

Physics case for low- \sqrt{s} QCD studies at FCC-ee

Based on arXiv:2503.23855 [hep-ex] by D. d'Enterria, P.F. Monni, P. Skands and A. Verbytskyi, input to EPPS 2025 update,

inspired by Snowmass 2021 contribution

Andrii Verbytskyi¹

Matter to the Deepest, Katowice, September 14-19th, 2025

FCC-ee

- e^+e^- collider in CERN, 91 km [3] long, with 4 IPs.
- State of the art detector(s) design.
- ullet Precision goals: 10^{-5} for EW, 10^{-3} for QCD observables.
- A lot of physics [4] conceptually different from LEP physics.

QCD tasks for FCC-ee era (experimental side)

- Application of higher& even higher order pQCD and QCD×EW corrections, resummation/showers.
- Studies of quark mass effects.
- Studies of exotic final states.
- Better understanding of non-perturbative effects: hadronization, colour reconnection, etc...

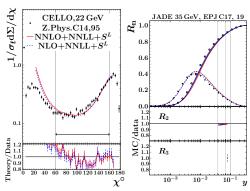
Those are exactly the areas, which limit the precision of e.g. α_S extraction.

Scales in pQCD, parton showers and non-perturbative corrections

Cross-section for a physical process with hard scale, Q_H , and heavy quark masses m_Q :

$$\mathsf{d}\sigma \ \sim \ \mathrm{Hard}(Q_H,Q,m_Q) \ + \ \mathrm{Resum}(Q_H/Q,Q/m_Q,Q/\Lambda_{\mathrm{QCD}}) \ + \ \mathrm{NonPert}(\Lambda_{\mathrm{QCD}}/Q,m_Q/Q)$$

 \rightarrow Scales matter.


To study

- Non-perturbative effects
- Quark masses
- Parton showers

Exploring the regions with different $\Lambda_{\rm QCD}/Q$ and m_Q/Q is a must. Regions with larger $\Lambda_{\rm QCD}/Q$ and m_Q/Q are preferable for exploration: no reason to avoid the subject of study.

Example: hadronization modeling in $e^+e^- o hadrons$

- The modern MCEG models are for $\sqrt{s} \approx M_Z$, but not reliable for other energies[5][6] and lower scales
- This is an artifact: the models were tuned with LEP data at $\sqrt{s} \approx M_Z$ or LHC data, where the tuning does not give very certain results.

 The efforts to re-use the PETRA, TRISTAN and PEP data [7] so far had limited success due to huge data uncertainties.

With enough data away from Z peak, MCEG models can be re-tuned to describe the hadronization better at all energies.

Historically collected data

Accelerator	Energy range, GeV	Luminosity, pb^{-1}	Eligible multihadron
			events, $ imes 10^3$
TRISTAN	50 - 64	900 [8]	≈ 110 [9]
PETRA	12 - 47	760 [10]	$\approx 200 \ [11, \ 10]$
PEP	29	315 [12]	144 [12]

Table: Estimate of the number of eligible hadronic events at TRISTAN, PETRA, and PEP. The numbers for PETRA were estimated by multiplication of the JADE numbers from Ref. [10] by 4, i.e. assuming the numbers for the MARK-J, TASSO and CELLO experiments are reasonably close. The numbers for TRISTAN were estimated scaling the numbers from Ref. [9] to the total luminosity.

There are even less data available for reanalysis.

An extension of FCC- e^+e^- physics program

Proposed extension of the FCC- e^+e^- program with data taking in range $\sqrt{s}=40-91\,\mathrm{GeV}$

$$FCC-e^+e^- = Higgs factory + SuperLEP + SuperTRISTAN + SuperPEP + SuperPETRA$$

Two **non-exclusive** options are available to get to $\sqrt{s} = 40 - 91 \,\text{GeV}$:

- $e^+e^-\gamma$: reduced centre-of-mass energy in radiative events $e^+e^- \to hadrons + \gamma$.
- Dedicated runs: runs with lowered beam energy.

Measurements in focus: event shapes, jets, (heavy flavour) fragmentation functions, hadron multiplicities for MC tunes.

Final questions

- $e^+e^-\gamma$: how good the data are?
- Dedicated runs: how much effort is that?

