
Matter To The Deepest, University of Silesia, Katowice, Poland

Next-to-Soft-virtual resummation for SIDIS to  
NNLO+𝖭𝖭𝖫𝖫

 Vaibhav Pathak 
The Institute of Mathematical Sciences, 

Chennai, India

( in collaboration with: S Goyal, S Moch, N Rana, V Ravindran )

 Based on: (arXiv 2506.24078)



• Introduction

• Taking Forward…

• Threshold Expansion

•  Formalism

• Predictions 

• All Order Behaviour

• Numerical Result

• Summary and Future directions

Outline



Introduction 

• Processes with identified final state hadrons play important  roles in QCD. They 
provide crucial information on the Time-like splitting function and fragmentation 
function.

• Hadron production serves as a powerful probe of nucleon or nuclear structure.

• Hadron production data tests our key concepts in QCD at high energies such as 
factorization, universality of splitting functions, and perturbative calculations.

• Because electrons do not manifest any internal structure, they can be used as a 
precise probe of the more complicated nucleons and nuclei.



Drell-Yan Production at LHC

Parton Distribution Function



Role of DIS 
Inclusive DIS (Deep Inelastic Scattering),

lepton + hadron lepton + X 

One sums up all the particles in the final state, except the scattered lepton

Depends on Parton Distribution Function (PDF) of Incoming hadron.



 SIDIS ?
 SIDIS (Semi-Inclusive Deep Inelastic Scattering),

lepton + hadron lepton + hadron + X 

In SIDIS, in addition to the scattered lepton, we tag on one of the outgoing hadron

Depends on Parton Distribution Function (PDF) of Incoming hadron 
and Fragmentation Function (FF) of Outgoing hadron.



• At Partonic level cross-section,


               


   where  =  = 0 and . Our kinematic variables are 


                and  


q/g(Pa) + γ * (q) → q/g(Pb) + 𝒳

P2
a P2

b q2 = − Q2

x =
Q2

2P . q
⇒ x′￼ =

Q2

2Pa . q
z =

P . PH

P . q
⇒ z′￼ =

Pa . Pb

Pa . q

• Semi-Inclusive Deep Inelastic process,  


  l(kl) + H(P) → l(k′￼l ) + H′￼(PH) + X

Theoretical Framework
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X
H

H′￼

H

H′￼



Taking Forward …

• Processes involving fragmentation functions beyond leading order in QCD 
[Altarelli, Ellis, Martinelli, So-Young, Pi ’79]


• Approximate NNLO QCD corrections to semi-inclusive DIS [Abele, De Florian, 
Vogelsang ’21]


• Next-to-Next-to-Leading Order QCD Corrections to Semi-Inclusive Deep-
Inelastic Scattering [Goyal, Moch, VP, Rana, Ravindran ‘24]


• Semi-Inclusive Deep-Inelastic Scattering at Next-to-Next-to-Leading Order in 
QCD [Bonino, Gehrmann, Stagnitto ‘24]


• Next-to-Next-to-Leading Order QCD Corrections to Polarized Semi-Inclusive 
Deep-Inelastic Scattering [Bonino, Gehrmann , Löchner , Schönwald, Stagnitto 
'24]



• Next-to-Next-to-Leading Order QCD Corrections to Polarized Semi-Inclusive 
Deep-Inelastic Scattering [Goyal, Lee, Moch, VP, Rana, Ravindran ‘24]


• NNLO phase-space integrals for semi-inclusive deep-inelastic scattering 
[Ahmed, Goyal, Hasan, Lee, Moch, VP, Rana, Rapakoulias, Ravindran ‘25]


• NNLO QCD corrections to unpolarized and polarized SIDIS [Goyal, Lee, Moch, 
VP, Rana, Ravindran ‘25]


• Single-valued representation of unpolarized and polarized semi-inclusive deep 
inelastic scattering at next-to-next-to-leading order [Haug, Wunder ‘25]

Taking Forward …

2
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1*  See talk by  A. Rapakoulias,   2*  See talk by  S. Goyal   



• The Unpolarised cross section can be written as,

      

      are called structure functions and  is the energy of the incoming lepton 
     and y is the inelasticity.

