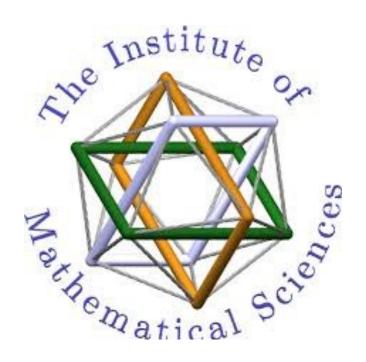
Next-to-Soft-virtual resummation for SIDIS to NNLO+NNLL

Vaibhav Pathak

The Institute of Mathematical Sciences, Chennai, India



(in collaboration with: S Goyal, S Moch, N Rana, V Ravindran)

Based on: (arXiv 2506.24078)

Matter To The Deepest, University of Silesia, Katowice, Poland

Outline

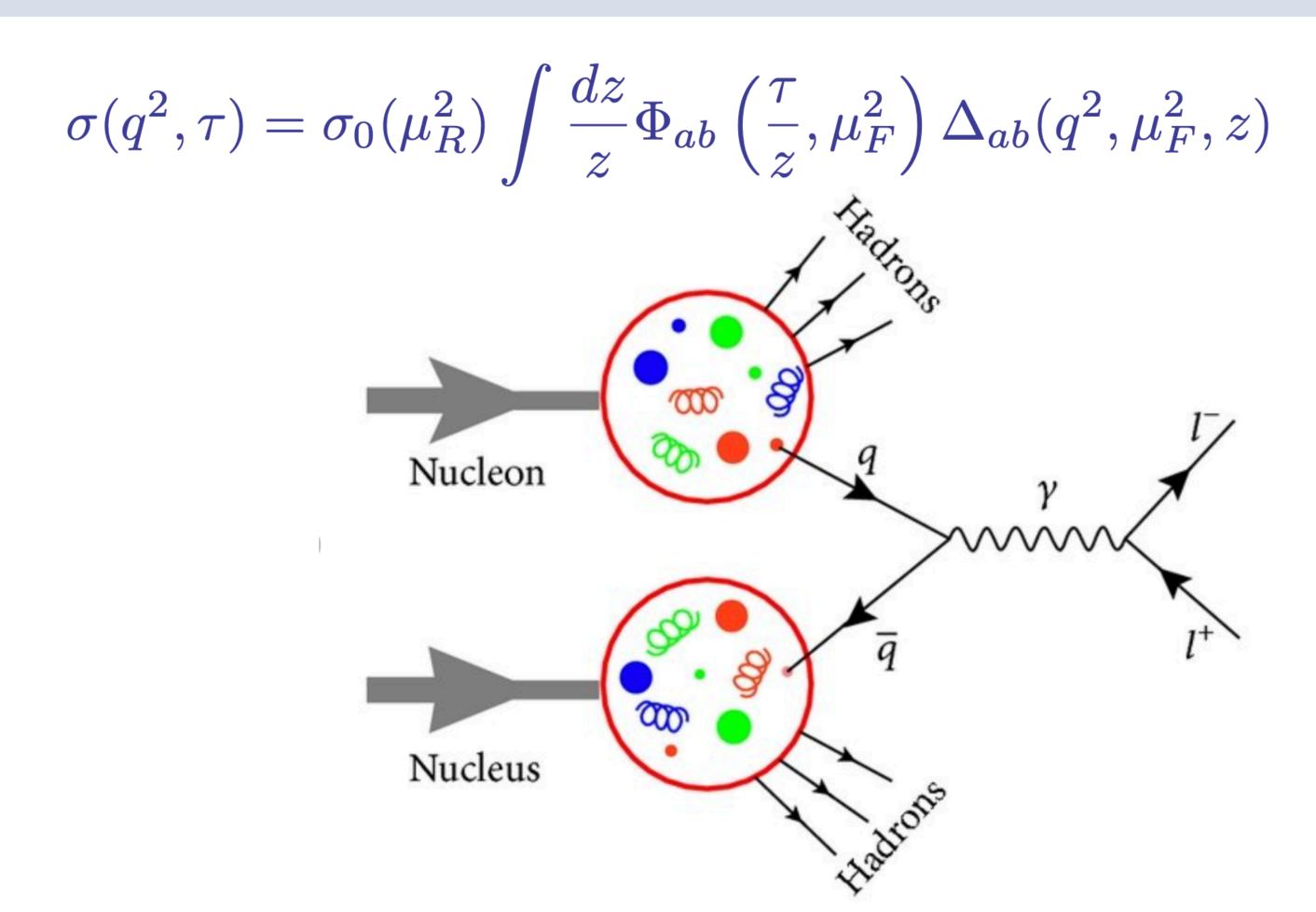
- Introduction
- Taking Forward...
- Threshold Expansion
- Formalism
- Predictions
- All Order Behaviour
- Numerical Result
- Summary and Future directions

Introduction

- Processes with identified final state hadrons play important roles in QCD. They
 provide crucial information on the Time-like splitting function and fragmentation
 function.
- Hadron production serves as a powerful probe of nucleon or nuclear structure.

- Hadron production data tests our key concepts in QCD at high energies such as factorization, universality of splitting functions, and perturbative calculations.
- Because electrons do not manifest any internal structure, they can be used as a precise probe of the more complicated nucleons and nuclei.

Drell-Yan Production at LHC



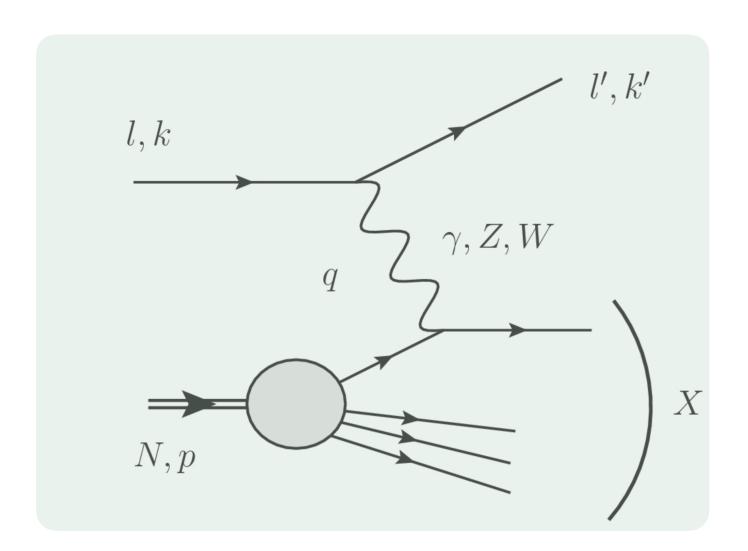
Parton Distribution Function

$$\Phi_{ab}(\mu_F^2, z) = \int \frac{dy}{y} f_a(y, \mu_F^2) f_b\left(\frac{z}{y}, \mu_F^2\right)$$

Role of DIS

Inclusive DIS (Deep Inelastic Scattering),

One sums up all the particles in the final state, except the scattered lepton

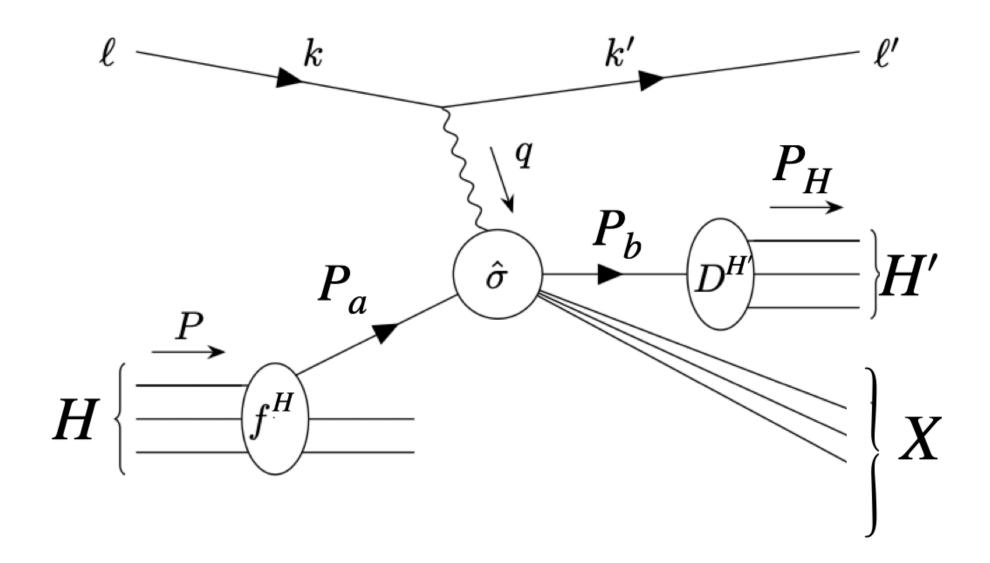


Depends on Parton Distribution Function (PDF) of Incoming hadron.

SIDIS?

SIDIS (Semi-Inclusive Deep Inelastic Scattering),

In SIDIS, in addition to the scattered lepton, we tag on one of the outgoing hadron



Depends on Parton Distribution Function (PDF) of Incoming hadron and Fragmentation Function (FF) of Outgoing hadron.

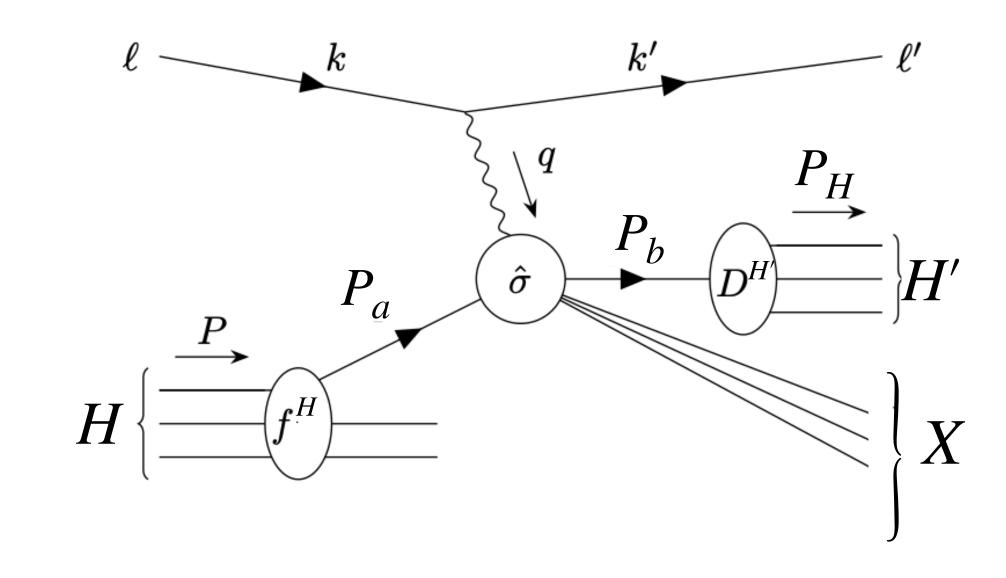
Theoretical Framework

Semi-Inclusive Deep Inelastic process,

$$l(k_l) + H(P) \rightarrow l(k'_l) + H'(P_H) + X$$

At Partonic level cross-section,

$$q/g(P_a) + \gamma^*(q) \rightarrow q/g(P_b) + \mathcal{X}$$



where $P_a^2 = P_b^2 = 0$ and $q^2 = -Q^2$. Our kinematic variables are

$$x = \frac{Q^2}{2P \cdot q} \Rightarrow x' = \frac{Q^2}{2P_a \cdot q} \quad \text{and} \quad z = \frac{P \cdot P_H}{P \cdot q} \Rightarrow z' = \frac{P_a \cdot P_b}{P_a \cdot q}$$

Taking Forward ...

- Processes involving fragmentation functions beyond leading order in QCD [Altarelli, Ellis, Martinelli, So-Young, Pi '79]
- Approximate NNLO QCD corrections to semi-inclusive DIS [Abele, De Florian, Vogelsang '21]
- Next-to-Next-to-Leading Order QCD Corrections to Semi-Inclusive Deep-Inelastic Scattering [Goyal, Moch, VP, Rana, Ravindran '24]
- Semi-Inclusive Deep-Inelastic Scattering at Next-to-Next-to-Leading Order in QCD [Bonino, Gehrmann, Stagnitto '24]
- Next-to-Next-to-Leading Order QCD Corrections to Polarized Semi-Inclusive Deep-Inelastic Scattering [Bonino, Gehrmann, Löchner, Schönwald, Stagnitto '24]

Taking Forward ...