$e^+e^-\gamma$: yields extrapolated from LEP

Туре	\sqrt{s}' (GeV)	$\langle \sqrt{s}' \rangle$ (GeV)	Lumi (pb ⁻¹)	Selection Eff. (%)	Purity (%)	# Sel. Evts	FCC-ee, estimation
Reduced	30-50	41.4	142.4	48.3	68.4	1247	0.9×10^{9}
Centre-	50-60	55.3	142.4	41.0	78.0	1047	0.7×10^{9}
of-	60-70	65.4	142.4	35.2	86.0	1575	1.1×10^{9}
Mass	70-80	75.7	142.4	29.9	89.0	2938	2.1×10^{9}
Energy	80-84	82.3	142.4	27.4	90.5	2091	1.5×10^{9}
	84-86	85.1	142.4	27.5	87.0	1607	1.1×10^{9}
Z pole	91.2	91.2	8.3	98.5	99.8	248 100	3.1×10^{12}

Table: Properties of the hadronic data samples collected from ISR/FSR by the L3 experiment [13] and estimated number of events that could be similarly obtained at FCC-ee with the expected 100 ab^{-1} at the Z pole.

Better detector technologies (FCC vs. LEP) will not allow for radically larger event yield. The reasons are:

- Better detectors will still have finite resolution, which will be limited by the physics.
- Even for LEP detectors ISR/FSR selection was limited mostly by physics.
- ightarrow LEP selection is a good baseline and extrapolation from LEP makes sense.
- 5×10^9 events for $\sqrt{s} = 30 80$ GeV collected during ≈ 10 years.

$e^+e^-\gamma$: MC studies HOWTO

Processes modeled with Sherpa 3.0.1

- \bullet $e^+e^- \rightarrow a\bar{a}$
- $e^+e^- \rightarrow q\bar{q}\gamma$
- \bullet $e^+e^- \rightarrow \tau^+\tau^-\gamma$
- \bullet $e^+e^- \rightarrow \tau^+\tau^-$
- \bullet $e^+e^- \rightarrow q\bar{q}e^+e^-$
- ullet $e^+e^ightarrow aar{a}
 uar{
 u}$
- \bullet $e^+e^- \rightarrow q\bar{q}\mu^+\mu^-$
- $\gamma \gamma \rightarrow hadrons$ (several)

and passed through Delphes fast simulation for IDEA detector concept. Output is a subject for selection.

- lack Approach: select on particle/detector level ightarrow look at composition of selected events.
- Note: selection implies assumptions on the event: event has no ISR/FSR, event has radiation collinear to beam, event has ISR/FSR photon registered in detector.
- Lower-energy dedicated runs are not discussed, as the results are similar to $\sqrt{s} = 91 \, \text{GeV}$: close to 100% purity and selection efficiency. Boring!
- The very first observable: mass of HFS

$e^+e^-\gamma$: MC studies selections

Selection

- a) Enough visible hadrons¹ in the final state in the detector acceptance range, requiring that the total visible energy $E_{\rm vis}$ deviates a little from the $2 \times E_{\rm beam}$. In addition, a well isolated high-energy² photon with energy E_{γ} is registered in the detector. The HFS without the photon is clustered into two jets which should satisfy the triangle condition, see Eq.3 in Ref. [?] for details³. This selection aims to select wide-angle high-energy FSR/ISR events and reconstruct the kinematics of these events correctly.
- **b**) Enough visible hadrons in the final state in the detector acceptance range, requiring that the total visible energy $E_{\rm vis}$ deviates a little from the $2 \times E_{\rm beam} |P_{\rm vis,z}|$, where $P_{\rm vis,z}$ is the longitudinal component of the total visible momenta. The later condition implies an existence of a single ISR photon radiated parallel to the beam and not registered in the detector, which is almost completely responsible for the momenta imbalance in the event 4 . The events should also fail the criterion a). This selection is designed to select events with FSR/ISR photons collinear to the beam direction and reconstruct the kinematics of these events correctly.
- c) Enough visible hadrons in the final state in the detector acceptance range, requiring that the total visible energy E_{Vis} deviates a little⁵ from the 2 × E_{beam}, and that the thrust vector direction is contained within the detector acceptance range⁶. The events should also fail the criterion a). This selection is aimed at selecting events without significant FSR/ISR and reconstruct the kinematics of these events correctly.