• Similarly, the spin-dependent cross-section is found to be

   

• Note that  does not contribute since we restrict ourselves to longitudinally 
polarized hadron in the initial state.

d3σ
dxdydz

=
4πα2

e

Q2 [y F1(x, z, Q2) +
(1 − y)

y
F2(x, z, Q2)]

FJ E

d3Δσ
dxdydz

=
4πα2

e

Q2
(2 − y) g1(x, z, Q2)

g2

SIDIS with Photon Exchange 



Threshold Expansion

(g1)Fi(x, z, Q2) = ∑
a,b=q,q,g

∫
1

x

dx1

x1
(Δ)fa/𝖯 (x1, μ2

F)∫
1

z

dz1

z1
D𝖧′￼/𝖻 (z1, μ2

F)(Δ)𝒞i,ab ( x
x1

,
z
z1

, Q2, μ2
F)

In pQCD, The Structure Function can be factorised as :

Parton distribution function Fragmentation function Coefficient function

Perturbative Structure of coefficient function at threshold : x’ →1, z’→1

𝒞i → 𝒞virt
i δ(1 − x′￼)δ(1 − z′￼) + ∑

k,l

Dk(x′￼)Dl(z′￼)𝒞i,kl(x′￼, z′￼) + 𝒪(1 − x′￼)(1 − z′￼)
Finit Beyond NSV

• Our goal is to calculate the perturbatively calculable quantity  
(Δ)𝒞i,ab ( x

x1
,

z
z1

, Q2, μ2
F)



• The Fixed Order CFs fail in certain regions because of presence of Large 
Logarithms.


• In the threshold region, fixed order CFs at each order in perturbation become 
comparable.


• These Logarithms originate from the partonic configuration where partons are 
Soft and/or Collinear to each other.


• To make sensible predictions, we need to resum these large Logarithms to all 
orders in perturbation theory.

Why Resummation?



Threshold Expansion
Perturbative Structure of coefficient function at threshold : x’ →1, z’→1

𝒞i → 𝒞virt
i δ(1 − x′￼)δ(1 − z′￼) + ∑

k,l

Dk(x′￼)Dl(z′￼)𝒞i,kl(x′￼, z′￼) + 𝒪(1 − x′￼)(1 − z′￼)
Finit Beyond NSV

δ(1 − x′￼)( lni(1 − z′￼)
1 − z′￼ )

+

( lni(1 − x′￼)
1 − x′￼ )

+
( lnj(1 − z′￼)

1 − z′￼ )
+

δ(1 − x′￼)lni(1 − z′￼)

( lni(1 − x′￼)
1 − x′￼ )

+
ln(1 − z′￼)

Soft-Virtual (SV)

Next to Soft-Virtual (NSV)

Only diagonal Channels Diagonal and off-Diagonal Channels 

Suppressed to SV

These distributions give large contribution in threshold region,Hence we need to 

resum these distributions upto NSV.



→• From Plots, One can easily tell that contribution of q      q channel is dominant.

   That’s why we are resumming this channel only.

• SV part is contributing comparable to q      q channel. Hence, to make more

    precise we want to include Next to SV part also. 

→

Threshold Expansion



Taking Forward …

Diagonal Channels :

LO NLO NNLO
• Diagonal Channels gives SV + NSV + higher Order terms.

Off-Diagonal Channels :

• Off-Diagonal Channels gives NSV + higher Order terms.



The Decomposition formula for Diagonal CFs can be written as :


     



• :  FormFactor, coming from virtual correction.


•  :  Space-like AP kernels,  coming initial-state collinear singularity.


•  : Soft function, coming from threshold limit of real emission diagrams.


•  : Time-like AP kernels, coming from final-state collinear singularity.


     Each building block obeys 1st Order Evolution differential equations wrt (  or ).


