

Weak nonleptonic hyperon decays in relativistic χ PT

N. Salone¹ S. Leupold² F. Alvarado³ A. Kupść^{2,4}

¹University of Silesia in Katowice

²Uppsala Universitet

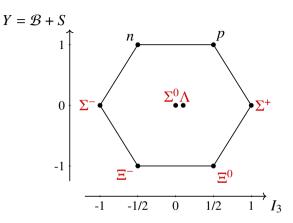
³TU Darmstadt, GSI

⁴NCBJ Warsaw

Matter To The Deepest XLVI International Conference, Katowice

September 17th, 2025

Subject of study


• $\Delta S = 1$ transitions:

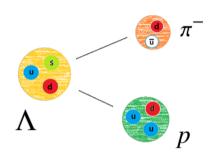
$$\Sigma^+ \rightarrow n\pi^+$$

$$\Sigma^- \to n\pi^-$$

$$\Lambda \to p\pi^-$$

$$\Xi^- \to \Lambda \pi^-$$

$$\begin{split} \sqrt{2}A(\Sigma^+ \to p\pi^0) - A(\Sigma^+ \to n\pi^+) + A(\Sigma^- \to n\pi^-) &= 0 \\ A(\Lambda \to p\pi^-) + \sqrt{2}A(\Lambda \to n\pi^0) &= 0 \\ A(\Xi^- \to \Lambda\pi^-) + \sqrt{2}A(\Xi^0 \to \Lambda\pi^0) &= 0 \end{split}$$


Nonleptonic decays

Transition amplitude

$$\mathcal{M}(B_i \to B_f \pi) = G_F m_{\pi^+}^2 \bar{u}_f (A^{(S)} + A^{(P)} \gamma_5) u_i$$

From angular momentum conservation:

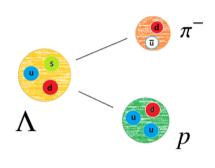
$$J(1/2) = S_b(1/2) + S_{\pi}(0) + L_{b\pi}$$

$$S(L_{b\pi} = 0), \quad P(L_{b\pi} = 1)$$

Nonleptonic decays

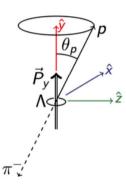
Transition amplitude

$$\mathcal{M}(B_i \to B_f \pi) = G_F m_{\pi^+}^2 \bar{u}_f (A^{(S)} + A^{(P)} \gamma_5) u_i$$


From angular momentum conservation:

$$J(1/2) = S_b(1/2) + S_{\pi}(0) + L_{b\pi}$$

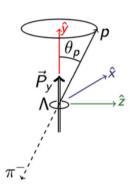
$$S(L_{b\pi} = 0), \quad P(L_{b\pi} = 1)$$


Dimensionless *l*-wave amplitudes

parity-violating:
$$A^{(S)} \equiv S$$

parity-conserving:
$$A^{(P)} \equiv \frac{|\vec{\mathbf{p}}_f|}{E_f + m_f} P$$

From partial waves to observables:



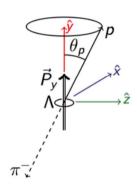
 $\Lambda \to p \, \pi^- \, \mathrm{decay}$

From partial waves to observables:

• Angular distribution $\frac{d\Gamma}{d\Omega} \propto 1 + \alpha \mathbf{P}_{\Lambda} \cdot \hat{\mathbf{n}}$

$$\alpha = \frac{2\Re(S^*P)}{|S|^2 + |P|^2}$$

$$\Lambda \to p \, \pi^- \, \mathrm{decay}$$


From partial waves to observables:

• Angular distribution $\frac{d\Gamma}{d\Omega} \propto 1 + \alpha \mathbf{P}_{\Lambda} \cdot \hat{\mathbf{n}}$

$$\alpha = \frac{2\Re(S^*P)}{|S|^2 + |P|^2}$$

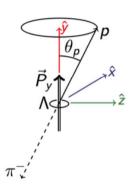
• Spin $\mathbf{s}_{\Lambda} \to \mathbf{s}_{p}$ rotation

$$\beta = \frac{2\mathfrak{I}(S^*P)}{|S|^2 + |P|^2} = \sqrt{1 - \alpha^2} \sin \phi$$

$$\Lambda \to p \, \pi^- \, \mathrm{decay}$$

From partial waves to observables:

• Angular distribution $\frac{d\Gamma}{d\Omega} \propto 1 + \alpha \mathbf{P}_{\Lambda} \cdot \hat{\mathbf{n}}$


$$\alpha = \frac{2\Re(S^*P)}{|S|^2 + |P|^2}$$

• Spin $\mathbf{s}_{\Lambda} \to \mathbf{s}_{p}$ rotation

$$\beta = \frac{2\mathfrak{I}(S^*P)}{|S|^2 + |P|^2} = \sqrt{1 - \alpha^2} \sin \phi$$

• Decay width

$$\Gamma = kin(|\vec{\mathbf{p}}_f|, E_f, m_f)(|S|^2 + |P|^2)$$

$$\Lambda \to p \, \pi^- \, \mathrm{decay}$$

Motivation: new data landscape

Polarization and entanglement in baryonantibaryon pair production in electron-positron annihilation

The BESIII Collaboration*

[Nature Phys. 15 (2019) 631]

Motivation: new data landscape

Polarization and entanglement in baryonantibaryon pair production in electron-positron annihilation

