F

∑
s∈F
s ̸=r

{
S(0,0)
rs +

∑
c∈I

[
CIFF (0,0)
crs − CIFF

crs S(0,0)
rs +

∑
d∈I
d ̸=c

(
CIF ,IF (0,0)
cr,ds + CIF ,IF

cr,ds S
(0,0)
rs

)]}

• Again, various subtraction terms correspond to the limit implied by the notation.

• Notice no triple collinear-double collinear overlap: general feature at NNLO.

• Notice no soft-collinear terms: these cancel for color-singlet production due to the
precise definitions we adopt.

• Each term is explicitly defined and can be evaluated in any point of the double real
emission phase space.
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CoLoRFulNNLO for color-singlet production: A12

For color-singlet production, we have dσ
RR,A12
ab = dϕX+2({p}X+2)A

(0)
12 where

A(0)
12 =

∑
s∈F

[
A(0)

2 Ss +
∑
r∈F
r ̸=s

(
1

2
A(0)

2 CFF
rs −A(0)

2 CFF
rs Ss

)
+

∑
c∈I

(
A(0)

2 CIF
cs −A(0)

2 CIF
cs Ss

)]

with

A(0)
2 Ss =

∑
r∈F
r ̸=s

[
S(0,0)
rs Ss +

∑
c∈I

(
CIFF (0,0)
crs Ss − CIFF

crs S(0,0)
rs Ss

)]

A(0)
2 CFF

rs = S(0,0)
rs CFF

rs +
∑
c∈I

(
CIFF (0,0)
crs CFF

rs − CIFF
crs S(0,0)

rs CFF
rs

)
A(0)

2 CFF
rs Ss =

∑
c∈I

CIFF (0,0)
crs CFF

rs Ss

A(0)
2 CIF

cs =
∑
r∈F
r ̸=s

(
CIFF (0,0)
csr CIF

cs +
∑
d∈I
d ̸=c

CIF ,IF (0,0)
cs,dr CIF

cs

)

A(0)
2 CIF

cs Ss =
∑
r∈F
r ̸=s

(
S(0,0)
rs CIF

cs Ss + CIFF (0,0)
csr CIF

cs Ss − CIFF
csr S

(0,0)
rs CIF

cs Ss

)
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Integrating the subtraction terms

In order to finish the definition of the scheme, all subtraction terms must be integrated
over the momenta of unresolved emission(s).

Integrated subtraction terms are not simple functions of kinematics but rather
distributions in the momentum fractions of incoming momenta.

The required phase space integrals were computed with a combination of methods

• IBP reduction + DEs:
∫
2 dσ

RR,A2
ab

• Direct integration of parametric representations:
∫
2 dσ

RR,A12
ab

• MB methods: elements of the distributional expansions

Results are fully analytic

• All integrated subtraction terms can be expressed in terms of GPLs

• Algebraic letters are present (square roots) in finite parts

• Can check cancellation of double virtual poles analytically
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The right tool for the job

Choosing the correct method can make a massive difference!

• Among many others, we must evaluate the parametric integral

I (ξa, ξb) = 2−1−3ϵξ−1−3ϵ
a (1− ξa)

−1−3ϵ(1 + ξa)
ϵ

×
∫ 1

0
dx1

∫ 1

0
dx2 x

−ϵ
1 (1− x1)

−1−3ϵx−1−2ϵ
2 (1− x2)

−1+ϵ (2ξa + x1 − x1ξa)
ϵ

×
(
2x1x2ξ

2
a − 2x2ξ

2
a − x21 ξa + 2x1ξa + x21 x2ξa − 4x1x2ξa + 2x2ξa + x21 − x21 x2

)
ϵ

• Singular in ϵ with overlapping singularities in x1 and x2 (last factor)

• The last factor is quadratic in x1

• Resolving the ϵ-poles by sector decomposition will make this factor quadratic also in
x2 ⇒ direct integration is very painful, if at all possible
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The right tool for the job

However, the calculation is essentially trivial with MB methods!