- Next-to-Next-to-Leading Order QCD Corrections to Polarized Semi-Inclusive Deep-Inelastic Scattering [Goyal, Lee, Moch, VP, Rana, Ravindran '24]
- NNLO phase-space integrals for semi-inclusive deep-inelastic scattering [Ahmed, Goyal, Hasan, Lee, Moch, VP, Rana, Rapakoulias, Ravindran '25]
- NNLO QCD corrections to unpolarized and polarized SIDIS [Goyal, Lee, Moch, VP, Rana, Ravindran '25]²
- Single-valued representation of unpolarized and polarized semi-inclusive deep inelastic scattering at next-to-next-to-leading order [Haug, Wunder '25]

^{1*} See talk by A. Rapakoulias, 2* See talk by S. Goyal

SIDIS with Photon Exchange

The Unpolarised cross section can be written as,

$$\frac{d^3\sigma}{dxdydz} = \frac{4\pi\alpha_e^2}{Q^2} \left[y \ F_1(x, z, Q^2) + \frac{(1-y)}{y} \ F_2(x, z, Q^2) \right]$$

 F_J are called structure functions and E is the energy of the incoming lepton and y is the inelasticity.

• Similarly, the spin-dependent cross-section is found to be

$$\frac{d^3\Delta\sigma}{dxdydz} = \frac{4\pi\alpha_e^2}{Q^2}(2-y) g_1(x,z,Q^2)$$

• Note that g_2 does not contribute since we restrict ourselves to longitudinally polarized hadron in the initial state.

Threshold Expansion

In pQCD, The Structure Function can be factorised as:

Perturbative Structure of coefficient function at threshold: $x' \rightarrow 1$, $z' \rightarrow 1$

$$\mathcal{C}_{i} \rightarrow \mathcal{C}_{i}^{virt} \ \delta(1-x')\delta(1-z') + \sum_{k,l} D_{k}(x')D_{l}(z')\mathcal{C}_{i,kl}(x',z') \ + \mathcal{O}(1-x')(1-z')$$
 Finite Beyond NSV

Our goal is to calculate the perturbatively calculable quantity

$$(\Delta)\mathscr{C}_{i,ab}\left(\frac{x}{x_1},\frac{z}{z_1},Q^2,\mu_F^2\right)$$

Why Resummation?

- The Fixed Order CFs fail in certain regions because of presence of Large Logarithms.
- In the threshold region, fixed order CFs at each order in perturbation become comparable.
- These Logarithms originate from the partonic configuration where partons are Soft and/or Collinear to each other.
- To make sensible predictions, we need to resum these large Logarithms to all orders in perturbation theory.

Threshold Expansion

Perturbative Structure of coefficient function at threshold: $x' \rightarrow 1$, $z' \rightarrow 1$

$$\mathcal{C}_{i} \rightarrow \mathcal{C}_{i}^{virt} \ \delta(1-x')\delta(1-z') + \sum_{k,l} D_{k}(x')D_{l}(z')\mathcal{C}_{i,kl}(x',z') \ + \mathcal{O}(1-x')(1-z')$$
 Finite Beyond NSV

$$\delta(1-x')\left(\frac{\ln^i(1-z')}{1-z'}\right)_+$$

$$\left(\frac{\ln^{i}(1-x')}{1-x'}\right)_{+}\left(\frac{\ln^{j}(1-z')}{1-z'}\right)_{+}$$

Soft-Virtual (SV)

Only diagonal Channels

$$\delta(1 - x') \ln^{i}(1 - z')$$

$$\left(\frac{\ln^{i}(1 - x')}{1 - x'}\right)_{+} \ln(1 - z')$$

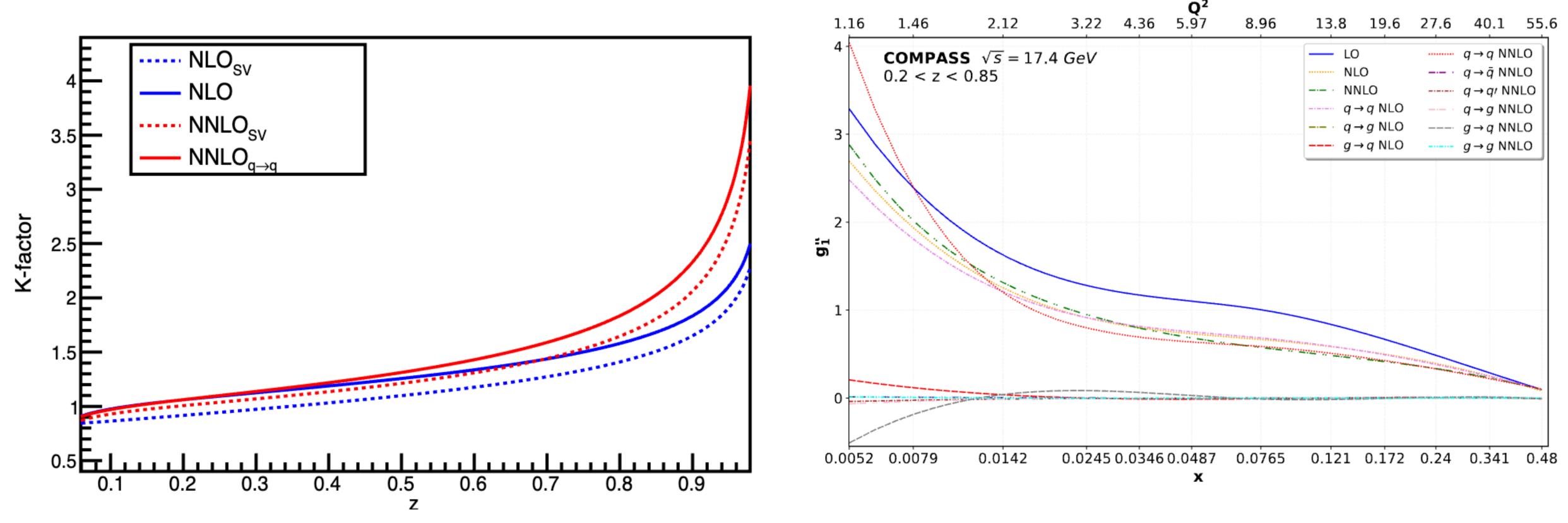
Next to Soft-Virtual (NSV)

Suppressed to SV

Diagonal and off-Diagonal Channels

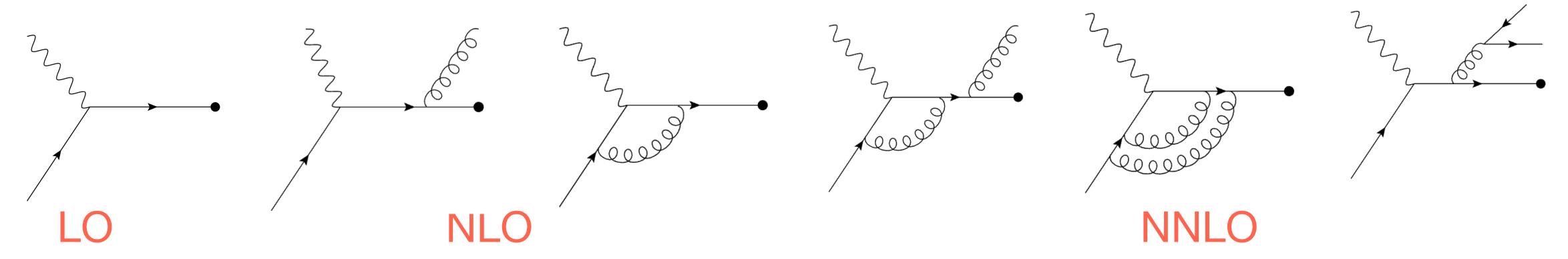
These distributions give large contribution in threshold region, Hence we need to resum these distributions upto NSV.

Threshold Expansion

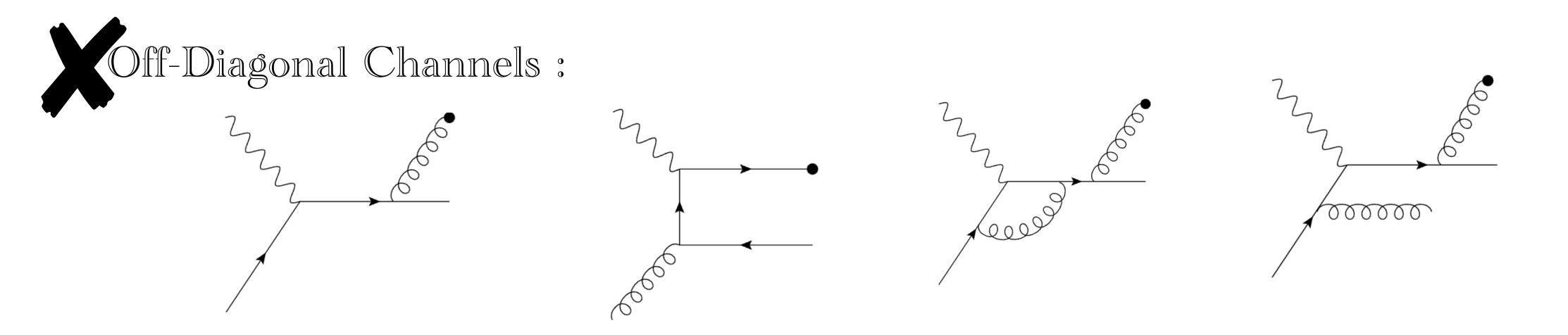


- From Plots, One can easily tell that contribution of q → q channel is dominant.
 That's why we are resumming this channel only.
- SV part is contributing comparable to $q \rightarrow q$ channel. Hence, to make more precise we want to include Next to SV part also.

Taking Forward ...



• Diagonal Channels gives SV + NSV + higher Order terms.



Off-Diagonal Channels gives NSV + higher Order terms.

The Decomposition formula for Diagonal CFs can be written as:

$$(\Delta) \mathcal{C}_{J,qq}^{\mathrm{SV+NSV}} = \left| \hat{F}_q(Q^2,\varepsilon) \right|^2 \otimes \left((\Delta) \Gamma \right)_{q \leftarrow q}^{-1} (x',\mu_F^2,\varepsilon) \otimes (\Delta) \hat{\mathcal{S}}_{J,qq}(Q^2,x',z',\varepsilon) \otimes \left(\tilde{\Gamma} \right)_{q \leftarrow q}^{-1} (z',\mu_F^2,\varepsilon)$$

- $\left| \hat{F}_q(Q^2, \varepsilon) \right|^2$: FormFactor, coming from virtual correction.
- $(\Delta)\Gamma$ $_{q\leftarrow q}^{-1}(x',\mu_F^2,\varepsilon)$: Space-like AP kernels, coming initial-state collinear singularity.
- $(\Delta)\hat{\mathcal{S}}_{J,qq}(Q^2,x',z',\varepsilon)$: Soft function, coming from threshold limit of real emission diagrams.
- $(\tilde{\Gamma})_{q\leftarrow q}^{-1}(z',\mu_F^2,\varepsilon)$: Time-like AP kernels, coming from final-state collinear singularity.

Each building block obeys 1st Order Evolution differential equations wrt (μ_F^2 or Q^2).