(Δ)𝒞SV+NSV
J,qq = ̂Fq(Q2, ε)

2
⊗ ((Δ)Γ)−1

q←q(x′￼, μ2
F, ε) ⊗ (Δ)𝒮̂J,qq(Q2, x′￼, z′￼, ε) ⊗ (Γ̃)−1

q←q(z′￼, μ2
F, ε)

̂Fq(Q2, ε)
2

((Δ)Γ)−1
q←q(x′￼, μ2

F, ε)

(Δ)𝒮̂J,qq(Q2, x′￼, z′￼, ε)

(Γ̃)−1
q←q(z′￼, μ2

F, ε)

μ2
F Q2

Formalism



Formalism
Form Factor, :̂Fc

Functional Form: ln ̂Fc( ̂as, Q2, μ2, ϵ) =
∞

∑
i=1

̂as( Q2

μ2 )
i ϵ

2

Si
ϵ

i+1

∑
j=−∞

ℒ(i,j)
c

1
ϵj

Expressed in terms of  : ℒ(i,j)
c = {Ac, Bc, f c, gc}

Process Independent : {Ac, Bc, f c} Process dependent : gc

    Satisfies: Q2 d
dQ2

ln ̂Fc( ̂as, Q2, μ2, ε) =
1
2 (K( ̂as,

μ2
R

μ2
, ε) + G( ̂as,

Q2

μ2
R

,
μ2

R

μ2
, ε))

Pole Finite



DGLAP Kernel,  and :


           Collinear Singular Terms


Γcc Γ̃cc

Formalism

Evolution Equation:    μ2
F

d
dμ2

F
Γcc(μ2

F, ξ) =
1
2

Pcc(μ2
F, ξ) ⊗ Γcc(μ2

F, ξ)

Functional Form:


 Pcc(μ2
F, ξ) = 2( Ac(μ2

F)
(1 − ξ)+

+ Bc(μ2
F)δ(1 − ξ) + Cc(μ2

F)ln(1 − ξ) + Dc(μ2
F))

SV NSV
A and B are same for Space-like and Time-like splitting function but C and

D are different for Space-like and Time-like splitting function.



Formalism
Soft-Collinear Function, :𝒮̂c

Functional Form of ansatz:
1
2

ln𝒮(Q2, x′￼, z′￼, ε) =
∞

∑
i=1

̂ai
s ( Q2(1 − x′￼)(1 − z′￼)

μ2 )
i ε

2

Si
ε[ (iε)2

4(1 − x′￼)(1 − z′￼)
φ̂SV,(i)

d,q (ε) +
iε

4(1 − x′￼)
φ̂NSV,(i)

d,z′￼,q (z′￼, ε) +
iε

4(1 − z′￼)
φ̂NSV,(i)

d,x′￼,q (x′￼, ε)] ,

With the help of energy evolution equation of 𝒮(Q2, x′￼, z, ε) , we derive its 
functional form till 4-loop.

Similar to Form-Factor it also satisfies: 

Q2 d
dQ2

ln𝒮(Q2, x′￼, z′￼, ε) =
1
2 (K( ̂as,

μ2
R

μ2
, ε) + G( ̂as,

Q2

μ2
R

,
μ2

R

μ2
, ε))

Pole Finite



All order behaviour

In order to study all-order behaviour, we formulated an integral representation for

(Δ)𝒞sv+nsv
J,qq = 𝒞 exp(Ψq

d(Q2, μ2
F, x′￼, z′￼, ε))

ε=0

,

Ψq
d =

δ(x′￼)
2 ({∫

Q2z′￼

μ2
F

dλ2

λ2
𝒫q (as(λ2), z′￼) + 𝒬q (as(Q2

2), z′￼))+ +
1
4 ( 1

x′￼{𝒫q (as(Q2
12), z′￼) + 2L̃q (as(Q2

12), z′￼)