The BESIII Collaboration*

[Nature Phys. 15 (2019) 631]

Article Open Access | Published: 01 June 2022

Probing CP symmetry and weak phases with entangled double-strange baryons

The BESIII Collaboration

Nature 606, 64-69 (2022) | Cite this article

11k Accesses | 7 Citations | 96 Altmetric | Metrics

[Nature 606, 6469 (2022)]

[Phys.Rev.Lett. 129 (2022) 131801]

Motivation: new data landscape

Polarization and entanglement in baryonantibaryon pair production in electron-positron annihilation

The BESIII Collaboration*

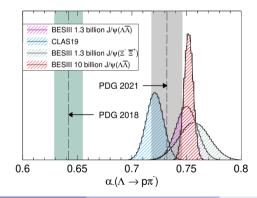
[Nature Phys. 15 (2019) 631]

Article Open Access | Published: 01 June 2022

Probing CP symmetry and weak phases with entangled double-strange baryons

The BESIII Collaboration

Nature 606, 64-69 (2022) | Cite this article


11k Accesses | 7 Citations | 96 Altmetric | Metrics

[Nature 606, 6469 (2022)]

[Phys.Rev.Lett. 129 (2022) 131801]

Phys. Rev. Lett. 129, 131801 - Published 22 September 2022

Next step

Use α , ϕ , Γ data to extrapolate updated experimental *L*-wave amplitude values.

L-wave amplitude extraction: assuming *CP* conservation, $\Delta I = 1/2$ rule

$$L = \sum_{j} L_{j} \exp(i\delta_{j}^{L}), \ j \in \{2\Delta I, 2I\}, \ L_{j} \in \mathbb{R}$$

Next step

Use α , ϕ , Γ data to extrapolate updated experimental *L*-wave amplitude values.

L-wave amplitude extraction: assuming *CP* conservation, $\Delta I = 1/2$ rule

$$L = \sum_{j} L_{j} \exp(i\delta_{j}^{L}), \ j \in \{2\Delta I, 2I\}, \ L_{j} \in \mathbb{R}$$

and final-interaction phase shifts [NS et al., PRD105, 116022 (2022)]

	q [MeV/c]	$\delta_1^S \ [^\circ]$	$\delta_3^S \ [^\circ]$	$\delta_1^P \ [^\circ]$	δ_3^P [°]
$\Lambda \to N\pi$	103	6.52(9)	-4.60(7)	-0.79(8)	-0.75(4)
$\Sigma \to N\pi$	190	9.98(23)	-10.70(13)	-0.04(33)	-3.27(15)

Next step

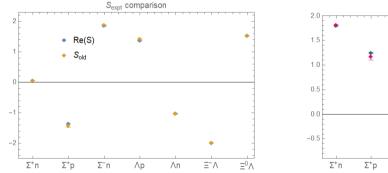
Use α , ϕ , Γ data to extrapolate updated experimental *L*-wave amplitude values.

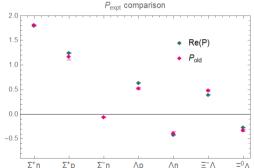
L-wave amplitude extraction: assuming *CP* conservation, $\Delta I = 1/2$ rule

$$L = \sum_{j} L_{j} \exp(i\delta_{j}^{L}), \ j \in \{2\Delta I, 2I\}, \ L_{j} \in \mathbb{R}$$

and final-interaction phase shifts [NS et al., PRD105, 116022 (2022)]

	q [MeV/c]	$\delta_1^S \ [^\circ]$	δ_3^S [°]	$\delta_1^P \ [^\circ]$	$\delta_3^P \ [^\circ]$
$\Lambda \to N\pi$	103	6.52(9)	-4.60(7)	-0.79(8)	-0.75(4)
$\Sigma \to N\pi$	190	9.98(23)	-10.70(13)	-0.04(33)	-3.27(15)


Relative sign between amplitudes fixed by Lee-Sugawara relation


$$\frac{3}{\sqrt{6}}A^{(S)}(\Sigma^{-} \to n\pi^{-}) + A^{(S)}(\Lambda \to p\pi^{-}) + 2A^{(S)}(\Xi^{-} \to \Lambda\pi^{-}) = 0$$

Next step

Use α , ϕ , Γ data to extrapolate updated experimental *L*-wave amplitude values.

New reference values extracted from current data compared to [E. Jenkins, NPB 375 (1992) 561-581]:

Previous values extracted on the assumption of real-valued amplitudes: updated to complex-valued *l*-waves on most recent data.

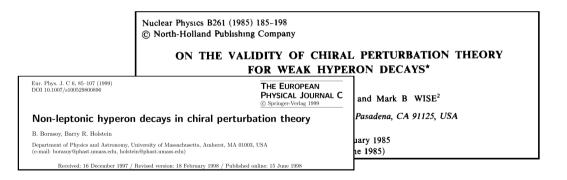
- At low-energy regime, α_s too large for a perturbative description of hadron interactions from QCD.
- χPT: EFT with hadrons as DF parametrizes meson-baryon interactions
 [S. Weinberg, Physica A 96 (1979) 1-2, 327-340], [J. Gasser & H. Leutwyler, Annals Phys. 158 (1984) 142].