Form Factor, \hat{F}_c :

Satisfies:
$$Q^2 \frac{d}{dQ^2} \ln \hat{F}_c(\hat{a}_s, Q^2, \mu^2, \varepsilon) = \frac{1}{2} \left(\underbrace{K(\hat{a}_s, \frac{\mu_R^2}{\mu^2}, \varepsilon) + G(\hat{a}_s, \frac{Q^2}{\mu_R^2}, \frac{\mu_R^2}{\mu^2}, \varepsilon)} \right)$$
Pole Finite

Functional Form: $\ln \hat{F}_c(\hat{a}_s, Q^2, \mu^2, \epsilon) = \sum_{i=1}^{\infty} \hat{a}_s \left(\frac{Q^2}{\mu^2}\right)^{i\frac{\epsilon}{2}} S_{\epsilon}^i \sum_{i=-\infty}^{i+1} \mathscr{L}_c^{(i,j)} \frac{1}{\epsilon^j}$

Expressed in terms of : $\mathscr{L}_{c}^{(i,j)} = \{A^{c}, B^{c}, f^{c}, g^{c}\}$

Process Independent: $\{A^c, B^c, f^c\}$ Process dependent: g^c

DGLAP Kernel, Γ_{cc} and $\tilde{\Gamma}_{cc}$:

- ★ Collinear Singular Terms
- \star Evolution Equation: $\mu_F^2 \frac{d}{d\mu_F^2} \Gamma_{cc}(\mu_F^2, \xi) = \frac{1}{2} P_{cc}(\mu_F^2, \xi) \otimes \Gamma_{cc}(\mu_F^2, \xi)$
- **★** Functional Form:

$$P_{cc}(\mu_F^2, \xi) = 2 \left(\frac{A^c(\mu_F^2)}{(1 - \xi)_+} + B^c(\mu_F^2) \delta(1 - \xi) + C^c(\mu_F^2) \ln(1 - \xi) + D^c(\mu_F^2) \right)$$

$$SV$$

★ A and B are same for Space-like and Time-like splitting function but C and D are different for Space-like and Time-like splitting function.

Soft-Collinear Function, $\hat{\mathcal{S}}_c$:

Functional Form of ansatz:

$$\frac{1}{2} \ln \mathcal{S}(Q^2, x', z', \varepsilon) = \sum_{i=1}^{\infty} \hat{a}_s^i \left(\frac{Q^2 (1 - x')(1 - z')}{\mu^2} \right)^{i\frac{\varepsilon}{2}} S_{\varepsilon}^i \left[\frac{(i\varepsilon)^2}{4(1 - x')(1 - z')} \hat{\varphi}_{d,q}^{SV,(i)}(\varepsilon) + \frac{i\varepsilon}{4(1 - x')} \hat{\varphi}_{d,z',q}^{NSV,(i)}(z', \varepsilon) + \frac{i\varepsilon}{4(1 - z')} \hat{\varphi}_{d,x',q}^{NSV,(i)}(x', \varepsilon) \right],$$

With the help of energy evolution equation of $\mathcal{S}(Q^2, x', z, \varepsilon)$, we derive its functional form till 4-loop.

Similar to Form-Factor it also satisfies:

$$Q^{2} \frac{d}{dQ^{2}} \ln \mathcal{S}(Q^{2}, x', z', \varepsilon) = \frac{1}{2} \left(\overline{K}(\hat{a}_{s}, \frac{\mu_{R}^{2}}{\mu^{2}}, \varepsilon) + \overline{G}(\hat{a}_{s}, \frac{Q^{2}}{\mu_{R}^{2}}, \frac{\mu_{R}^{2}}{\mu^{2}}, \varepsilon) \right)$$
Pole
Finite

All order behaviour

In order to study all-order behaviour, we formulated an integral representation for

$$(\Delta)\mathscr{C}_{J,qq}^{\text{sv+nsv}} = \mathscr{C} \exp \left(\Psi_d^q (Q^2, \mu_F^2, x', z', \varepsilon) \right) \bigg|_{\varepsilon=0},$$

$$\begin{split} \Psi_{d}^{q} &= \frac{\delta(\overline{x}')}{2} \Bigg(\left\{ \int_{\mu_{F}^{2}}^{Q^{2}\overline{z}'} \frac{d\lambda^{2}}{\lambda^{2}} \mathcal{P}^{q} \left(a_{s}(\lambda^{2}), \overline{z}' \right) + \mathcal{Q}^{q} \left(a_{s}(Q_{2}^{2}), \overline{z}' \right) \right)_{+} + \frac{1}{4} \Bigg(\frac{1}{\overline{x}'} \left\{ \mathcal{P}^{q} \left(a_{s}(Q_{12}^{2}), \overline{z}' \right) + 2 \tilde{L}^{q} \left(a_{s}(Q_{12}^{2}), \overline{z}' \right) + 2 \tilde{L}^{q} \left(a_{s}(Q_{12}^{2}), \overline{z}' \right) + 2 \tilde{L}^{q} \left(a_{s}(Q_{2}^{2}), \overline{z}' \right) + 2 \tilde$$

- $\blacksquare g_{d,0}^q$ is process dependent and get contribution from FF and \mathcal{S}^q
- lacksquare : From Splitting Kernel, after pole cancellation from Γ_{qq} and \mathcal{S}^q
- \blacksquare \mathcal{Q}^q : Finite part of SV and NSV from \mathcal{S}^q

All order behaviour

In order to study all-order behaviour, we formulated an integral representation for

$$(\Delta)\mathscr{C}_{i,qq}^{\mathrm{SV+NSV}}$$

$$\begin{split} \ln \mathscr{C}^{(SV+NSV)} &= \frac{\delta(\overline{x}')}{2} \Biggl(\left\{ \int_{\mu_F^2}^{Q^2 \overline{z}'} \frac{d\lambda^2}{\lambda^2} \mathscr{P}^q \left(a_s(\lambda^2), \overline{z}' \right) + \mathscr{Q}^q \left(a_s(Q_2^2), \overline{z}' \right) \right)_+ + \frac{1}{4} \Biggl(\frac{1}{\overline{x}'} \Biggl\{ \mathscr{P}^q \left(a_s(Q_{12}^2), \overline{z}' \right) + 2 \widetilde{L}^q \left(a_s(Q_{12}^2), \overline{z}' \right) + 2 \widetilde{L}^q \left(a_s(Q_2^2), \overline{z}' \right) \Biggr\} \Biggr)_+ + \frac{1}{2} \delta(\overline{x}') \, \delta(\overline{z}') \, \ln \left(g_{d,0}^q \left(a_s(\mu_F^2) \right) \right) + \left(\overline{x}' \leftrightarrow \overline{z}' \right) \Biggr)_+ + \frac{1}{2} \delta(\overline{x}') \, \delta(\overline{z}') \, \ln \left(g_{d,0}^q \left(a_s(\mu_F^2) \right) \right) \Biggr)_+ + \left(\overline{x}' \leftrightarrow \overline{z}' \right) \Biggr)_+ + \frac{1}{2} \delta(\overline{x}') \, \delta(\overline{z}') \, \ln \left(g_{d,0}^q \left(a_s(\mu_F^2) \right) \right) \Biggr)_+ + \left(\overline{x}' \leftrightarrow \overline{z}' \right) \Biggr)_+ + \frac{1}{2} \delta(\overline{x}') \, \delta(\overline{z}') \, \ln \left(g_{d,0}^q \left(a_s(\mu_F^2) \right) \right) \Biggr)_+ + \frac{1}{2} \delta(\overline{x}') \, \delta(\overline{z}') \, \ln \left(g_{d,0}^q \left(a_s(\mu_F^2) \right) \right) \Biggr)_+ + \frac{1}{2} \delta(\overline{x}') \, \delta(\overline{z}') \, \ln \left(g_{d,0}^q \left(a_s(\mu_F^2) \right) \right) \Biggr)_+ + \frac{1}{2} \delta(\overline{x}') \, \delta(\overline{z}') \, \ln \left(g_{d,0}^q \left(a_s(\mu_F^2) \right) \right) \Biggr)_+ + \frac{1}{2} \delta(\overline{x}') \, \delta(\overline{z}') \, \ln \left(g_{d,0}^q \left(a_s(\mu_F^2) \right) \right) \Biggr)_+ + \frac{1}{2} \delta(\overline{x}') \, \delta(\overline{z}') \, \ln \left(g_{d,0}^q \left(a_s(\mu_F^2) \right) \right) \Biggr)_+ + \frac{1}{2} \delta(\overline{x}') \, \delta(\overline{z}') \, \ln \left(g_{d,0}^q \left(a_s(\mu_F^2) \right) \right) \Biggr)_+ + \frac{1}{2} \delta(\overline{x}') \, \delta(\overline{z}') \, \ln \left(g_{d,0}^q \left(a_s(\mu_F^2) \right) \Biggr)_+ + \frac{1}{2} \delta(\overline{x}') \, \delta(\overline{z}') \, \ln \left(g_{d,0}^q \left(a_s(\mu_F^2) \right) \right) \Biggr)_+ + \frac{1}{2} \delta(\overline{x}') \, \delta(\overline{z}') \, \ln \left(g_{d,0}^q \left(a_s(\mu_F^2) \right) \Biggr)_+ + \frac{1}{2} \delta(\overline{x}') \, \delta(\overline{z}') \, \ln \left(g_{d,0}^q \left(a_s(\mu_F^2) \right) \right) \Biggr)_+ + \frac{1}{2} \delta(\overline{x}') \, \delta(\overline{z}') \, \delta(\overline{z}') \, \delta(\overline{z}') + \frac{1}{2} \delta(\overline{z}') \, \delta(\overline{z}') \, \delta(\overline{z}') + \frac{1}{2} \delta(\overline{z}') + \frac{1}{2} \delta(\overline{z}') \, \delta(\overline{z}') + \frac{1}{2} \delta(\overline{z}') + \frac{1}{$$

$$\mathcal{P}^{q}(a_{s}, z') = \frac{2A^{c}(a_{s})\mathcal{D}_{0}}{2} + \frac{2\tilde{L}(a_{s}(q_{12}^{2}, \overline{z}'))}{2}$$

$$\mathcal{Q}^{q}_{d}(a_{s}, \overline{z}') = \frac{2}{\overline{z}'}G^{q}_{d}(a_{s}) + 2\varphi^{q}_{d,z',f}(a_{s}, \overline{z}')$$
SV NSV

$$\tilde{L}^q = C(a_s) \ln(\overline{z'}) + D(a_s)$$

$$\overline{x'} = 1 - x', \overline{z'} = 1 - z'$$

$$Q_1^2 = Q^2 \overline{x'}, Q_2^2 = Q^2 \overline{z'}$$

SV Predictions

• Due to the differential equations that F, S, Γ satisfies, the CFs $(\Delta)\mathscr{C}_i^{(SV+NSV)}$ exhibit an exponential structure, which helps to predict certain higher order terms.