• Can find an MB representation that is only 2-dimensional

I = (1 + ξa)
ϵ

∫ +i∞

−i∞

dz1

2πi

∫ +i∞

−i∞

dz2

2πi
2−1−2ϵ−z1+z2ξ−1−2ϵ−z1+z2

a (1− ξa)
−1−z2−ϵ−1

×
Γ (−z1) Γ (1 + 2z1 − z2) Γ (−z2) Γ (−2ϵ− z1) Γ (−ϵ+ z1) Γ (−ϵ− z1 + z2) Γ (ϵ+ z1)

Γ(−ϵ)Γ (1− 2ϵ+ z1 − z2)

• Requires auxiliary regularization to find straight line contours (notice Γ(−z1), Γ(−ϵ)

and Γ(ϵ+ z1) all appear in the integrand): e.g., introduce (1− x2)δ into the orignial
integral

• The usual steps: straight line contours at ϵ ̸= 0 and δ ̸= 0 ⇒ analytically continue to
ϵ = 0 ⇒ resolve ϵ poles ⇒ analytically continue to δ = 0

• The result is a 0-dimensional MB integral ⇒ we obtain the result without having to
perform any integration at all! We have

I = 2−1−ϵξ−1−ϵ
a (1− ξa)

−1−ϵ(1 + ξa)
ϵ Γ(1− 2ϵ)Γ(−2ϵ)Γ(ϵ)

Γ(1− 3ϵ)
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The NNLOCAL code
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The NNLOCAL code

NNLOCAL: a proof-of-concept Monte Carlo program implementing the described scheme

• Architecture based on MCFM-4.0 (note current version is 10.3) written in
Fortran77. (Have ensured that this is tolerated by the authors!)

• Publicly available, only external dependency is LHAPDF.

https://github.com/nnlocal/nnlocal.git

Proof-of-concept code:

• Gluon fusion Higgs production in HEFT (mt → ∞) with no light quarks (nf = 0):
not a restriction on the structure of the subtraction scheme, on the contrary, all
possible IR singularities for color-singlet production are present.

• Minimal optimisation only (especially in VV part): some issues with numerical
cancellations in integrated subtraction terms handled by dynamical switching to
quadruple precision.

• Many features to support checking/validation.
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The NNLOCAL code

Main features

• Publicly available local analytic subtraction code at NNLO.

• Computation of any infrared and collinear-safe observables via user defined analysis
routine.

• Support for parallel running if desired (managed by shell scripts).

• Support for efficient building and monitoring of Monte Carlo integration grids (via
parallel running and scripts for visualisation).

• Support for checking cancellation of kinematical singularities through dedicated
phase space routines.

• Support for checking cancellation of ε-poles order by order.
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Code validation

Validate cancellation of kinematical singularities in double real and real-virtual emission
(R =

∑
A/|M|2)

10−12

10−9

10−6

10−3

100

10−4 10−2 100 102 104

LHC 13 TeV
mH = 125 GeV
HEFT, nf = 0

p4→0 (RR)

|1
−

R
|

s4Q [GeV2]

10−8

10−6

10−4

10−2

100

10−3 10−1 101 103 105

LHC 13 TeV
mH = 125 GeV
HEFT, nf = 0

p1∥p4, p2∥p5 (RR)

|1
−

R
|

s14 + s25 [GeV2]

10−8

10−6

10−4

10−2

100

10−4 10−2 100 102 104

LHC 13 TeV
mH = 125 GeV
HEFT, nf = 0

p1∥p4 (RV)

|1
−

R
|

s14 [GeV2]

Check cancellation of ε-poles
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Code validation

Tuned comparison of inclusive cross section to n3loxs [Baglio, Duhr, Mistlberger, Szafron 2022]

(modified to exclude quark channels and use same αs running as NNLOCAL)

mH [GeV] n3loxs (gg) NNLOCAL (gg)

100 65.72 pb 65.74(4) pb

125 42.94 pb 42.94(2) pb

250 9.730 pb 9.733(5) pb

500 1.626 pb 1.626(1) pb

1000 173.7 fb 173.7(1) fb

2000 8.794 fb 8.790(5) fb

• Several choices of µR , µF checked, shown values are for µR = µF = mH .

• Runtime per mass value: ∼ 20 mins. on a MacBook Pro M2 with 8 CPUs.
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Differential result

Rapidity distribution of a Higgs boson of mass mH = 125 GeV at the 13 TeV LHC

100

101

102

103

104

105 LHC 13 TeV
mH = 125 GeV
HEFT, nf = 0

−4

−2

0

+2

+4

−4

−2

0

+2

+4

−4 −2 0 2 4

Total
NNLO only

d
σ
/d

y H
[f
b
]

δ T
o
ta
l
[%

]
δ N

N
L
O
[%

]

yH

• Error shown is estimated Monte Carlo integration uncertainty.