- At low-energy regime, α_s too large for a perturbative description of hadron interactions from QCD.
- χ PT: EFT with hadrons as DF parametrizes meson-baryon interactions [S. Weinberg, Physica A 96 (1979) 1-2, 327-340], [J. Gasser & H. Leutwyler, Annals Phys. 158 (1984) 142].

Weak nonleptonic hyperon decays previously studied in

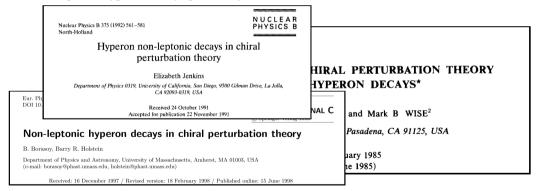
Nuclear Physics B261 (1985) 185-198
© North-Holland Publishing Company

ON THE VALIDITY OF CHIRAL PERTURBATION THEORY FOR WEAK HYPERON DECAYS*


J BIJNENS¹, H SONODA and Mark B WISE²

California Institute of Technology, Pasadena, CA 91125, USA

Received 23 January 1985 (Revised 14 June 1985)


- At low-energy regime, α_s too large for a perturbative description of hadron interactions from QCD.
- χPT: EFT with hadrons as DF parametrizes meson-baryon interactions
 [S. Weinberg, Physica A 96 (1979) 1-2, 327-340], [J. Gasser & H. Leutwyler, Annals Phys. 158 (1984) 142].

Weak nonleptonic hyperon decays previously studied in

- At low-energy regime, α_s too large for a perturbative description of hadron interactions from QCD.
- χPT: EFT with hadrons as DF parametrizes meson-baryon interactions
 [S. Weinberg, Physica A 96 (1979) 1-2, 327-340], [J. Gasser & H. Leutwyler, Annals Phys. 158 (1984) 142].

Weak nonleptonic hyperon decays previously studied in

Starting point

Computing 1-loop corrections using *Heavy-Baryon* χ PT (nonrelativistic approach):

Ref.	O(trunc)	10	h_{π}	B^*
Bijnens, Sonoda & Wise [NPB 261 (1985) 185-198]	$M_K^2 \log M_K$	X	X	X
Jenkins [NPB 375 (1992) 561-581]	II	✓	✓	X
Abd El-Hady & Tandean [PRD 61, 114014 (2000)]	II	✓	√ 1	X
Borasoy & Holstein [EPJC 6 (1999) 85-107]	$M_K^2(a+b\log M_K)$	X	✓	X
Borasoy & Holstein [PRD 59, 094025 (1999)]	M_K^2	X	✓	✓

¹Contradicting previous results.

Starting point

Computing 1-loop corrections using *Heavy-Baryon* χ PT (nonrelativistic approach):

Ref.	O(trunc)	10	h_{π}	B^*
Bijnens, Sonoda & Wise [NPB 261 (1985) 185-198]	$M_K^2 \log M_K$	X	X	X
Jenkins [NPB 375 (1992) 561-581]	II	✓	✓	X
Abd El-Hady & Tandean [PRD 61, 114014 (2000)]	II	✓	√ 1	X
Borasoy & Holstein [EPJC 6 (1999) 85-107]	$M_K^2(a+b\log M_K)$	X	✓	X
Borasoy & Holstein [PRD 59, 094025 (1999)]	M_K^2	X	✓	√

General conclusions

- LO chiral corrections to S-waves are in good agreement with experiment. P-waves are not well-described.
- A tree-level fit suggests **resonance exchange** is relevant.
- Results from simultaneous fitting are presumed unsatisfactory: yet unexplored.

¹Contradicting previous results.

Relativistic χ PT and EOMS

- Dimensional regularization + modified minimal subtraction do not work for baryons;
- inclusion of baryon masses breaks power-counting for the loop diagrams.

Relativistic χ PT and EOMS

- Dimensional regularization + modified minimal subtraction do not work for baryons;
- inclusion of baryon masses breaks power-counting for the loop diagrams.

Previous approach: HB χ PT Jenkins & Manohar [PLB 255 (1991) 558-562]

- Expansion of the Lagrangian in powers of $1/m_B$ in the chiral limit.
- Power-counting is manifest, but Lorentz invariance is not.
- Issues with analyticity (reproducing the correct positions of poles).

Relativistic χ PT and EOMS

- Dimensional regularization + modified minimal subtraction do not work for baryons;
- inclusion of baryon masses breaks power-counting for the loop diagrams.

Previous approach: HB \(\chi\)PT Jenkins & Manohar [PLB 255 (1991) 558-562]

- Expansion of the Lagrangian in powers of $1/m_B$ in the chiral limit.
- Power-counting is manifest, but Lorentz invariance is not.
- Issues with analyticity (reproducing the correct positions of poles).

Extended On-Mass-Shell ren. scheme Gegelia & Japaridze [PRD 60 (1999) 114038]

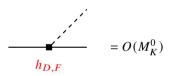
- Subtract the power-counting-violating terms, i.e. choosing appropriate renormalization conditions.
- Manifest Lorentz invariance: the standard approach for $B\chi PT$ nowadays.