GIVEN				PREDICTIONS FOR SV			
$\Psi_d^{q,(1)}$	$\Psi_d^{q,(2)}$	$\Psi_d^{q,(3)}$	$\Psi_d^{q,(n)}$	$(\Delta) {\cal C}_{J,cc}^{(2)}$	$(\Delta) {\cal C}_{J,cc}^{(3)}$	$(\Delta) {\cal C}_{J,cc}^{(i)}$	
$\delta_{\overline{x}'}\delta_{\overline{z}'}, \mathcal{D}^j_{\overline{x}'}\mathcal{D}^k_{\overline{z}'}$				$igg \mathcal{D}^{j}_{\overline{x}'}\mathcal{D}^{k}_{\overline{z}'},$	$\mathcal{D}^{j}_{\overline{x}'}\mathcal{D}^{k}_{\overline{z}'},$	$\mathcal{D}_{\overline{x}'}^{j} \mathcal{D}_{\overline{z}'}^{k}, \mathcal{D}_{\overline{x}'}^{j'} \delta_{\overline{z}'}, \mathcal{D}_{\overline{z}'}^{j'} \delta_{\overline{x}'}$ $j+k=2i-2, \{2i-3\}$ $j'=2i-1, \{2i-2\}$	
$\left \mathcal{D}_{\overline{x}'}^{j'} \delta_{\overline{z}'}, \mathcal{D}_{\overline{z}'}^{j'} \delta_{\overline{x}'} ight.$				$\left \mathcal{D}_{\overline{x}'}^{j'} \delta_{\overline{z}'}, \mathcal{D}_{\overline{z}'}^{j'} \delta_{\overline{x}'} ight $	$\mathcal{D}_{\overline{x}'}^{j'}\delta_{\overline{z}'}, \mathcal{D}_{\overline{z}'}^{j'}\delta_{\overline{x}'}$	$j+k=2i-2,\{2i-3\}$	
j + k = 0	I .			$j + k = 2, \{1\}$	$j + k = 4, \{3\}$	$ j = 2i-1, \{2i-2\} $	
j' = 1, 0				i'-3	$ a' = 5 \int A $		
	$\delta_{\overline{x}'}\delta_{\overline{z}'}, \mathcal{D}^{j}_{\overline{x}'}\mathcal{D}^{k}_{\overline{z}'}$				$\mathcal{D}^{j}_{\overline{x}'}\mathcal{D}^{k}_{\overline{z}'},$	$\begin{array}{ c c c c c c } \hline \mathcal{D}_{\overline{x}'}^{j} \mathcal{D}_{\overline{z}'}^{k}, \mathcal{D}_{\overline{x}'}^{j'} \delta_{\overline{z}'}, \mathcal{D}_{\overline{z}'}^{j'} \delta_{\overline{x}'} \\ j+k=2i-2,, \{2i-4, 2i-5\} \\ j'=2i-1,, \{2i-3, 2i-4\} \end{array}$	
	$igg \mathcal{D}_{\overline{x}'}^{j'}\delta_{\overline{z}'},\mathcal{D}_{\overline{z}'}^{j'}\delta_{\overline{x}'}$				$\mathcal{D}_{\overline{x}'}^{j'}\delta_{\overline{z}'}, \mathcal{D}_{\overline{z}'}^{j'}\delta_{\overline{x}'}$	$j + k = 2i - 2,, \{2i - 4, 2i - 5\}$	
	$\begin{vmatrix} x & z & z \\ j + k & = 2, 1, 0 \end{vmatrix}$				$j+k=4,3,\{2,1\}$	$j'=2i-1,,\{2i-3,2i-4\}$	
	j' = 3,, 0				$j' = 5, 4, \{3, 2\}$		
		$\delta_{\overline{x}'}\delta_{\overline{z}'}, \mathcal{D}^j_{\overline{x}'}\mathcal{D}^k_{\overline{z}'}$				$\left[\mathcal{D}_{\overline{x}'}^{j}\mathcal{D}_{\overline{z}'}^{k},\mathcal{D}_{\overline{x}'}^{j'}\delta_{\overline{z}'},\mathcal{D}_{\overline{z}'}^{j'}\delta_{\overline{x}'} ight.$	
		$igg \mathcal{D}_{\overline{x}'}^{j'}\delta_{\overline{z}'},\mathcal{D}_{\overline{z}'}^{j'}\delta_{\overline{x}'}$				$j + k = 2i - 2,, \{2i - 5,, 2i - 7\}$	
		j + k = 4,, 0				$j' = 2i - 1,, \{2i - 4,, 2i - 6\}$	
		j' = 5,, 0					
			$\delta_{\overline{x}'}\delta_{\overline{z}'}, \mathcal{D}^j_{\overline{x}'}\mathcal{D}^k_{\overline{z}'}$			$\mathcal{D}^{j}_{\overline{x}'}\mathcal{D}^{k}_{\overline{z}'}, \mathcal{D}^{j'}_{\overline{x}'}\delta_{\overline{z}'}, \mathcal{D}^{j'}_{\overline{z}'}\delta_{\overline{x}'}$	
			w			$ j+k=2i-2,,\{2i-n-2,,2i-2n-1\} $	
			$egin{aligned} \mathcal{D}_{\overline{x}'}^{j'}\delta_{\overline{z}'}, \mathcal{D}_{\overline{z}'}^{j'}\delta_{\overline{x}'}\ j+k = 2n-2,,0 \end{aligned}$			$\left j'=2i-1,,\{2i-n-1,,2i-2n\} ight $	
			j' = 2n - 1,, 0				

NSV Predictions

GIVEN, SV +				PREDICTIONS FOR NSV			
$\Psi_d^{q,(1)}$	$\Psi_d^{q,(2)}$	$\Psi_d^{q,(3)}$	$\Psi_d^{q,(n)}$	$(\Delta) {\cal C}_{J,cc}^{(2)}$	$(\Delta)\mathcal{C}_{J,cc}^{(3)}$	$(\Delta)\mathcal{C}_{J,cc}^{(i)}$	
$egin{aligned} \overline{\mathcal{L}_{\overline{x}'}^{j'}} \delta_{\overline{z}'}, \mathcal{L}_{\overline{z}'}^{j'} \delta_{\overline{x}'} \ \mathcal{D}_{\overline{x}'}^{j} \mathcal{L}_{\overline{z}'}^{k}, \ \mathcal{D}_{\overline{z}'}^{j} \mathcal{L}_{\overline{x}'}^{k} \ j+k=0 \ j'=1,0 \end{aligned}$				$\mathcal{D}_{\overline{x}'}^{j} \mathcal{L}_{\overline{z}'}^{k}, \mathcal{D}_{\overline{z}'}^{j} \mathcal{L}_{\overline{x}'}^{k}$ $\mathcal{L}_{\overline{x}'}^{j'} \delta_{\overline{z}'}, \mathcal{L}_{\overline{z}'}^{j'} \delta_{\overline{x}'}$ $j+k=2$ $j'=3$	$\mathcal{D}_{\overline{x}'}^{j} \mathcal{L}_{\overline{z}'}^{k}, \mathcal{D}_{\overline{z}'}^{j} \mathcal{L}_{\overline{x}'}^{k}$ $\mathcal{L}_{\overline{x}'}^{j'} \delta_{\overline{z}'}, \mathcal{L}_{\overline{z}'}^{j'} \delta_{\overline{x}'}$ $j+k=4$ $j'=5$	$\begin{array}{c} \mathcal{D}_{\overline{x}'}^{j}, \mathcal{L}_{\overline{z}'}^{k}, \mathcal{D}_{\overline{z}'}^{j}, \mathcal{L}_{\overline{x}'}^{k}, \mathcal{L}_{\overline{x}'}^{j'}, \delta_{\overline{z}'}, \mathcal{L}_{\overline{z}'}^{j'}, \delta_{\overline{x}'}\\ j+k=2i-2\\ j'=2i-1 \end{array}$	
	$\mathcal{L}_{\overline{x}'}^{j'} \delta_{\overline{z}'}, \mathcal{L}_{\overline{z}'}^{j'} \delta_{\overline{x}'}$ $\mathcal{D}_{\overline{x}'}^{j} \mathcal{L}_{\overline{z}'}^{k},$ $\mathcal{D}_{\overline{z}'}^{j} \mathcal{L}_{\overline{x}'}^{k}$ $j+k=2,1,0$ $j'=3,,0$				$\mathcal{D}_{\overline{x}'}^{j} \mathcal{L}_{\overline{z}'}^{k}, \mathcal{D}_{\overline{z}'}^{j} \mathcal{L}_{\overline{x}'}^{k}$ $\mathcal{L}_{\overline{x}'}^{j'} \delta_{\overline{z}'}, \mathcal{L}_{\overline{z}'}^{j'} \delta_{\overline{x}'}$ $j + k = 4, 3, \{2\}$ $j' = 5, 4$	$\mathcal{D}_{\overline{x}'}^{j} \mathcal{L}_{\overline{z}'}^{k}, \mathcal{D}_{\overline{z}'}^{j} \mathcal{L}_{\overline{x}'}^{k}, \mathcal{L}_{\overline{x}'}^{j'} \delta_{\overline{z}'}, \mathcal{L}_{\overline{z}'}^{j'} \delta_{\overline{x}'}$ $j + k = 2i - 2, 2i - 3, \{2i - 4\}$ $j' = 2i - 1, 2i - 2$	
		$\mathcal{L}_{\overline{x}'}^{j'} \delta_{\overline{z}'}, \mathcal{L}_{\overline{z}'}^{j'} \delta_{\overline{x}'}$ $\mathcal{D}_{\overline{x}'}^{j} \mathcal{L}_{\overline{z}'}^{k},$ $\mathcal{D}_{\overline{z}'}^{j} \mathcal{L}_{\overline{x}'}^{k}$ $j+k=4,,0$ $j'=5,,0$				$\mathcal{D}_{\overline{x}'}^{j} \mathcal{L}_{\overline{z}'}^{k}, \mathcal{D}_{\overline{z}'}^{j} \mathcal{L}_{\overline{x}'}^{k}, \mathcal{L}_{\overline{x}'}^{j'} \delta_{\overline{z}'}, \mathcal{L}_{\overline{z}'}^{j'} \delta_{\overline{x}'}$ $j + k = 2i - 2,, \{2i - 5, 2i - 6\}$ $j' = 2i - 1,, 2i - 3$	
		•	$\mathcal{L}_{\overline{x}'}^{j'} \delta_{\overline{z}'}, \mathcal{L}_{\overline{z}'}^{j'} \delta_{\overline{x}'}$ $\mathcal{D}_{\overline{x}'}^{j} \mathcal{L}_{\overline{z}'}^{k}, \mathcal{D}_{\overline{z}'}^{j} \mathcal{L}_{\overline{x}'}^{k}$ $j+k=2n-2,, 0$ $j'=2n-1,, 0$			$\begin{array}{ c c c } \mathcal{D}^{j}_{\overline{x}'} \mathcal{L}^{k}_{\overline{z}'}, \mathcal{D}^{j}_{\overline{z}'} \mathcal{L}^{k}_{\overline{x}'}, \mathcal{L}^{j'}_{\overline{x}'} \delta_{\overline{z}'}, \mathcal{L}^{j'}_{\overline{z}'} \delta_{\overline{x}'} \\ j+k=2i-2, \dots, \{2i-n-2, \dots, 2i-2n\} \\ j'=2i-1, \dots, 2i-n \end{array}$	

$$\text{where,} \delta_{\overline{\xi}} = \delta(1-\xi), \mathcal{D}_{\overline{\xi}}^j = \left[\frac{\ln^j(1-\xi)}{1-\xi}\right]_+ \text{ and } \mathcal{L}_{\overline{\xi}}^j = \ln^j(1-\xi) \text{ with } \xi = x', z'.$$

NSV in Mellin Space

- To convert the convoluted exponent into normal exponent we need to go into Mellin-Space.
- Solving the integral repesentation in Mellin Space, we get:

$$(\Delta)C_{J,qq}^{\overrightarrow{N}} = \int_{0}^{1} dx' x'^{N_{1}-1} \int_{0}^{1} dz' z'^{N_{2}-1} (\Delta) \mathscr{C}^{\text{sv+nsv}}(x',z')$$

- Threshold limit $\{x', z'\} \longrightarrow \{1,1\}$ in Mellin space corresponds to $\{N_1, N_2\} \longrightarrow \{\infty, \infty\}$
- Taking till 1/N corrections from SV and NSV terms:

$$\left(\frac{\ln(1-z')}{1-z'}\right)_{+} \rightarrow \frac{\ln^{2}N_{2}}{2} - \frac{\ln N_{2}}{2N_{2}} + \frac{1}{2N_{2}} + \mathcal{O}\left(\frac{1}{N_{2}^{2}}\right)$$

$$\ln^{k}(1-z') \rightarrow \frac{\ln^{k}N_{2}}{2N_{2}} + \mathcal{O}\left(\frac{1}{N_{2}^{2}}\right)$$

NSV in Mellin Space

$$(\Delta)C_{J,qq}^{\overrightarrow{N}} = 1 + a_s \left[c_1^2 \ln^2 N_1 N_2 + \dots + c_1^0 + d_1^1 \frac{\ln^2 N_1 N_2}{N_1} + \dots + d_1^0 \frac{1}{N_1} \right] + \mathcal{O}(\frac{1}{N_1^2}) \right]$$

$$+ a_s^2 \left[c_2^4 \ln^4 N_1 N_2 + \dots + c_2^0 + d_2^3 \frac{\ln^3 N_1 N_2}{N_1} + \dots + d_2^0 \frac{1}{N_1} \right] + \mathcal{O}(\frac{1}{N_1^2}) \right]$$

$$+ \dots +$$

$$+ a_s^n \left[c_n^{2n} \ln^{2n} N_1 N_2 + \dots + c_n^0 + d_2^{2n-1} \frac{\ln^{2n-1} N_1 N_2}{N_1} + \dots + d_n^0 \frac{1}{N_1} + \mathcal{O}(\frac{1}{N_1^2}) \right]$$