+Q2 d
dQ2 (𝒬q (as(Q2

2), z′￼) + 2φq
d,z′￼, f (as(Q2

2), z′￼))})+ +
1
2

δ(x′￼) δ(z′￼) ln(gq
d,0 (as(μ2

F))) + (x′￼ ↔ z′￼)

gq
d,0 is process dependent and get contribution from FF and𝒮q

𝒫q : From Splitting Kernel, after pole cancellation from  and  Γqq 𝒮q

𝒬q  : Finite part of SV and NSV from 𝒮q



All order behaviour
In order to study all-order behaviour, we formulated an integral representation for
(Δ)𝒞SV+NSV

i,qq

ln𝒞(SV+NSV) =
δ(x′￼)

2 ({∫
Q2z′￼

μ2
F

dλ2

λ2
𝒫q (as(λ2), z′￼) + 𝒬q (as(Q2

2), z′￼))+ +
1
4 ( 1

x′￼{𝒫q (as(Q2
12), z′￼) + 2L̃q (as(Q2

12), z′￼)

+Q2 d
dQ2 (𝒬q (as(Q2

2), z′￼) + 2φq
d,z′￼, f (as(Q2

2), z′￼))})+ +
1
2

δ(x′￼) δ(z′￼) ln(gq
d,0 (as(μ2

F))) + (x′￼ ↔ z′￼)

x′￼ = 1 − x′￼, z′￼ = 1 − z′￼

Q2
1 = Q2x′￼, Q2

2 = Q2z′￼

L̃q = C(as)ln(z′￼) + D(as)

𝒬q
d(as, z′￼) =

2
z′￼

Gq
d (as) + 2φq

d,z′￼,f(as, z′￼)

SV

𝒫q(as, z′￼) = 2Ac(as)𝒟0 + 2L̃(as(q2
12, z′￼))

NSV



SV Predictions 
(Δ)𝒞(SV+NSV)

i• Due to the differential equations that  satisfies, the CFsF, 𝒮, Γ
exhibit  an exponential structure, which helps to predict certain higher order terms.



NSV Predictions

where,δξ = δ(1 − ξ), 𝒟j
ξ

= [ lnj(1 − ξ)
1 − ξ ]

+
and ℒj

ξ
= lnj(1 − ξ) with ξ = x′￼, z′￼.



NSV in Mellin Space

• Solving the integral repesentation in Mellin Space, we get :

(Δ)C ⃗N
J,qq = ∫

1

0
dx′￼x′￼

N1−1 ∫
1

0
dz′￼z′￼

N2−1(Δ)𝒞sv+nsv(x′￼, z′￼)

• Threshold limit { } x′￼, z′￼ {1,1} in Mellin space corresponds to { } { }N1, N2 ∞, ∞

• Taking till 1/N corrections from SV and NSV terms :

( ln(1 − z′￼)
1 − z′￼ )

+
→

ln2N2

2
−

lnN2

2N2
+

1
2N2

+ 𝒪( 1
N2

2 )
lnk(1 − z′￼) →

lnkN2

2N2
+ 𝒪( 1

N2
2 )

SV NSV

• To convert the convoluted exponent into normal exponent we need to go 

     into Mellin-Space.



NSV in Mellin Space

(Δ)C ⃗N
J,qq = 1 + as[c2

1 ln2N1N2 + . . . + c0
1 + d1

1
ln2N1N2

N1
+ . . . + d0

1
1
N1

+ 𝒪(
1

N2
1

)]
+a2

s [c4
2 ln4N1N2 + . . . + c0

2 + d3
2

ln3N1N2

N1
+ . . . + d0

2
1
N1

+ 𝒪(
1

N2
1

)]

+an
s [c2n

n ln2nN1N2 + . . . + c0
n + d2n−1

2
ln2n−1N1N2

N1
+ . . . + d0

n
1
N1

+ 𝒪(
1

N2
1

)]

+ . . . +

+ (N1 ↔ N2)

SV NSV



NSV in Mellin Space

• Solving the integral repesentation in Mellin Space, we get :
(Δ)C ⃗N

J,qq = g̃q
d,0(Q

2, μ2
F)exp (G ⃗N

d,q(Q
2, μ2

F))