Procedure

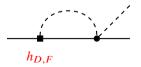
Compute 1-loop corrections from relativistic LO Lagrangian

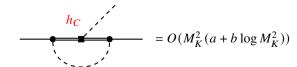
$$\mathcal{L}_{\phi B}^{\mathrm{s}}+\mathcal{L}_{\phi B}^{\mathrm{w}}$$

$$\mathcal{L}_{\phi B}^{\mathrm{w}} = \frac{h_{D}}{h_{C}} \operatorname{tr} \bar{B} \{ \xi^{\dagger} h \xi, B \} + \frac{h_{F}}{h_{F}} \operatorname{tr} \bar{B} [\xi^{\dagger} h \xi, B] + \frac{h_{C}}{h_{C}} \operatorname{tr} \bar{T}^{\mu} (\xi^{\dagger} h \xi) T_{\mu}$$

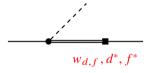

Procedure


Compute 1-loop corrections from relativistic LO Lagrangian

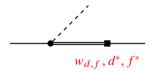

$$\mathcal{L}_{\phi B}^{\mathrm{s}}+\mathcal{L}_{\phi B}^{\mathrm{w}}$$


$$\mathcal{L}_{\phi B}^{\mathrm{w}} = h_{D} \operatorname{tr} \bar{B} \{ \xi^{\dagger} h \xi, B \} + h_{F} \operatorname{tr} \bar{B} [\xi^{\dagger} h \xi, B] + h_{C} \operatorname{tr} \bar{T}^{\mu} (\xi^{\dagger} h \xi) T_{\mu}$$

E.g. S-wave contributions:



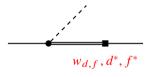
Inclusion of lower-lying $\frac{1}{2}^{\pm}$ resonances [Borasoy & Holstein, PRD 59, 094025 (1999)]¹


$$\mathcal{L}_{\text{res}}^{\text{w}} \propto \boldsymbol{d}^{*} \left[\text{tr}(\bar{R}^{+} \{ \boldsymbol{\xi}^{\dagger} h \boldsymbol{\xi}, \boldsymbol{B} \}) + \text{tr}(\bar{B} \{ \boldsymbol{\xi}^{\dagger} h \boldsymbol{\xi}, \boldsymbol{R}^{+} \}) \right] + \boldsymbol{f}^{*} \left[\text{tr}(\bar{R}^{+} [\boldsymbol{\xi}^{\dagger} h \boldsymbol{\xi}, \boldsymbol{B}]) + \text{tr}(\bar{B} [\boldsymbol{\xi}^{\dagger} h \boldsymbol{\xi}, \boldsymbol{R}^{+}]) \right]$$

$$+ i \boldsymbol{w}_{\boldsymbol{d}} \left[\text{tr}(\bar{R}^{-} \{ \boldsymbol{\xi}^{\dagger} h \boldsymbol{\xi}, \boldsymbol{B} \}) - \text{tr}(\bar{B} \{ \boldsymbol{\xi}^{\dagger} h \boldsymbol{\xi}, \boldsymbol{R}^{-} \}) \right] + i \boldsymbol{w}_{\boldsymbol{f}} \left[\text{tr}(\bar{R}^{-} [\boldsymbol{\xi}^{\dagger} h \boldsymbol{\xi}, \boldsymbol{B}]) - \text{tr}(\bar{B} [\boldsymbol{\xi}^{\dagger} h \boldsymbol{\xi}, \boldsymbol{R}^{-}]) \right]$$

Inclusion of lower-lying $\frac{1}{2}^{\pm}$ resonances [Borasoy & Holstein, PRD 59, 094025 (1999)]¹

$$\mathcal{L}_{\text{res}}^{\text{w}} \propto \boldsymbol{d}^{*} \left[\text{tr}(\bar{R}^{+} \{ \boldsymbol{\xi}^{\dagger} h \boldsymbol{\xi}, \boldsymbol{B} \}) + \text{tr}(\bar{B} \{ \boldsymbol{\xi}^{\dagger} h \boldsymbol{\xi}, \boldsymbol{R}^{+} \}) \right] + \boldsymbol{f}^{*} \left[\text{tr}(\bar{R}^{+} [\boldsymbol{\xi}^{\dagger} h \boldsymbol{\xi}, \boldsymbol{B}]) + \text{tr}(\bar{B} [\boldsymbol{\xi}^{\dagger} h \boldsymbol{\xi}, \boldsymbol{R}^{+}]) \right] \\ + i \boldsymbol{w}_{\boldsymbol{d}} \left[\text{tr}(\bar{R}^{-} \{ \boldsymbol{\xi}^{\dagger} h \boldsymbol{\xi}, \boldsymbol{B} \}) - \text{tr}(\bar{B} \{ \boldsymbol{\xi}^{\dagger} h \boldsymbol{\xi}, \boldsymbol{R}^{-} \}) \right] + i \boldsymbol{w}_{\boldsymbol{f}} \left[\text{tr}(\bar{R}^{-} [\boldsymbol{\xi}^{\dagger} h \boldsymbol{\xi}, \boldsymbol{B}]) - \text{tr}(\bar{B} [\boldsymbol{\xi}^{\dagger} h \boldsymbol{\xi}, \boldsymbol{R}^{-}]) \right]$$