 3 The photon energy can be also estimated clustering the remaining HFS into two jets j_1 and j_2 and using from the sinus theorem

$$\textit{E}_{\gamma,\textit{triangle}} = 2 \times \textit{E}_{\textit{beam}} \times \frac{|\sin j_1 \wedge j_2|}{|\sin j_1 \wedge j_2| + |\sin j_1 \wedge \gamma| + |\sin j_2 \wedge \gamma|}.$$

 E_{γ} should lie in the $[E_{\gamma,triangle}-10 \text{GeV},E_{\gamma,triangle}+5 \text{GeV}]$ interval. The photon should be isolated from the jets such that $min(j_1 \wedge \gamma,j_2 \wedge \gamma)>0.5$.

⁴Therefore the requirement $(\vec{P}_{vis} \land beam < 3^{\circ} \text{ or } \vec{P}_{vis} \land beam > 177^{\circ})$ is imposed.

⁵less than 5 GeV

$$^{6} |\cos \theta_{T}| < 0.9$$

at least five tracks or calorimeter objects

²at least 10 GeV

$e^+e^-\gamma$: MC studies results

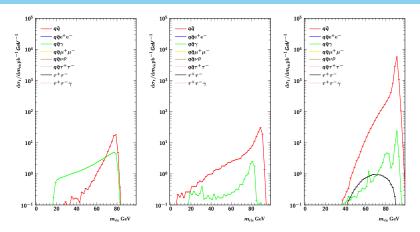


Figure: Distribution of the invariant mass of the visible HFS for the events that passed the selection criteria. The photon is excluded from the HFS mass calculation. All the final states but $q\bar{q}$, $q\bar{q}\gamma$ and $\tau^+\tau^-$ are strongly suppressed by the selection requirements. The full visible signal in the detector will be the sum of the displayed processes. Left: Event passed selection a. The selection assumptions on kinematics are correct for $q\bar{q}\gamma$ "signal" samples. Center: Event passed selection b. The selection assumptions on kinematics are correct for $q\bar{q}$ "signal" samples with collinear radiation. Right: Event passed selection c. The selection assumptions on the kinematics are correct for $q\bar{q}$ "signal" samples with negligible radiation.

$e^+e^-\gamma$: MC studies results

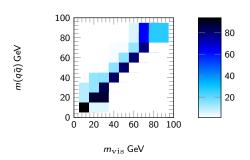


Figure: Correlation of the $m(q\bar{q})$ and the mass of the HFS on the detector level for the $e^+e^-\to hadrons + \gamma_{FSR}$ events passed selection a The values are normalized across the x axis and the colour coding scale is given in %.

The "resolution" is a couple of $GeV \to bin$ size for combination of events should be of the same order, e.g. $5\,GeV$.

$e^+e^-\gamma$: MC studies conclusions

- More or less the purity and the accessible range of centre-of-mass energy is restricted by physics even with the state-of-the art detectors.
- With tight selection and enough statistics one can get reasonably large and pure event samples in the region $\sqrt{s} = 20 60 \text{ GeV}$.
- MC studies are ongoing: more backgrounds, higher statistics, etc.

Dedicated runs: machine parameters

- The work on the feasibility of machine settings is ongoing.
- Calculations kindly provided by Katsunobu Oide for $\sqrt{s} = 40,60 \, \text{GeV}$.
- Also: lower requirements for beam energy spread, beam energy, etc.