•  Here the resumed expression take the following form :

G ⃗N
d,q = gq

d,1(ω)ln N1 +
∞

∑
i=0

ai
s( 1

2
gq

d,i+2(ω) +
1
N1

gq
d,i(ω)) +

1
N1 (hq

d,0(ω, N1) +
∞

∑
i=1

ai
sh

q
d,i(ω, ω1, N1)) + (N1 ↔ N2, ω1 ↔ ω2)

SV NSV
where   and  ω = asβ0 ln N1N2 ωl = asβ0 ln Nl



All order prediction

Li
1 = lni(N1), Li

N1
=

lni(N1)
N1

, Lj
2 = lnj(N2), Lj

N2
=

lnj(N2)
N2



7-point scale variation of  with respect to x at different F1 Q2

Numerical Result
7-point scale variation

• ABMP16 PDF sets  and NNFF10PIp FF sets at respective orders.


• Integration ranges are y  [0.5, 0.9] and z  [0.2, 0.85]. ∈ ∈



7-point scale variation of  with respect to x at different g1 Q2

Numerical Result
7-point scale variation

• BDSSV24 PDF sets and NNFF10PIp FF sets at respective orders.


• Integration ranges are y  [0.5, 0.9] and z  [0.2, 0.85]. ∈ ∈



7-point scale variation of  with respect to zF1

Numerical Result
7-point scale variation

• ABMP16 PDF sets and NNFF10PIp FF sets at respective orders.


• Integration ranges are x  [0.1, 0.8] and y  [0.5, 0.9]. ∈ ∈



7-point scale variation of  with respect to zg1

Numerical Result
7-point scale variation

• BDSSV24 PDF sets and NNFF10PIp FF sets at respective orders.


• Integration ranges are x  [0.1, 0.8] and y  [0.5, 0.9]. ∈ ∈



• These plots clearly demonstrate how, in the large x and/or large z regions, the 
contribution of resummed terms is significant. Furthermore, they illustrate, how 
resummed predictions substantially reduce the theoretical uncertainties arising from 
the choice of  and  .


• We found that at each logarithmic order the resummed contributions are larger than 
the corresponding fixed order ones.


• Including these logarithms to all orders through resummation reduces the dependence 
on the renormalisation and factorisation scales and hence improves the reliability of 
our predictions.

μR μF

Numerical Result



Summary 

• The CFs exhibit an exponential behaviour, which allows us to predict all order 
prediction for certain SV+NSV logarithms.


• By formulating a integral representation, we propose an SV+NSV 
resummation framework in double Mellin Space which is first of the kind.


• We have extended the resummation of NSV logarithms till N2LL accuracy.


• We find that NSV contributions are significant, hence for better theoretical 
prediction we need to resum them.



• Modify the our formalism to accommodate off-diagonal channels.


• We are currently investigating the numerical impact of NNLO QED corrections 
on the existing NNLO+  QCD results. We expect significant improvement 
in result.


• We have also extracted Time-like Splitting and Space-like Polarised pure QED 
and mixed  Splitting function, which is not known in literature.


• We are also currently investigating parallely the numerical impact of Neutral 
and Charged current intermediate processes. We expect improvement in 
result.


• We also plan to calculate  correction to SIDIS.

NNLL

QCD ⊗ QED

QCD ⊗ EW

Future directions 

1

1*  See talk by  S. Goyal   



Thank You !



Top pair Production at the LHC

Parton Distribution Function



Higgs Production at the LHC

Parton Distribution Function





PDF Extraction

Long List of 19 Pages



Fragmentation Function



EIC Goals

• Precision 3D imaging of hadrons.

• Solving the proton spin puzzle.

• Gluon saturation and Color glass 
condensate.

• Quark and gluon confinement.

• Mass problem of nucleons.



Hadronization

Fragmentation Function:
Probability of a Parton converting to a Hadron