The resulting amplitudes:

$$S_{\text{theory}}$$
, $P_{\text{theory}} = l.c.(h_{D,F,C}, w_{d,f}, d^*, f^*)$

Inclusion of lower-lying $\frac{1}{2}^{\pm}$ resonances [Borasoy & Holstein, PRD 59, 094025 (1999)]¹

$$\mathcal{L}_{\mathrm{res}}^{\mathrm{w}} \propto \boldsymbol{d}^{*} \left[\mathrm{tr}(\bar{R}^{+} \{ \boldsymbol{\xi}^{\dagger} h \boldsymbol{\xi}, \boldsymbol{B} \}) + \mathrm{tr}(\bar{B} \{ \boldsymbol{\xi}^{\dagger} h \boldsymbol{\xi}, \boldsymbol{R}^{+} \}) \right] + \boldsymbol{f}^{*} \left[\mathrm{tr}(\bar{R}^{+} [\boldsymbol{\xi}^{\dagger} h \boldsymbol{\xi}, \boldsymbol{B}]) + \mathrm{tr}(\bar{B} [\boldsymbol{\xi}^{\dagger} h \boldsymbol{\xi}, \boldsymbol{R}^{+}]) \right] \\ + i \boldsymbol{w}_{\boldsymbol{d}} \left[\mathrm{tr}(\bar{R}^{-} \{ \boldsymbol{\xi}^{\dagger} h \boldsymbol{\xi}, \boldsymbol{B} \}) - \mathrm{tr}(\bar{B} \{ \boldsymbol{\xi}^{\dagger} h \boldsymbol{\xi}, \boldsymbol{R}^{-} \}) \right] + i \boldsymbol{w}_{\boldsymbol{f}} \left[\mathrm{tr}(\bar{R}^{-} [\boldsymbol{\xi}^{\dagger} h \boldsymbol{\xi}, \boldsymbol{B}]) - \mathrm{tr}(\bar{B} [\boldsymbol{\xi}^{\dagger} h \boldsymbol{\xi}, \boldsymbol{R}^{-}]) \right]$$

Update for Roper multiplet

L	EC	SL new fit	Ref. [1]
1	D^*	0.72 ± 0.11	0.60 ± 0.41
	F^*	0.36 ± 0.05	0.11 ± 0.41

The resulting amplitudes:

$$S_{\text{theory}}$$
, $P_{\text{theory}} = l.c.(h_{D,F,C}, w_{d,f}, d^*, f^*)$

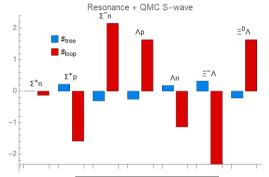
Inclusion of lower-lying $\frac{1}{2}^{\pm}$ resonances [Borasoy & Holstein, PRD 59, 094025 (1999)]¹

$$\mathcal{L}_{\text{res}}^{\text{w}} \propto \boldsymbol{d}^{*} \left[\text{tr}(\bar{R}^{+} \{ \boldsymbol{\xi}^{\dagger} h \boldsymbol{\xi}, \boldsymbol{B} \}) + \text{tr}(\bar{B} \{ \boldsymbol{\xi}^{\dagger} h \boldsymbol{\xi}, \boldsymbol{R}^{+} \}) \right] + \boldsymbol{f}^{*} \left[\text{tr}(\bar{R}^{+} [\boldsymbol{\xi}^{\dagger} h \boldsymbol{\xi}, \boldsymbol{B}]) + \text{tr}(\bar{B} [\boldsymbol{\xi}^{\dagger} h \boldsymbol{\xi}, \boldsymbol{R}^{+}]) \right] \\ + i \boldsymbol{w}_{\boldsymbol{d}} \left[\text{tr}(\bar{R}^{-} \{ \boldsymbol{\xi}^{\dagger} h \boldsymbol{\xi}, \boldsymbol{B} \}) - \text{tr}(\bar{B} \{ \boldsymbol{\xi}^{\dagger} h \boldsymbol{\xi}, \boldsymbol{R}^{-} \}) \right] + i \boldsymbol{w}_{\boldsymbol{f}} \left[\text{tr}(\bar{R}^{-} [\boldsymbol{\xi}^{\dagger} h \boldsymbol{\xi}, \boldsymbol{B}]) - \text{tr}(\bar{B} [\boldsymbol{\xi}^{\dagger} h \boldsymbol{\xi}, \boldsymbol{R}^{-}]) \right]$$

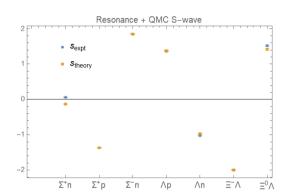
Update for Roper multiplet

LEC	SL new fit	Ref. [1]
D^*	0.72 ± 0.11	0.60 ± 0.41
F^*	0.36 ± 0.05	0.11 ± 0.41

The resulting amplitudes:

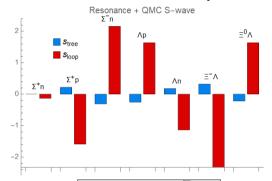

$$S_{\text{theory}}$$
, $P_{\text{theory}} = l.c.(h_{D,F,C}, w_{d,f}, d^*, f^*)$

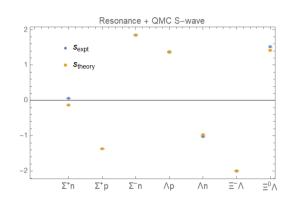
Goal


To fit L_{theory} to L_{expt} using least squares method to obtain LEC's values.