Beam energy	[GeV]	45.6	30	20
Layout			PA31-3.0	
# of IPs			4	
Circumference	[km]		90.658728	
Bend. radius of arc dipole	[km]		10.021	
Energy loss / turn	[GeV]	0.0390	0.0072	0.0014
SR power / beam	[MW]	50	9.3	1.8
Beam current	[mA]		1294	
Colliding bunches / beam		11200	60000	60000
Colliding bunch population	$[10^{11}]$	2.18	0.407	0.407
Hor. emittance at collision ε_x	[nm]	0.70	0.48	0.86
Ver. emittance at collision ε_y	[pm]	2.3	0.98	1.71
Lattice hor. emit. $\varepsilon_{x,lattice}$ (SR/IB/BS)	[pm]	1.05 / - / -	0.31 / 0.54 / 0.48	0.14 / 0.93 / 0.86
Lattice ver. emittance $\varepsilon_{y,\text{lattice}}$	[pm]	1.05	0.53	1.06
Arc cell			Long 90/90	
Momentum compaction α_p	$[10^{-6}]$		28.66	
Arc sext families			75	
$\beta_{x/y}^*$	[mm]		130 / 0.7	
Transverse tunes $Q_{\pi/n}$			218.145 / 222.220	
Chromaticities $Q'_{r/n}$			+2 / +5	
Energy spread (SR/IB/BS) σ _δ	[%]	0.039 / - / 0.121	0.026 / 0.032 / 0.061	0.017 / 0.046 / 0.0598
Bunch length (SR/IB/BS) σ_z	[mm]	4.70 / - / 14.6	2.4 / 3.0 / 5.8	1.9 / 5.1 / 6.6
RF voltage 400/800 MHz	[GV]		103 / 0	0.05
Harm. number for 400 MHz	11.11		121200	
RF frequency (400 MHz)	MHz		400.787129	
Synchrotron tune Q_s		0.0340	0.0436	0.0371
Long. damping time	[turns]	1181	4140	14000
RF acceptance	[%]	1.41	2.36	2.09
Energy acceptance (DA)	[%]		±1.0	
Beam crossing angle at IP θ_r	[mrad]		±15	
Crab waist ratio	[%]		50	
Beam-beam ξ_x/ξ_y^{α}		0.0032 / 0.1009	0.0054 / 0.1010	0.0061 / 0.1052
Piwinski angle $(\theta_x \sigma_{z,BS})/\sigma_x^*$		22.3	10.9	9.4
Lifetime (q + BS + lattice)	[sec]	10900	61000	59000
Lifetime (Touschek)	[sec]	-	6100	7100
Lifetime (lum) ^b	sec	1320	1930	3100
Luminosity / IP	$[10^{34}/cm^2s]$	145	102	65

FCC on collider parameters for Z and E. - 20 CeV New 28, 2024

[&]quot;incl. hourglass.

bonly the energy acceptance is taken into account for the cross section, no beam size effect.

Dedicated runs: timescale

\sqrt{s} (GeV)	Time (days) to collect 10^9 hadronic events $\mathcal{L} \propto \sqrt{s}$
80	7
70	ι 17
	<u>-</u>
60	22
50	22
40	18

Table: Time needed to collect 10^9 hadronic events in dedicated runs at given CM energy assuming instant luminosity $\mathcal L$ is the same as at Z peak and is equal to $4.6~pb^{-1}s^{-1}$ or alternatively assuming the scaling $\mathcal L \propto \sqrt{s}$ [14].

We are discussing weeks of datataking.

Dedicated runs: conclusions

- Estimation of time to change energy by the accelerator experts is 1 week.
- ullet \to 10 points will take 3 months just to switch the energies is a luxury.
- \rightarrow A more humble, but still extendable suggestion: two runs at 40 GeV and 60 GeV. Total runtime: 6-8 weeks. Preferably in the first year of running to be able to use results for MC tunes, calibration, etc of further analyses.

$e^+e^-\gamma$ vs. dedicated runs: historical evidence

Clear differences between the precision of results with e.g. $\alpha_{\rm s}$ extraction. OPAL [15]:

0.1182 \pm 0.0015(stat.) \pm 0.0038(exp.syst.) \pm 0.0070(hadr.) \pm 0.0062(theory.)(NLO) vs JADE [16]:

 $0.1172 \pm 0.0006 (\mathrm{stat.}) \pm 0.0020 (\mathrm{exp.syst.}) \pm 0.0035 (\mathrm{hadr.}) \pm 0.0030 (\mathrm{theory.}) (\mathit{NNLO} + \mathit{NLLA})$

	Year	Туре	\sqrt{s}	Hadr. unc.	Exp. syst. unc .
JADE	2008	Low energy run	12-46	0.0035	0.0020
OPAL	2007	$e^+e^-\gamma$	10-45	0.0070	0.0038

$e^+e^-\gamma$ vs. dedicated runs: costs and personpower

	Dedicated runs	$e^+e^-\gamma$
Detector amendments.	=0€ extra for	In base program
	detector	
	construction	
Running time for dedicated runs would	≈?€ extra	In base program
be some weeks with lower energy	for running	
consumption.		
The changes of beam energies would	Some manpower	Not needed.
require readjustments of some	and time	
magnets (but not the main ring).	(a week?)	
The data is of same type as the data	≈0€ extra for	In base program
at and above Z and would fit into	computing	
any software/analysis for higher energy.	and physics	
Data availability	In some months	After 10 years.