 $+ (N_1 \leftrightarrow N_2)$

NSV in Mellin Space

Solving the integral repesentation in Mellin Space, we get:

$$(\Delta)C_{J,qq}^{\overrightarrow{N}} = \tilde{g}_{d,0}^q(Q^2, \mu_F^2) \exp\left(\overline{G}_{d,q}^{\overrightarrow{N}}(Q^2, \mu_F^2)\right)$$

Here the resumed expression take the following form:

$$\overline{G}_{d,q}^{\overrightarrow{N}} = g_{d,1}^q(\omega) \ln N_1 + \sum_{i=0}^{\infty} a_s^i \left(\frac{1}{2} g_{d,i+2}^q(\omega) + \frac{1}{N_1} \overline{g}_{d,i}^q(\omega) \right) + \frac{1}{N_1} \left(h_{d,0}^q(\omega, N_1) + \sum_{i=1}^{\infty} a_s^i h_{d,i}^q(\omega, \omega_1, N_1) \right) + (N_1 \leftrightarrow N_2, \omega_1 \leftrightarrow \omega_2)$$

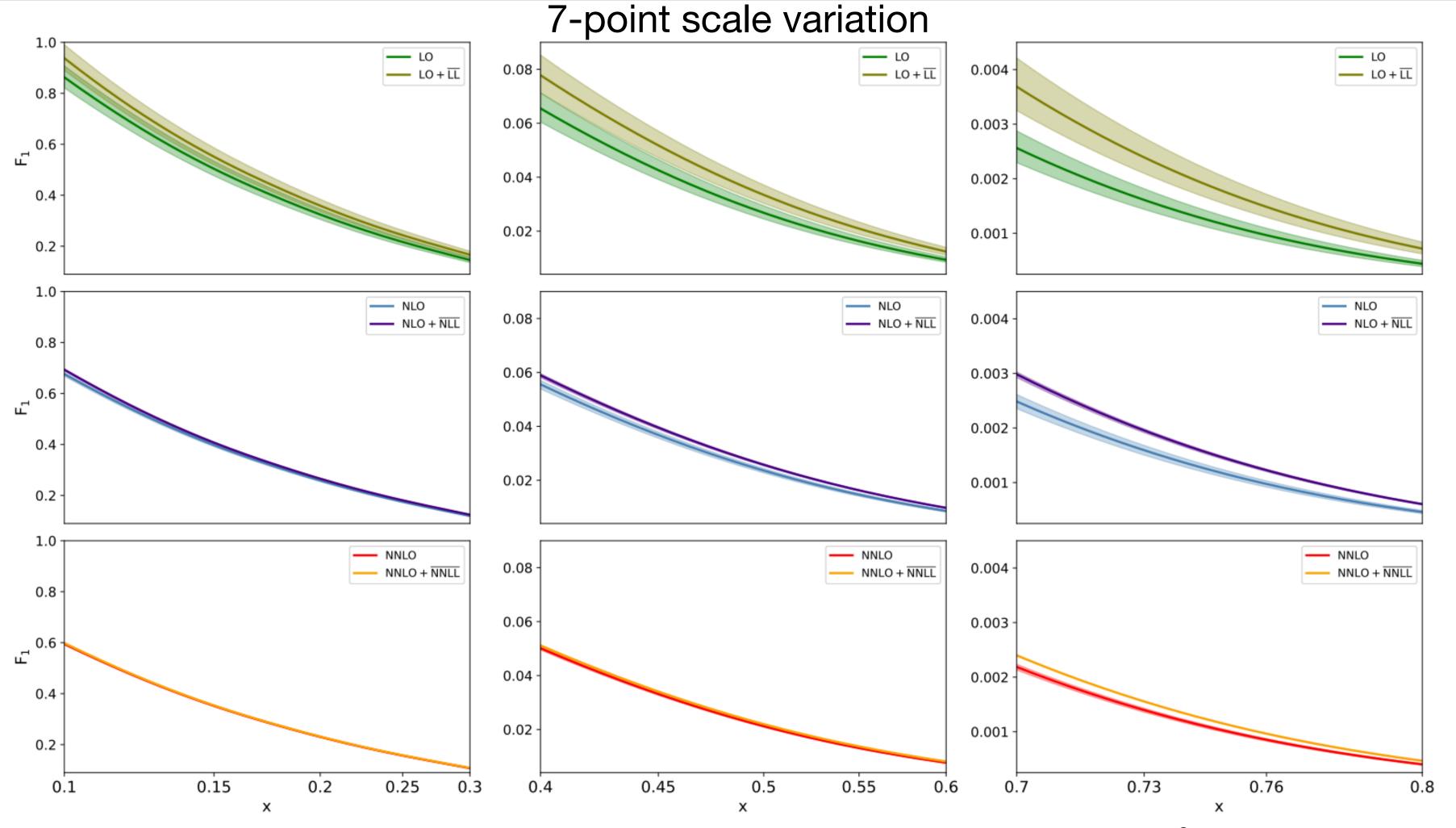
$$\overbrace{NSV}$$

where $\omega = a_s \beta_0 \ln N_1 N_2$ and $\omega_l = a_s \beta_0 \ln N_l$

All order prediction

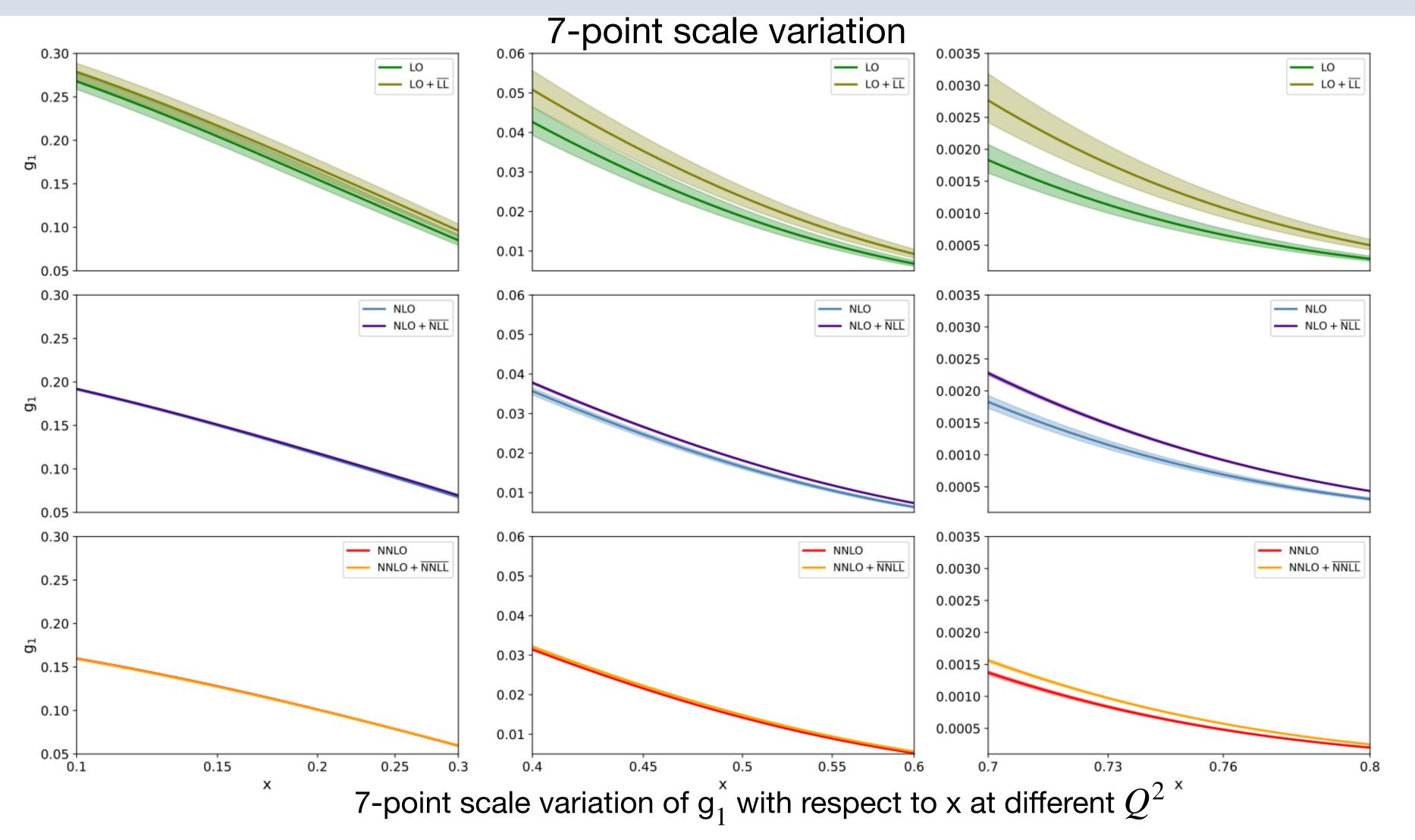
GIVEN	PREDICTIONS - SV and NSV Logarithms					
Resummed Exponents Upto	$\mathcal{C}_{d,qq,ec{N}}^{(2)}$	$\mathcal{C}_{d,qq,ec{N}}^{(3)}$	${\cal C}^{(4)}_{d,qq,ec N}$	•••	$\mathcal{C}_{d,qq,ec{N}}^{(n)}$	
$egin{aligned} ilde{g}_{d,0,0}^q, g_{d,1}^q, \ ar{g}_{d,0}^q, h_{d,0}^q \end{aligned}$	$\begin{array}{ c c c c } & L_1^i L_2^j _{i+j=4} \\ & L_{N_1}^i L_2^j _{i+j=3} \\ & L_1^i L_{N_2}^j _{i+j=3} \end{array}$	$\begin{array}{c c} L_1^i L_2^j _{i+j=6} \\ L_{N_1}^i L_2^j _{i+j=5} \\ L_1^i L_{N_2}^j _{i+j=5} \end{array}$	$\begin{array}{ c c c c } & L_1^i L_2^j _{i+j=8} \\ & L_{N_1}^i L_2^j _{i+j=7} \\ & L_1^i L_{N_2}^j _{i+j=7} \end{array}$	• •	$\begin{array}{c c} L_1^i L_2^j _{i+j=2n} \\ L_{N_1}^i L_2^j _{i+j=2n-1} \\ L_1^i L_{N_2}^j _{i+j=2n-1} \end{array}$	$\overline{\mathbf{L}}$
$egin{array}{c} ilde{g}_{d,0,1}^q, g_{d,2}^q \ ar{g}_{d,1}^q, h_{d,1}^q \end{array}$		$\begin{array}{c c} L_1^i L_2^j _{i+j=6,5,4} \\ L_{N_1}^i L_2^j _{i+j=5,4} \\ L_1^i L_{N_2}^j _{i+j=5,4} \end{array}$	$\begin{array}{c c} L_1^iL_2^j _{i+j=8,7,6} \\ L_{N_1}^iL_2^j _{i+j=7,6} \\ L_1^iL_{N_2}^j _{i+j=7,6} \end{array}$	• • •	$\begin{array}{c c} L_1^i L_2^j _{i+j=2n,,2n-2} \\ L_{N_1}^i L_2^j _{i+j=2n-1,2n-2} \\ L_1^i L_{N_2}^j _{i+j=2n-1,2n-2} \end{array}$	NLL
$egin{array}{c} ilde{g}_{d,0,2}^q, g_{d,3}^q \ ar{g}_{d,2}^q, h_{d,2}^q \end{array}$			$\begin{array}{c c} L_1^i L_2^j _{i+j=8,,4} \\ L_{N_1}^i L_2^j _{i+j=7,,5} \\ L_1^i L_{N_2}^j _{i+j=7,,5} \end{array}$	• • •	$ \begin{array}{c c} L_1^i L_2^j _{i+j=2n,,2n-4} \\ L_{N_1}^i L_2^j _{i+j=2n-1,,2n-3} \\ L_1^i L_{N_2}^j _{i+j=2n-1,,2n-3} \end{array} $	NNLL

$$L_1^i = \ln^i(N_1), L_{N_1}^i = \frac{\ln^i(N_1)}{N_1}, L_2^j = \ln^j(N_2), L_{N_2}^j = \frac{\ln^j(N_2)}{N_2}$$