Preliminary results – *S*-waves

LECs extracted from fit to **S-waves only**:

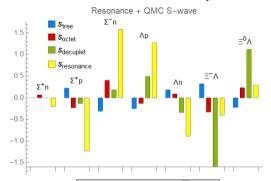

LEC	$[G_F m_\pi^2 \sqrt{2} f_\pi]$
h_D	$-1/3h_{F}$
h_F	-0.233 ± 0.007
h_C	1.99 ± 0.04
w_f	4.63 ± 0.07
Wa	-14.72 ± 0.11


12/16

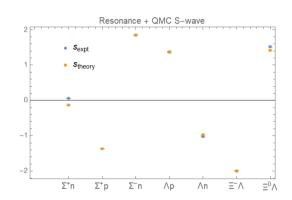
Preliminary results – *S*-waves

LECs extracted from fit to **S-waves only**:

LEC	$[G_F m_\pi^2 \sqrt{2} f_\pi]$
h_D	$-1/3h_{F}$
h_F	-0.233 ± 0.007
h_C	1.99 ± 0.04
w_f	4.63 ± 0.07
w_d	-14.72 ± 0.11



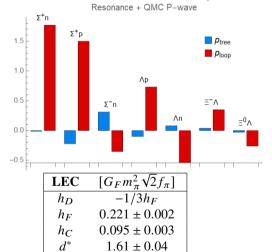
EOMS + resonances


- Good agreement with experiment.
- Corrections to LO are large.

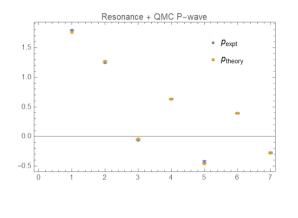
Preliminary results – S-waves

LECs extracted from fit to *S*-waves only:

LEC	$[G_F m_\pi^2 \sqrt{2} f_\pi]$
h_D	$-1/3h_{F}$
h_F	-0.233 ± 0.007
h_C	1.99 ± 0.04
w_f	4.63 ± 0.07
w_d	-14.72 ± 0.11

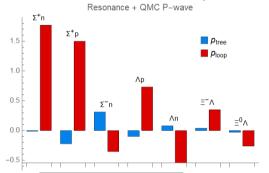


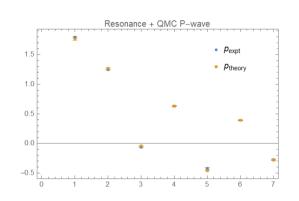
EOMS + resonances


- Good agreement with experiment.
- Corrections to LO are large.
- The importance of 10 and B^* is confirmed.

Preliminary results -P-waves

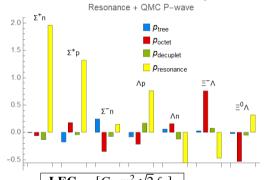
LECs extracted from fit to *P*-waves only:




 -3.955 ± 0.034

Preliminary results -P-waves

LECs extracted from fit to *P*-waves only:

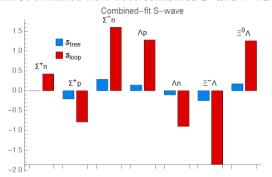

LEC	$[G_F m_{\pi}^2 \sqrt{2} f_{\pi}]$
h_D	$-1/3h_{F}$
h_F	0.221 ± 0.002
h_C	0.095 ± 0.003
d^*	1.61 ± 0.04
f^*	-3.955 ± 0.034

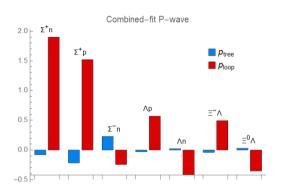
EOMS + resonances

• Agreement with experiment better than in *S*-waves.

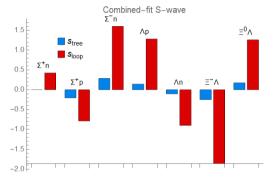
Preliminary results – P-waves

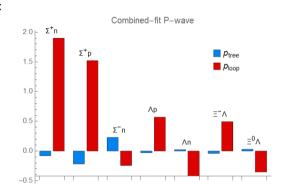
LECs extracted from fit to *P*-waves only:


	Resonance	+ QMC P-wave	
1.5	•	•	p _{expt}
-			p _{theory}
1.0			
0.5		•	•
0.0	•		
-0.5	1 2 3	4 5	6 7

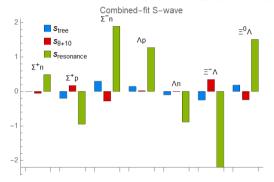

L	EC	$[G_F m_{\pi}^2 \sqrt{2} f_{\pi}]$
	h_D	$-1/3h_{F}$
	h_F	0.221 ± 0.002
	h_C	0.095 ± 0.003
	d^*	1.61 ± 0.04
	f^*	-3.955 ± 0.034

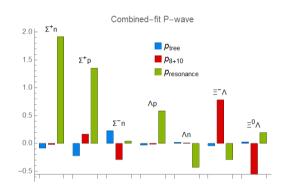
EOMS + resonances


- Agreement with experiment better than in *S*-waves.
- Similar resonance-to-tree-level relative size as in *P*-waves.


LECs extracted from fit to **combined S- and P-waves**:

LECs extracted from fit to **combined S- and P-waves**:

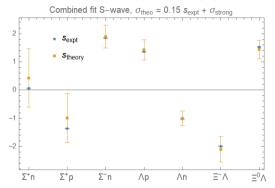


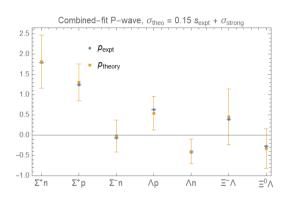

EOMS + resonances

• LEC's size somewhat consistent with other results.