Costs in terms of money, time and personpower expected to be tiny, but should be evaluated more carefully.

$e^+e^-\gamma$ vs. dedicated runs: measurements of QCD observables

$$e^+e^-\gamma$$

- Measure γ energy.
- Calculate the CM boost assuming γ comes from ISR/FSR.
- Alternatively to the points above do a kinematic fit of the hadronic final state to gen the energy of γ.
- Boost the event to the calculated CM.
- Calculate observables from the boosted hadronic final state

Dedicated runs

- Make sure the CM energy is close to nominal using cuts.
- Calculate observables from hadronic final state

The measurement of γ and the boost procedure bring additional uncertainties. The performance of these methods could be insufficient for the desired accuracy of the measurements.

Conclusions

- The feasibility studies for the low-energy runs at FCC-ee are in a well developed state, feedback from accelerator experts, MC studies, etc. The contribution to European Strategy was made.
- The current proposal, which takes into account the time constraints and machine capabilities is to have two runs at $\sqrt{s}=40\,\text{GeV}$ and $\sqrt{s}=60\,\text{GeV}$ to collect 10^9 per run and complement those data with the data from ISR/FSR events. In case of the imminent success those data taking options can be extended with more energy points and/or higher statistics.

Thanks to

Andrea Banfi, Sigfried Bethke, Alain Blondel, Patrick Janot, Adam Kardos, Stefan Kluth, Bogdan Malaescu, Katsunobu Oide, Gábor Somogyi, Zoltán Szőr, Zoltán Trócsányi, Zoltán Tulipánt, Giulia Zanderighi

Open questions

- Q: How good are the $e^+e^-\gamma$ for measurements of particular observables?
- \bullet A: Studies are ongoing for jets/event shapes, but the results are expected to be close to those form $m_{\rm vis}$.

Backups and discussion

$e^+e^-\gamma$ vs. dedicated runs

• There will be enough data from $e^+e^-\gamma$ anyway.

 Not really and not of good quality, see L3 [17] and OPAL [15] at LEPI:

Type	\sqrt{s} , GeV	$\langle \sqrt{s} \rangle$, GeV	Int. Lumi (pb)	Selection Eff.(%)	Purity(%)	Sel. Events
Reduced	30-50	41.4	142.4	48.3	68.4	1247
Centre-	50-60	55.3	142.4	41.0	78.0	1047
of-	60-70	65.4	142.4	35.2	86.0	1575
Mass	70-80	75.7	142.4	29.9	89.0	2938
Energy	80-84	82.3	142.4	27.4	90.5	2091
	84-86	85.1	142.4	27.5	87.0	1607
Z pole	91.2	91.2	8.3	98.5	99.8	248100

```
\alpha_S(M_Z)_{41~\rm GeV}=0.1418\pm0.0053({\rm stat.})\pm0.0030({\rm exp.syst.})\pm0.0055({\rm hadr.})\pm0.0085({\rm theory.})(NLO) \alpha_S(M_Z)_{55~\rm GeV}=0.1260\pm0.0047({\rm stat.})\pm0.0056({\rm exp.syst.})\pm0.0066({\rm hadr.})\pm0.0062({\rm theory.})(NLO) ... V.S.
```

 $\alpha_S(M_Z)_{\rm 91\,GeV} = 0.1210 \pm 0.0008 ({\rm stat.}) \pm 0.0017 ({\rm exp.syst.}) \pm 0.0040 ({\rm hadr.}) \pm 0.0052 ({\rm theory.}) (NLO) \pm 0.00010 ({\rm theory.}) = 0.00000 ({\rm theory.}) \pm 0.00000 ({\rm theory.}) = 0.000000 ({\rm theory.}) = 0.00000 ({\rm theory.}$