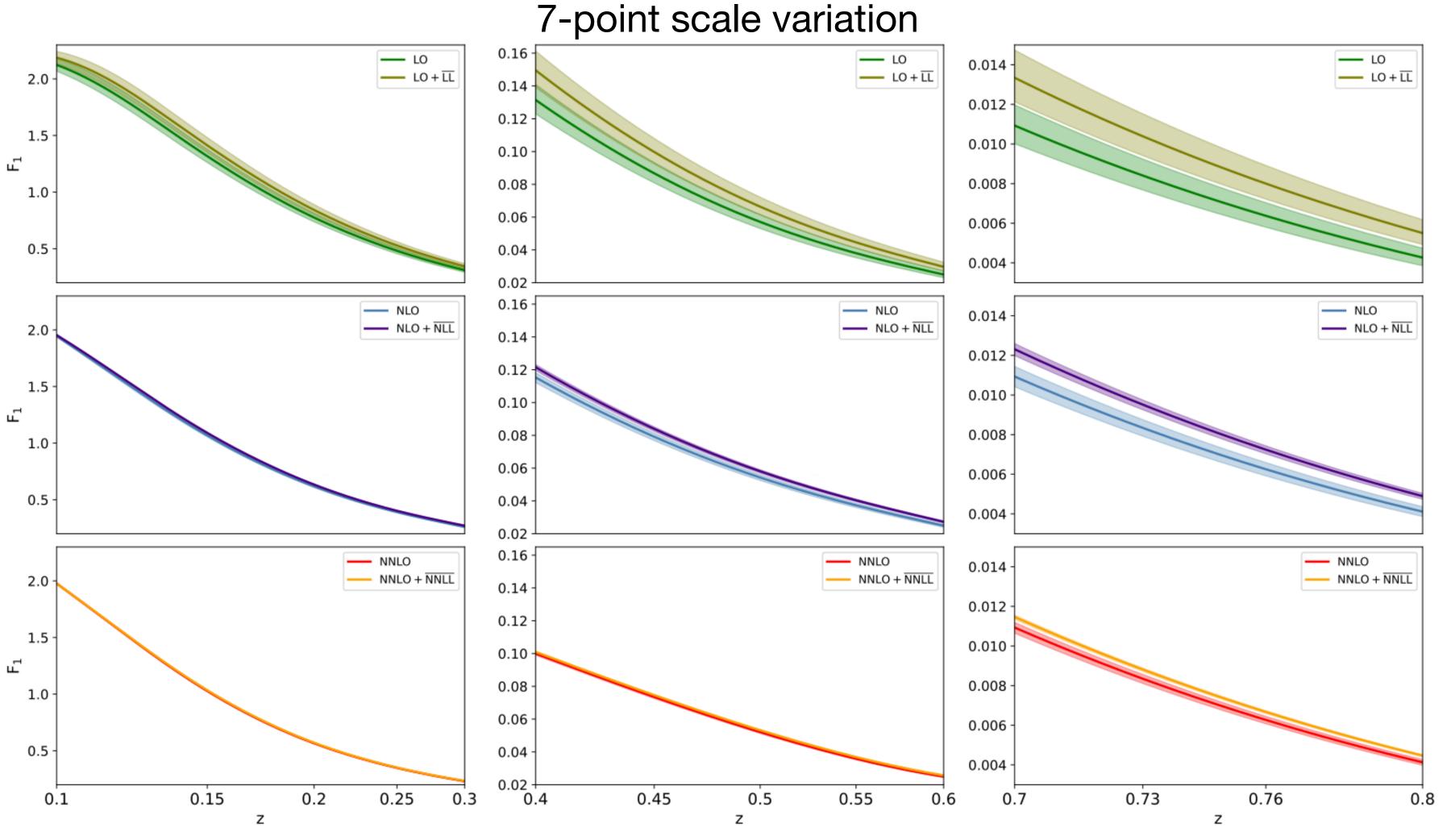


7-point scale variation of F_1 with respect to x at different Q^2

- ABMP16 PDF sets and NNFF10PIp FF sets at respective orders.
- Integration ranges are $y \in [0.5, 0.9]$ and $z \in [0.2, 0.85]$.

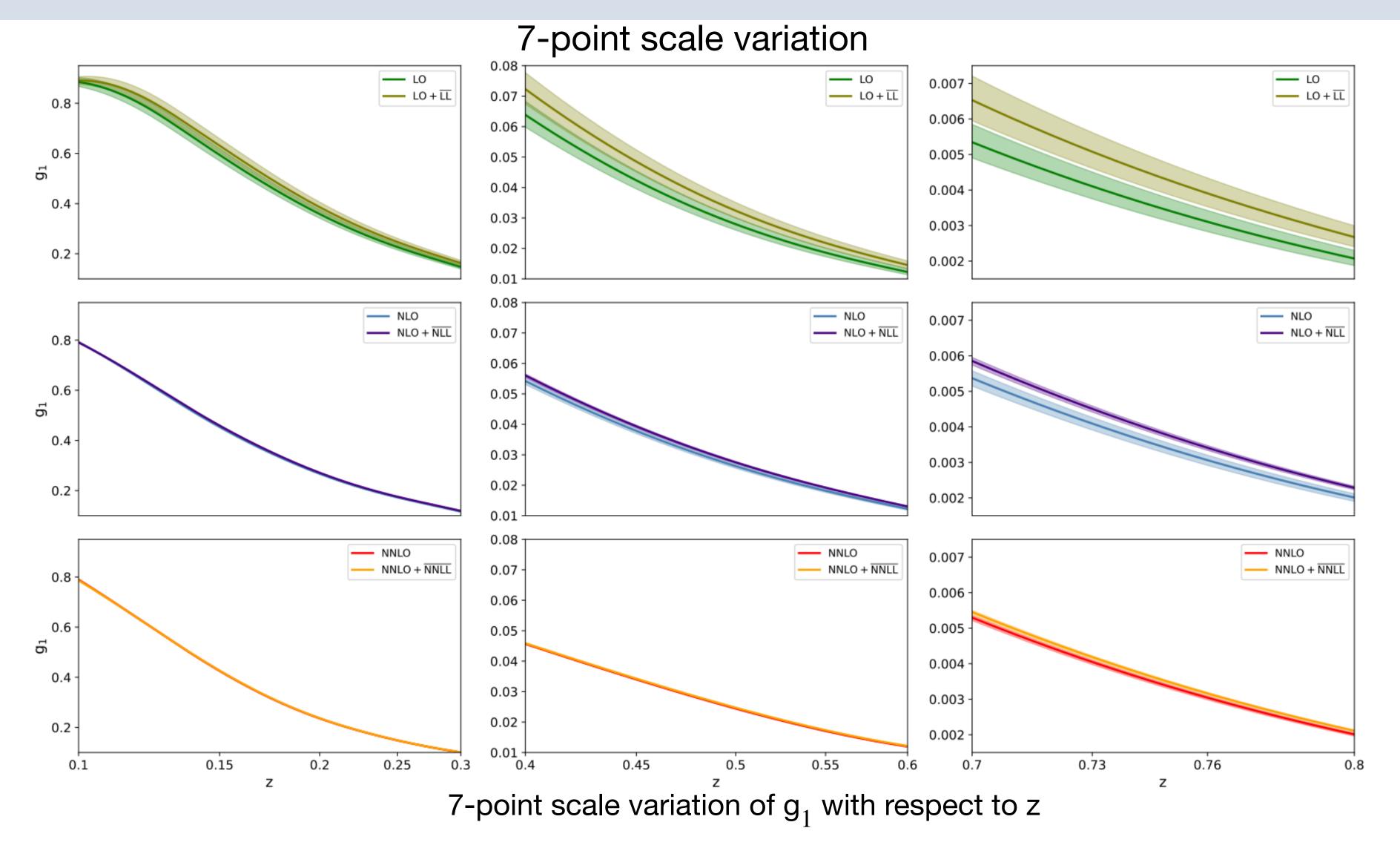


- BDSSV24 PDF sets and NNFF10PIp FF sets at respective orders.
- Integration ranges are $y \in [0.5, 0.9]$ and $z \in [0.2, 0.85]$.



7-point scale variation of F₁ with respect to z

- ABMP16 PDF sets and NNFF10PIp FF sets at respective orders.
- Integration ranges are $x \in [0.1, 0.8]$ and $y \in [0.5, 0.9]$.



- BDSSV24 PDF sets and NNFF10PIp FF sets at respective orders.
- Integration ranges are $x \in [0.1, 0.8]$ and $y \in [0.5, 0.9]$.

- These plots clearly demonstrate how, in the large x and/or large z regions, the contribution of resummed terms is significant. Furthermore, they illustrate, how resummed predictions substantially reduce the theoretical uncertainties arising from the choice of μ_R and μ_F .
- We found that at each logarithmic order the resummed contributions are larger than the corresponding fixed order ones.
- Including these logarithms to all orders through resummation reduces the dependence on the renormalisation and factorisation scales and hence improves the reliability of our predictions.

Summary

- The CFs exhibit an exponential behaviour, which allows us to predict all order prediction for certain SV+NSV logarithms.
- By formulating a integral representation, we propose an SV+NSV resummation framework in double Mellin Space which is first of the kind.
- We have extended the resummation of NSV logarithms till N2LL accuracy.
- We find that NSV contributions are significant, hence for better theoretical prediction we need to resum them.

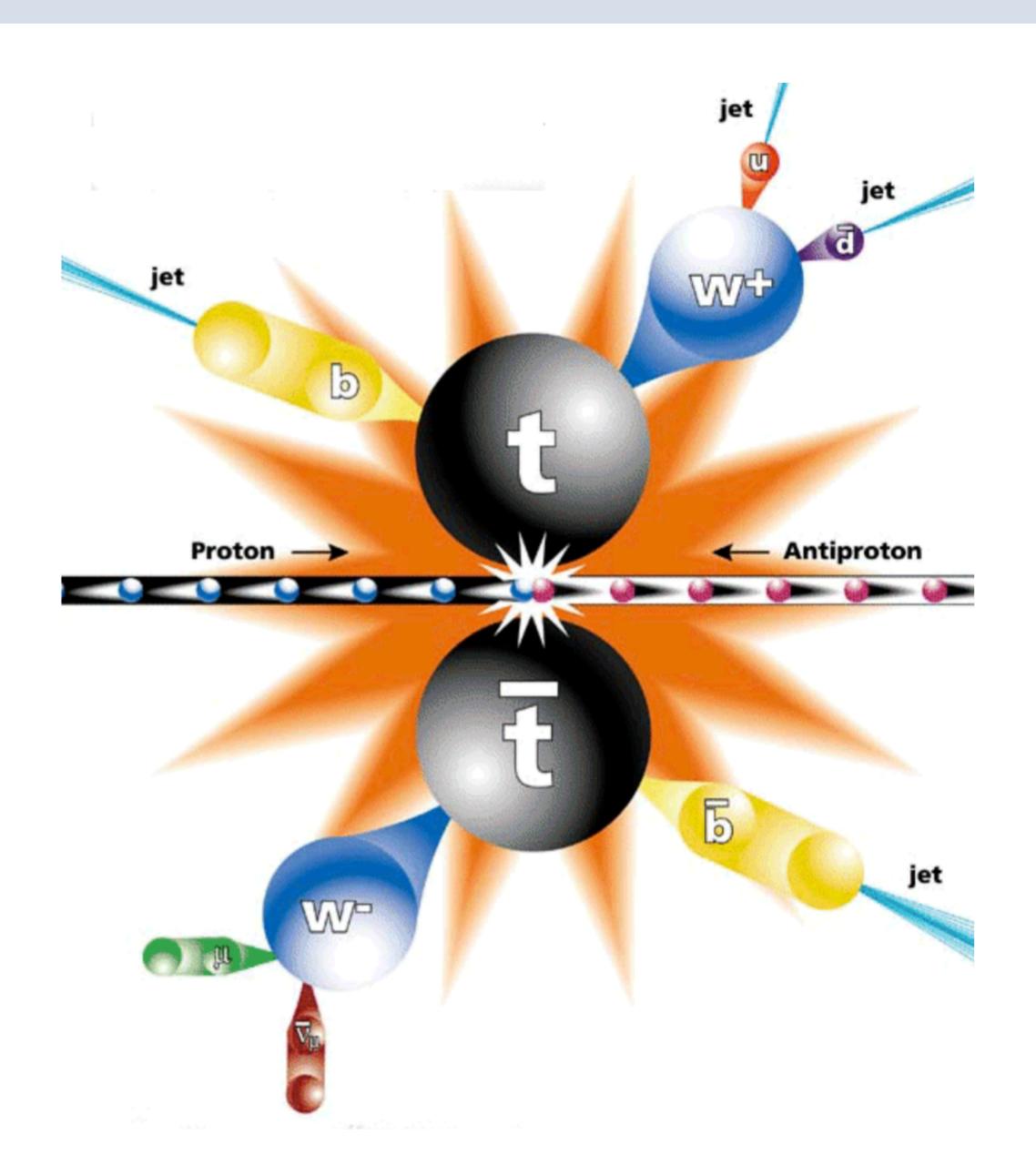
Future directions

- Modify the our formalism to accommodate off-diagonal channels.
- We are currently investigating the numerical impact of NNLO QED corrections on the existing NNLO+NNLL QCD results. We expect significant improvement in result.
- We have also extracted Time-like Splitting and Space-like Polarised pure QED and mixed QCD ⊗ QED Splitting function, which is not known in literature.¹
- We are also currently investigating parallely the numerical impact of Neutral and Charged current intermediate processes. We expect improvement in result.