LEC	$[G_F m_\pi^2 \sqrt{2} f_\pi]$	LEC	$[G_F m_\pi^2 \sqrt{2} f_\pi]$
h_D	-0.192 ± 0.004	w_d	-9.73 ± 0.06
h_F	0.186 ± 0.002	w_f	7.71 ± 0.02
h_C	-0.136 ± 0.008	d^*	2.72 ± 0.05
		f^*	-2.83 ± 0.04

LECs extracted from fit to **combined S- and P-waves**:


EOMS + resonances


- LEC's size somewhat consistent with other results.
- Resonances dominate almost always over "true" loops.

LEC	$[G_F m_\pi^2 \sqrt{2} f_\pi]$	LEC	$[G_F m_\pi^2 \sqrt{2} f_\pi]$
h_D	-0.192 ± 0.004	w_d	-9.73 ± 0.06
h_F	0.186 ± 0.002	w_f	7.71 ± 0.02
h_C	-0.136 ± 0.008	d^*	2.72 ± 0.05
		f^*	-2.83 ± 0.04

14/16

LECs extracted from fit to **combined** *S***- and** *P***-waves**:

EOMS + resonances

- LEC's size somewhat consistent with other results.
- Resonances dominate almost always over "true" loops.
- S agreement with experiment slightly worse, P remains good.

LEC	$[G_F m_\pi^2 \sqrt{2} f_\pi]$	LEC	$[G_F m_\pi^2 \sqrt{2} f_\pi]$
h_D	-0.13 ± 0.23	w_d	-7.3 ± 1.3
h_F	0.16 ± 0.09	w_f	7.7 ± 1.3
h_C	0.0 ± 0.4	d^*	1.1 ± 1.8
		f^*	-2.3 ± 1.5

14/16

Conclusions

• Hyperon nonleptonic decays were never studied in relativistic χ PT: following previous attempts in HB χ PT and updated measurement of α_{Λ} from BESIII (2019).

- Hyperon nonleptonic decays were never studied in relativistic χ PT: following previous attempts in HB χ PT and updated measurement of α_{Λ} from BESIII (2019).
- Established a limit to $HB\chi PT$ from the full relativistic amplitude and resolved conflict between previous works (three-meson vertex terms, eventually neglected).

- Hyperon nonleptonic decays were never studied in relativistic χ PT: following previous attempts in HB χ PT and updated measurement of α_{Λ} from BESIII (2019).
- Established a limit to $HB\chi PT$ from the full relativistic amplitude and resolved conflict between previous works (three-meson vertex terms, eventually neglected).
- Included resonance "saturation" terms at tree-level; they are the most relevant contribution.

- Hyperon nonleptonic decays were never studied in relativistic χ PT: following previous attempts in HB χ PT and updated measurement of α_{Λ} from BESIII (2019).
- Established a limit to $HB\chi PT$ from the full relativistic amplitude and resolved conflict between previous works (three-meson vertex terms, eventually neglected).
- Included resonance "saturation" terms at tree-level; they are the most relevant contribution.
- Simultaneous fit to S- and P-waves is performed: good agreement with experiment, loss of convergent behavior.

- Hyperon nonleptonic decays were never studied in relativistic χ PT: following previous attempts in HB χ PT and updated measurement of α_{Λ} from BESIII (2019).
- Established a limit to $HB\chi PT$ from the full relativistic amplitude and resolved conflict between previous works (three-meson vertex terms, eventually neglected).
- Included resonance "saturation" terms at tree-level; they are the most relevant contribution.
- Simultaneous fit to S- and P-waves is performed: good agreement with experiment, loss of convergent behavior.
- Perform a comparison fit using 8 independent $\Delta I = 1/2$ amplitudes to circumvent isospin relations.

- Hyperon nonleptonic decays were never studied in relativistic χ PT: following previous attempts in HB χ PT and updated measurement of α_{Λ} from BESIII (2019).
- Established a limit to $HB\chi PT$ from the full relativistic amplitude and resolved conflict between previous works (three-meson vertex terms, eventually neglected).
- Included resonance "saturation" terms at tree-level; they are the most relevant contribution.
- Simultaneous fit to S- and P-waves is performed: good agreement with experiment, loss of convergent behavior.
- Perform a comparison fit using 8 independent $\Delta I = 1/2$ amplitudes to circumvent isospin relations.
- Outlook: two-loops, $\Lambda(1405)$ as hadron molecular state, resonances included as DF...

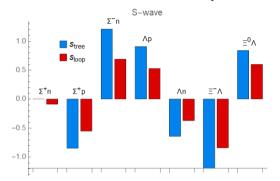
Thank You for your attention.

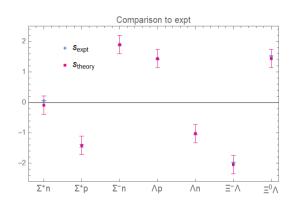
Any questions?