E_{γ} [GeV]	Events	$\sqrt{s'}_{Mean}$ [GeV]	Background [%]		
			Non-rad. MH		$\tau\tau$
			Likelihood	Isolated tracks	
10-15	1560	78.1± 1.7	6.0± 0.7	6.2± 0.9	0.9 ± 0.2
15-20	954	71.8 ± 1.9	3.1 ± 0.5	4.9 ± 0.8	1.0 ± 0.3
20-25	697	65.1 ± 2.0	2.6 ± 0.6	6.3 ± 1.1	0.9 ± 0.4
25-30	513	57.6 ± 2.3	5.1 ± 1.1	7.9 ± 1.4	1.1 ± 0.5
30-35	453	49.0 ± 2.6	4.5 ± 1.1	9.6 ± 1.6	0.7 ± 0.4
35-40	376	38.5 ± 3.5	5.2 ± 1.2	13.1 ± 1.9	0.8 ± 0.5
40-45	290	24.4± 5.3	10.4± 2.3	12.9± 1.7	0.8± 0.5

 $\alpha_S(M_Z)_{comb} = 0.1182 \pm 0.0015 ({\rm stat.}) \pm 0.0038 ({\rm exp.syst.}) \pm 0.0070 ({\rm hadr.}) \pm 0.0062 ({\rm theory.}) (\textit{NLO})$

+specific problems: hadronization, systematics, statistics.

Results from $e^+e^- \rightarrow hadrons$

Determination ⁷	Туре	Data and procedure	Ref.
0.1175 ± 0.0025	Non-global	ALEPH 3-jet rate (NNLO+MChad)	[19]
0.1199 ± 0.0059	fit	JADE 3-jet rate (NNLO+NLL+MChad)	[20]
0.1224 ± 0.0039	+MChad	ALEPH event shapes (NNLO+NLL+MChad)	[21]
0.1172 ± 0.0051		JADE event shapes (NNLO+NLL+MChad)	[16]
$\underline{0.1189 \pm 0.0041}$		OPAL event shapes (NNLO+NLL+MChad)	[22]
$0.1164^{+0.0028}_{-0.0026}$	Global fit	Thrust (NNLO+NLL+anlhad)	[23]
$0.1134 \begin{array}{l} +0.0031 \\ -0.0025 \end{array}$	+anlhad	$Thrust\;(NNLO + NNLL + anlhad)$	[24]
0.1135 ± 0.0011		Thrust (SCET NNLO $+N^3LL+anlhad$)	[25]
$\underline{0.1123 \pm 0.0015}$		C-parameter (SCET NNLO+ N^3LL +anlhad)	[26]
$\overline{0.11750 \pm 0.00287}$	Global fit	EEC (NNLO+N 2 LL+MChad+NLO $_{m_b}$)	[6]
0.11881 ± 0.00131	+MChad	2-jet rate ($N^3LO+N^3LL+MChad+N^2LO_{m_b}$)	[5]

Global fits and wide \sqrt{s} range \to best precision. The discrepancy between the analytic and MC hadronization should be clarified.

⁷Credits to Ref. [18]

Bibliography I

[1] Alipour Tehrani, N. and others,

FCC-ee: Your Questions Answered,

CERN Council Open Symposium on the Update of European Strategy for Particle Physics, Blondel, A. and Janot, P. (eds.). (2019).

Also in preprint 1906.02693. arXiv:1906.02693.

[2] Agapov, I. and others,

Future Circular Lepton Collider FCC-ee: Overview and Status,

Snowmass 2021. (2022).

Also in preprint 2203.08310.

arXiv:2203.08310.

[3] FCC, Abada, A. and others,

FCC Physics Opportunities: Future Circular Collider Conceptual Design Report Volume 1. Eur. Phys. J. C 79, 474 (2019).

[4] FCC, Abada, A. and others,

FCC-ee: The Lepton Collider: Future Circular Collider Conceptual Design Report Volume 2. Eur. Phys. J. ST 228, 261 (2019).

[5] A. Verbytskyi et al.,

High precision determination of α_s from a global fit of jet rates.

JHEP 08, 129 (2019).

arXiv:1902.08158.

Bibliography II

[6] A. Kardos et al., Precise determination of $\alpha_S(M_Z)$ from a global fit of energy–energy correlation to NNLO+NNLL predictions.

Eur. Phys. J. **C78**, 498 (2018). arXiv:1804.09146.

[7] C. Bierlich et al.,

Robust Independent Validation of Experiment and Theory: Rivet version 3. SciPost Phys. 8, 026 (2020).

arXiv:1912.05451.

[8] Kuroda, S.,

TRISTAN accelerator: Operation in 1994,

3rd Workshop on TRISTAN Physics at High Luminosities, pp. 404–408. (1996).