^{1*} See talk by S. Goyal

Thank You!

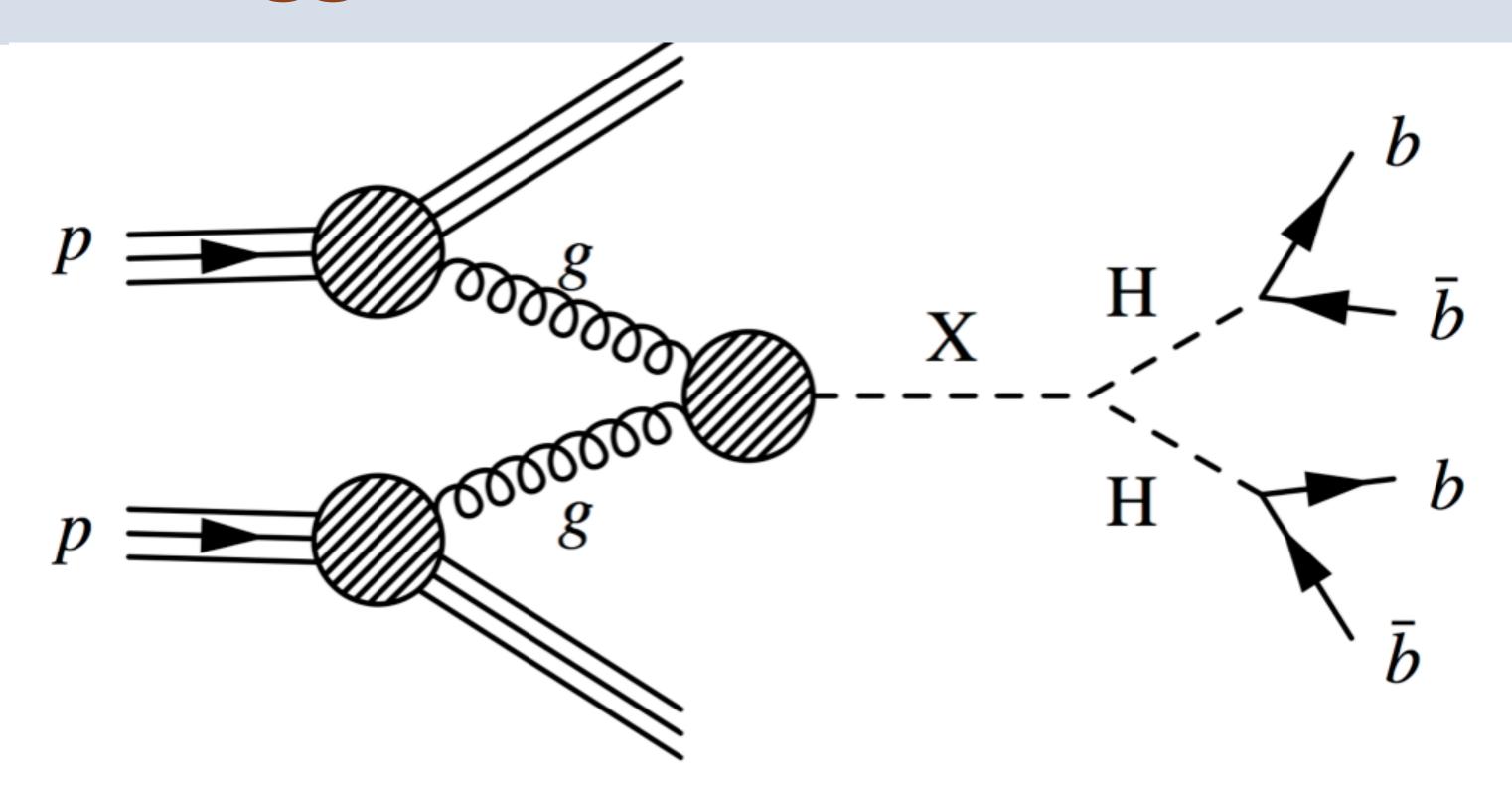
Top pair Production at the LHC



Parton Distribution Function

$$\Phi_{ab}(\mu_F^2, z) = \int \frac{dy}{y} f_a(y, \mu_F^2) f_b\left(\frac{z}{y}, \mu_F^2\right)$$

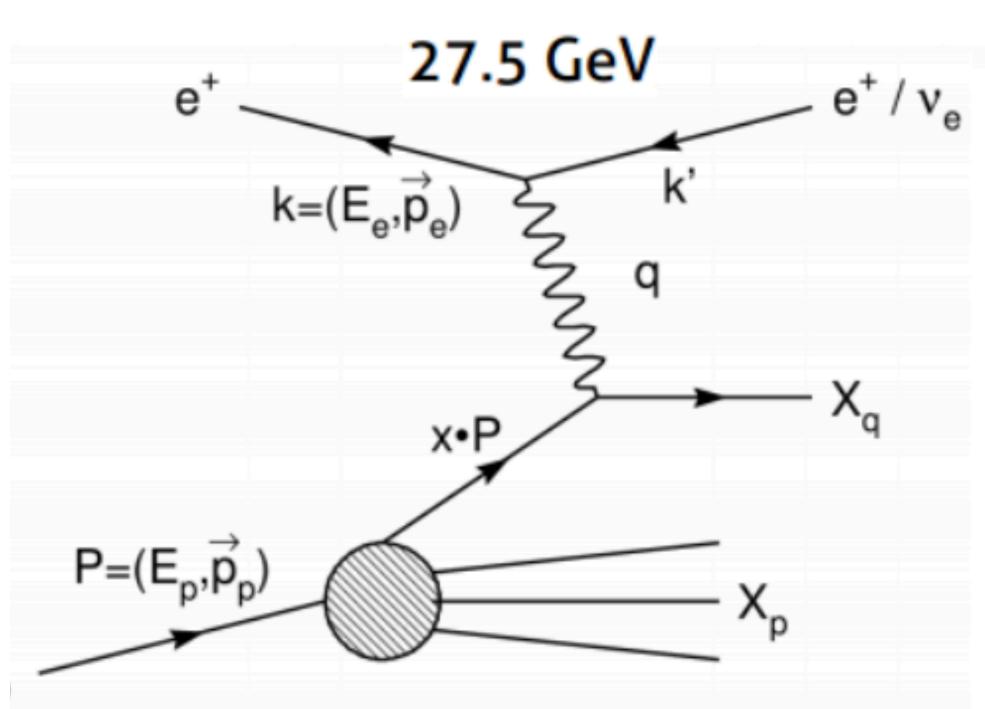
Higgs Production at the LHC



Parton Distribution Function

$$\Phi_{ab}(\mu_F^2, z) = \int \frac{dy}{y} f_a(y, \mu_F^2) f_b\left(\frac{z}{y}, \mu_F^2\right)$$