(this is the part where you run)

Relativistic chiral LO Lagrangian

Meson-baryon LO Lagrangian

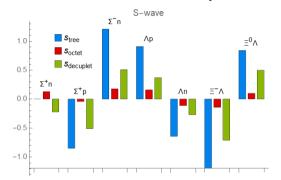

$$\mathcal{L}_{\phi B}^{s} = i \operatorname{tr} \bar{B} \mathcal{D} B - m_{B} \operatorname{tr} \bar{B} B + D \operatorname{tr} \bar{B} \gamma^{\mu} \gamma_{5} \{A_{\mu}, B\} + F \operatorname{tr} \bar{B} \gamma^{\mu} \gamma_{5} [A_{\mu}, B] - i \bar{T}^{\mu} \mathcal{D} T_{\mu}$$
$$+ m_{T} \bar{T}^{\mu} T_{\mu} + C \left(\bar{T}^{\mu} A_{\mu} B + \bar{B} A_{\mu} T^{\mu} \right) + \mathcal{H} \bar{T}^{\mu} \gamma_{\nu} \gamma_{5} A^{\nu} T_{\mu} + \frac{f^{2}}{4} \operatorname{tr} \partial_{\mu} \Sigma \partial^{\mu} \Sigma^{\dagger}$$

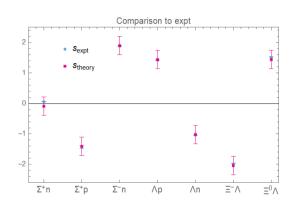

Inclusion of $\frac{1}{2}^{\pm}$ resonances [B. Borasoy & B. Holstein, PRD 59, 094025 (1999)]

$$\begin{split} \mathcal{L}_{RB}^{\mathrm{s}} &= 2s_d \left[\mathrm{tr}(\bar{R}\gamma_{\mu}\{A_{\mu}, B\}) - \mathrm{tr}(\bar{B}\gamma_{\mu}\{A_{\mu}, R\}) \right] \\ &+ 2s_f \left[\mathrm{tr}(\bar{R}\gamma_{\mu}[A_{\mu}, B]) - \mathrm{tr}(\bar{B}\gamma_{\mu}[A_{\mu}, R]) \right] \\ \mathcal{L}_{B^*B}^{\mathrm{s}} &= \frac{D^*}{2} \left[\mathrm{tr}(\bar{B}^*\gamma_{\mu}\gamma_5\{A_{\mu}, B\}) + \mathrm{tr}(\bar{B}\gamma_{\mu}\gamma_5\{A_{\mu}, B^*\}) \right] \\ &+ \frac{F^*}{2} \left[\mathrm{tr}(\bar{B}^*\gamma_{\mu}\gamma_5[A_{\mu}, B]) + \mathrm{tr}(\bar{B}\gamma_{\mu}\gamma_5[A_{\mu}, B^*]) \right] \\ V^{\mu} &= \frac{1}{2} \left(\xi \partial^{\mu} \xi^{\dagger} + \xi^{\dagger} \partial^{\mu} \xi \right), \quad A^{\mu} &= \frac{i}{2} \left(\xi \partial^{\mu} \xi^{\dagger} - \xi^{\dagger} \partial^{\mu} \xi \right) \\ \xi &= \exp \frac{i\pi}{f}, \quad \Sigma = \xi^2 = \exp \frac{2i\pi}{f} \end{split}$$

Previous work results – S-waves

LECs extracted from fit to **S-waves only**:

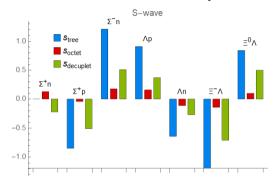

LEC	$[G_F m_\pi^2 \sqrt{2} f_\pi]$
h_D	-0.35 ± 0.09
h_F	0.86 ± 0.05
h_C	-0.36 ± 0.65

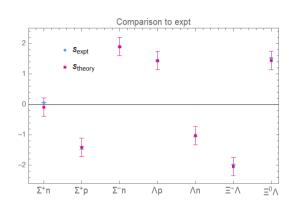

[NPB 375 (1992) 561-581]

• Good agreement with experiment.

Previous work results – S-waves

LECs extracted from fit to **S-waves only**:

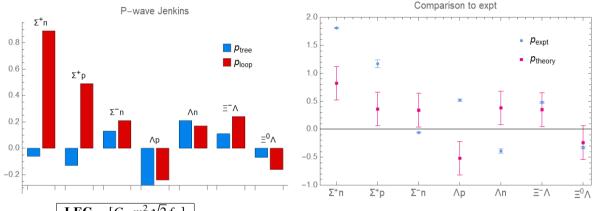

LEC	$[G_F m_\pi^2 \sqrt{2} f_\pi]$
h_D	-0.35 ± 0.09
h_F	0.86 ± 0.05
h_C	-0.36 ± 0.65


[NPB 375 (1992) 561-581]

- Good agreement with experiment.
- Decuplet contribution dominates over octet.

Previous work results – S-waves

LECs extracted from fit to **S-waves only**:


LEC	$[G_F m_\pi^2 \sqrt{2} f_\pi]$
h_D	-0.35 ± 0.09
h_F	0.86 ± 0.05
h_C	-0.36 ± 0.65

[NPB 375 (1992) 561-581]

- Good agreement with experiment.
- Decuplet contribution dominates over octet.
- h_C not well determined by 1-loop fit.

Previous work results -P-waves

Using the LECs from S-wave fit:

LEC	$[G_F m_\pi^2 \sqrt{2} f_\pi]$
h_D	-0.35 ± 0.09
h_F	0.86 ± 0.05
h_C	-0.36 ± 0.65

[NPB 375 (1992) 561-581]

- *P*-waves are poorly described.
- Simultaneous fitting seems unfeasible.