• Runtime ∼ 1 hr 15 mins. on a MacBook Pro M2 with 8 CPUs.
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Beyond gluons only

Full set of subtracted double real partonic subprocesses for pp → H at NNLO

Subprocess σRR,reg. (fb) %

gg 180.7± 3.6 40.06

gq 166.7± 3.4 36.97

gq̄ 55.87± 0.48 12.39

qq 27.49± 0.01 6.09

qq̄ 18.17± 0.01 4.03

q̄q̄ 2.121± 0.001 0.74∑
451.1± 7.5 100

• Recall the total gluons-only cross section is σ = 42943 fb

• The double real contribution is ∼ 1% of the total cross section
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Conclusions and outlook

Precision is key

• Understand subtle features of the Standard Model.

• First signs of New Physics might very well be indirect.

• Exact higher-order calculations required beyond NLO.

CoLoRFulNNLO scheme for regularizing initial-state singularities

• Completely local subtraction terms.

• Fully analytic integrated subtraction terms.

Implemented in NNLOCAL

• Gluon fusion Higgs production in HEFT has very simple matrix elements but
otherwise all essential features.

• Quark channels in double real radiation complete, full result will be available in the
near future.
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Conclusions and outlook

Outlook

• NNLOCAL: from proof-of-concept to useful tool.
(all channels, more color-singlet processes, optimisation)

• The inclusion of final-state jets and heavy quarks in hadron collisions is feasible in
our methodology.

• Extension to next order (N3LO) for color-singlet appears conceivable.

Thank you for your attention!
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Technical cuts

Due to finite precision arithmetics, instabilities eventually set in as IR limits are
approached ⇒ technical cuts
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• smin: smallest allowed 2-particle invariant in real emission

• ∆xmin: closest approach to critical (“0/0”) lines in integrated subtraction terms
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The pure NNLO contribution

The pure NNLO contribution for the total cross section

mH [GeV] NNLO only double virtual real-virtual double real

100 19.76(5) pb 20.76(5) pb −1.318(1) pb 0.321(9) pb

125 12.64(1) pb 13.16(1) pb −0.7492(4) pb 0.235(3) pb

250 2.724(2) pb 2.781(2) pb −0.10475(4) pb 0.0474(2) pb

500 0.4420(3) pb 0.4460(3) pb −0.009645(4) pb 0.00564(1) pb

1000 47.23(3) fb 47.30(3) fb −0.4699(2) fb 0.3982(8) fb

2000 2.496(2) fb 2.492(2) fb −0.007597(2) fb 0.01220(3) fb

Recall the total NNLO gluons only cross section

mH [GeV] n3loxs (gg) NNLOCAL (gg)

100 65.72 pb 65.74(4) pb

125 42.94 pb 42.94(2) pb

250 9.730 pb 9.733(5) pb

500 1.626 pb 1.626(1) pb

1000 173.7 fb 173.7(1) fb

2000 8.794 fb 8.790(5) fb

So VV ∼ O(1), RV ∼ O(0.1) and RR ∼ O(0.01) of the total NNLO cross section
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The pure NNLO contribution

The untrimmed (left) and trimmed (right) VV, RV and RR parts of the NNLO correction
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Mitigating misbinning with robust statistics

Rapidity distribution of a Higgs boson of mass mH = 125 GeV at the 13 TeV LHC
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• Finer binning to test numerical stability under more demanding conditions

• Overall good stability and convergence, but some spikes appear: misbinning
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Mitigating misbinning with robust statistics

Misbinning: well-known and more or less unavoidable consequence of using a subtraction
scheme to compute binned distributions.

• The weights of the double real matrix element and the subtraction end up in
different bins.

• This leads to an apparent uncanceled singularity as far as the bin is concerned.

• Misbinning introduces unphysical outliers into the set of bin value estimates.

• A single extreme value can change the arithmetic mean by a large amount.

• So use an estimator that is robust to such extreme data.
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Mitigating misbinning with robust statistics

Robust statistics: the study of statistical methods that remain reliable and accurate
even when data contain outliers or deviate from standard assumptions.

• One of the simplest methods for building robust estimators is trimming. E.g., the
α-trimmed mean is defined as

x̄α =
1

n − 2m

n−m∑
i=m+1

x(i)

where m = [nα] (here [. . .] denotes the integer part) and x(i) is the order statistics
{x(1), x(1), . . . , x(n)}, obtained by sorting the n numbers such that

x(1) ≤ x(2) ≤ . . . ≤ x(n)

• In words, it is the arithmetic mean of the (n − 2m) numbers obtained by removing
the smallest and largest m = [nα] entries.

• Typically results are obtained by combining several statistically independent runs by
computing bin-by-bin averages of bin value estimates from the individual runs. It is
trivial to implement trimming on these bin value estimates.
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Mitigating misbinning with robust statistics

Trimmed rapidity distribution
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• α-trimming with α = 0.015 used on data containing 256 separate runs
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