HERA — world only e*p collider



920, 820, 575 and 460 GeV

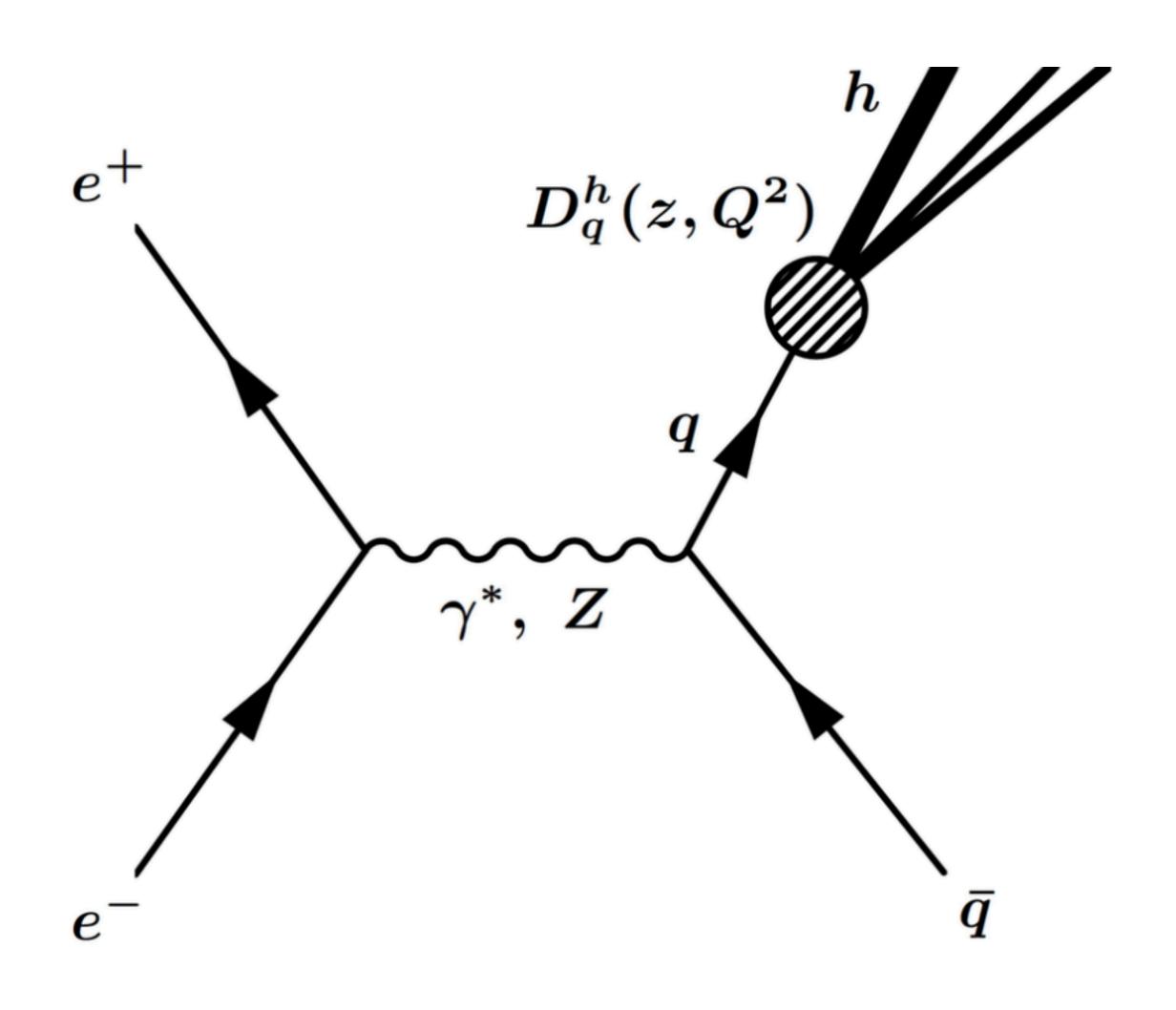
PDF Extraction

Index of /archive/lhapdf/pdfsets/6.1

GRV, GJR	<u>Name</u>	Last modified Size De	scription	V 1 11111 BULU 1010 / DIVIL
	Parent Directory	_	nCTEQ15npFullNuc_208_82.tar.gz	04-Mar-2016 15:37 3.0M
	ATLAS-epWZ12-EIG.tar.gz	23-Apr-2014 21:38 39M	nCTEQ15np_1_1.tar.gz	04-Mar-2016 16:37 96K
	ATLAS-epWZ12-VAR.tar.gz	23-Apr-2014 21:38 15M	nCTEQ15np_3_2.tar.gz	04-Mar-2016 15:37 3.0M
	CJ12max.tar.gz	09-Mar-2016 12:00 3.4M	nCTEQ15np_4_2.tar.gz	04-Mar-2016 15:37 3.0M
MRST, MSTW	CJ12mid.tar.gz	09-Mar-2016 12:00 3.4M	nCTEQ15np_6_3.tar.gz	04-Mar-2016 15:37 3.0M
	CJ12min.tar.gz	09-Mar-2016 12:00 3.4M	nCTEQ15np_7_3.tar.gz	04-Mar-2016 15:37 3.0M
	CJ15lo.tar.gz	21-Jun-2016 11:34 4.3M	nCTEQ15np_9_4.tar.gz	04-Mar-2016 15:37 3.0M
	CJ15nlo.tar.gz	08-Jun-2016 13:36 4.4M	nCTEQ15np_12_6.tar.gz	04-Mar-2016 15:37 3.0M
	CT09MC1.tar.gz	13-Apr-2014 08:12 206K	nCTEQ15np_14_7.tar.gz	04-Mar-2016 15:37 3.0M
CTEQ,CT#	CT09MC2.tar.gz	13-Apr-2014 08:12 227K	nCTEQ15np_20_10.tar.gz	04-Mar-2016 15:37 3.0M
$\mathbf{c}_{1}\mathbf{c}_{4},\mathbf{c}_{1}$	CT09MCS.tar.gz	13-Apr-2014 08:12 223K	nCTEQ15np_27_13.tar.gz	04-Mar-2016 15:37 3.0M
	CT10.tar.gz	13-Apr-2014 08:12 9.8M	nCTEQ15np_40_18.tar.gz	04-Mar-2016 15:37 3.0M
	CT10as.tar.gz	29-Oct-2014 12:14 2.0M	nCTEQ15np_40_20.tar.gz	04-Mar-2016 15:37 3.0M
	CT10f3.tar.gz	13-Apr-2014 08:12 133K	nCTEQ15np_56_26.tar.gz	04-Mar-2016 15:37 3.0M 04-Mar-2016 15:37 3.0M
	CT10f4.tar.gz	13-Apr-2014 08:12 160K	nCTEQ15np_64_32.tar.gz	04-Mar-2016 15:37 3.0M
NNPDF	CT10nlo.tar.gz	13-Apr-2014 08:12 10M	nCTEQ15np_108_54.tar.gz	04-Mar-2016 15:37 3.0M
	CT10nlo_as_0112.tar.gz	13-Apr-2014 08:12 190K	nCTEQ15np_119_59.tar.gz	04-Mar-2016 15:37 3.1M
	CT10nlo_as_0113.tar.gz	13-Apr-2014 08:12 190K	nCTEQ15np_131_54.tar.gz	04-Mar-2016 15:37 3.1M
	CT10nlo_as_0114.tar.gz	13-Apr-2014 08:12 190K	nCTEQ15np_184_74.tar.gz	04-Mar-2016 15:37 3.1M
	CT10nlo_as_0115.tar.gz	13-Apr-2014 08:12 190K	nCTEQ15np_197_79.tar.gz	04-Mar-2016 15:37 3.1M
ABM, ABKM	CT10nlo_as_0116.tar.gz	13-Apr-2014 08:12 190K	nCTEQ15np_197_98.tar.gz	04-Mar-2016 15:37 3.1M
ADIVI, ADRIVI	CT10nlo_as_0117.tar.gz	13-Apr-2014 08:12 189K	nCTEQ15np_207_103.tar.gz	04-Mar-2016 15:37 3.1M
		15 11pt 2014 00:12 107ft	nCTEQ15np_208_82.tar.gz	04-Mar-2016 15:37 3.1M
			pdfsets.index	11-Aug-2016 16:08 19K
			unvalidated/	07-Jan-2015 09:52 -

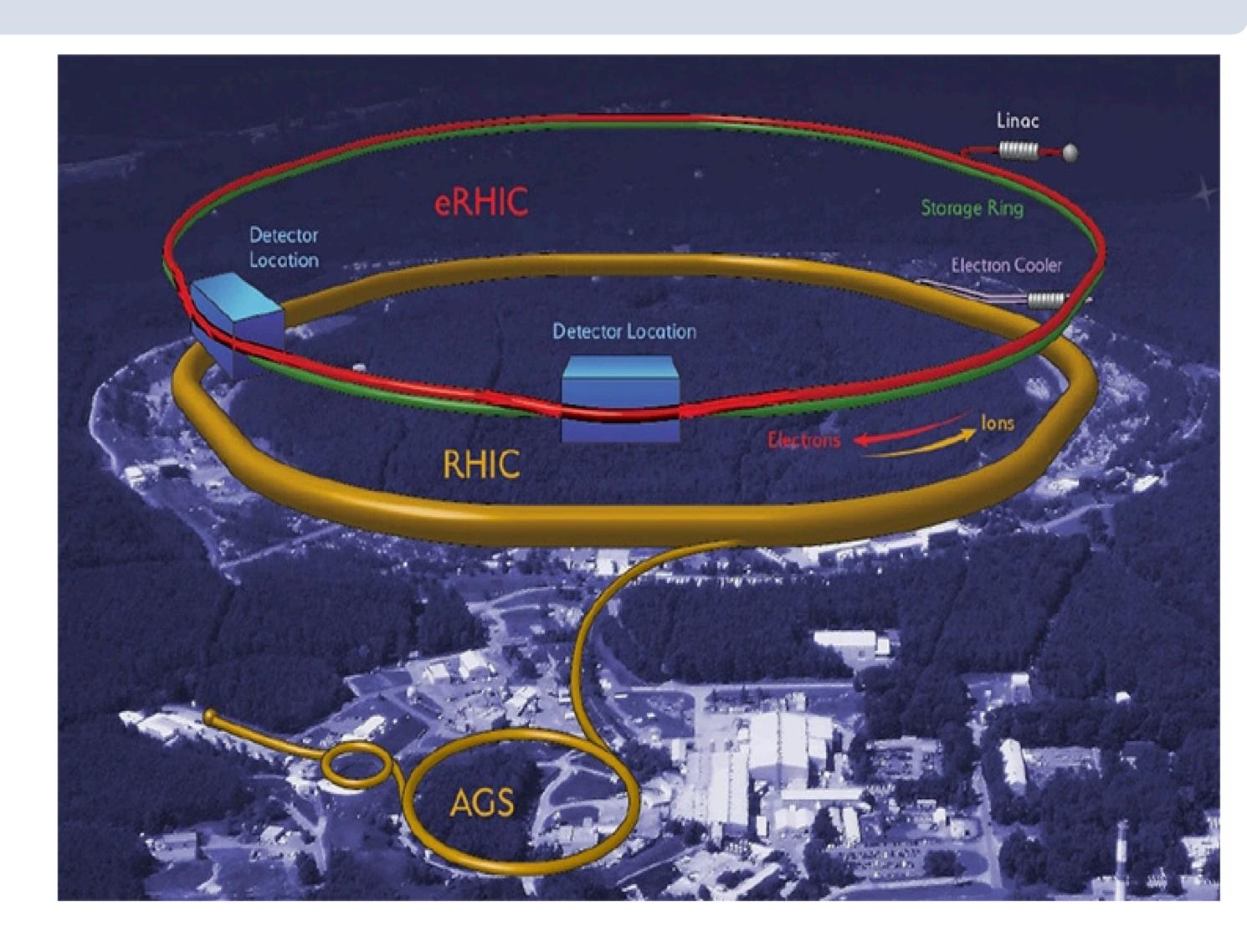
Long List of 19 Pages

Fragmentation Function

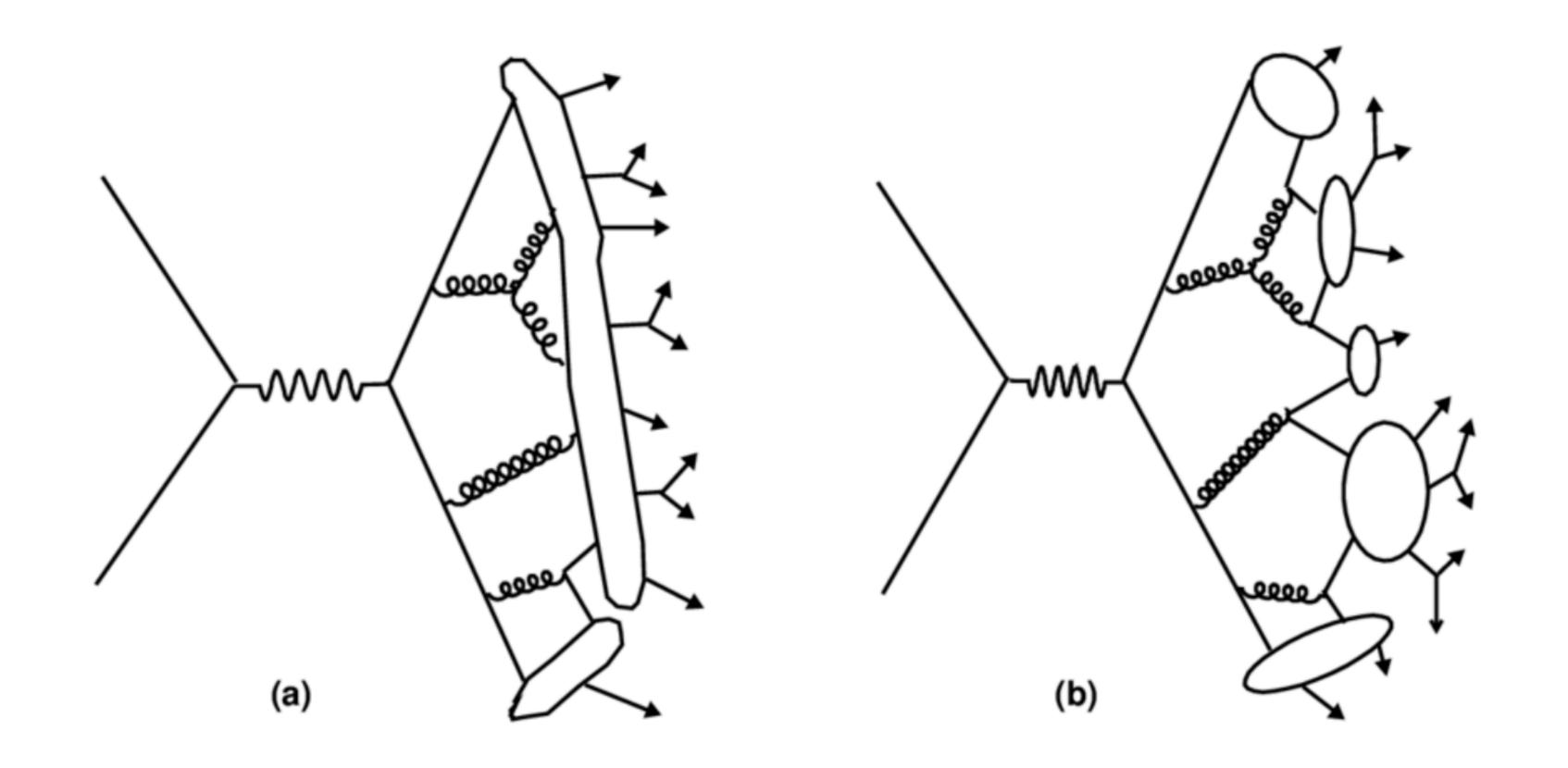


EIC Goals

- Precision 3D imaging of hadrons.
- Solving the proton spin puzzle.
- Gluon saturation and Color glass condensate.
- Quark and gluon confinement.
- Mass problem of nucleons.



Hadronization



Fragmentation Function:

Probability of a Parton converting to a Hadron