[9] TOPAZ, Adachi, I. and others,

Measurements of in e^+e^- annihilation at $\sqrt{s} = 53.3$ -GeV and 59.5-GeV. Phys. Lett. B 227, 495 (1989).

[10] JADE, Schieck, J. and Bethke, S. and Biebel, O. and Kluth, S. and Movilla Fernandez, P. A. and Pahl, C., Measurement of the strong coupling from the four-jet rate in e⁺e⁻ annihilation using JADE data. Eur. Phys. J. C 48, 3 (2006). arXiv:0707.0392. [Erratum: Eur.Phys.J.C 50, 769 (2007)].

[11] TASSO, Braunschweig, W. and others,

Experimental Study of Jet Masses in e^+e^- Annihilation at *c.m.* Energies Between 12-GeV and 43.5-GeV. Z. Phys. C 45, 11 (1989).

Bibliography III

[12] Allaby, J. V. and others, The Mac Detector. Nucl. Instrum. Meth. A 281, 291 (1989).

[13] L3, Achard, P. and others,

Studies of hadronic event structure in e^+e^- annihilation from 30-GeV to 209-GeV with the L3 detector. Phys. Rept. 399, 71 (2004). arXiv:hep-ex/0406049.

[14] Zimmermann, Frank, Private communication, 2024.

[15] OPAL, G. Abbiendi et al., Measurement of α_s with Radiative Hadronic Events.

Eur. Phys. J. **C53**, 21 (2008). arXiv:0902.1128.

[16] JADE Collaboration, S. Bethke et al.,

Determination of the Strong Coupling α_s from hadronic Event Shapes with $\mathcal{O}(\alpha_s^3)$ and resummed QCD predictions using JADE Data.

Eur. Phys. J. C64, 351 (2009). arXiv:0810.1389.

[17] L3 Collaboration, P. Achard et al.,

Studies of hadronic event structure in e^+e^- annihilation from 30 GeV to 209 GeV with the L3 detector. Phys. Rept. 399, 71 (2004). arXiv:hep-ex/0406049.

Bibliography IV

[18] G.P. Salam,

The strong coupling: a theoretical perspective,

in From My Vast Repertoire . . . : Guido Altarelli's Legacy, eds. Levy, Aharon and Forte, Stefano and Ridolfi, Giovanni, pp. 101–121. 2019.

doi:10.1142/97898132380530 007.

[19] G. Dissertori et al.,

Precise determination of the strong coupling constant at NNLO in QCD from the three-jet rate in electron-positron annihilation at LEP.

Phys. Rev. Lett. **104**, 072002 (2010). arXiv:0910.4283.

[20] JADE Collaboration, J. Schieck et al.,

Measurement of the strong coupling α_S from the three-jet rate in e^+e^- - annihilation using JADE data. Eur. Phys. J. C73, 2332 (2013). arXiv:1205.3714.

[21] G. Dissertori et al.,

Determination of the strong coupling constant using matched NNLO+NLLA predictions for hadronic event shapes in e^+e^- annihilations.

JHEP **08**, 036 (2009).

[22] OPAL Collaboration, G. Abbiendi et al.,

Determination of $\alpha_{\rm s}$ using OPAL hadronic event shapes at $\sqrt{s}=91-209\,{\rm GeV}$ and resummed NNLO calculations.

Eur. Phys. J. **C71**, 1733 (2011). arXiv:1101.1470.

Bibliography V

- [23] R.A. Davison and B.R. Webber, Non-Perturbative Contribution to the Thrust Distribution in e+ e- Annihilation. Eur. Phys. J. C59, 13 (2009). arXiv: 0809.3326.
- [24] T. Gehrmann, G. Luisoni and P.F. Monni, Power corrections in the dispersive model for a determination of the strong coupling constant from the thrust distribution. Eur. Phys. J. C73, 2265 (2013).
- [25] R. Abbate et al.,

arXiv:1210.6945

- Thrust at N^3 LL with power corrections and a precision global fit for $\alpha_S(M_Z)$. Phys.Rev. D83, 074021 (2011). arXiv:1006.3080.
- [26] A. Hoang et al., Precise determination of α_s from the C-parameter distribution. Phys. Rev. D91, 094018 (2015). arXiv:1501.04111.