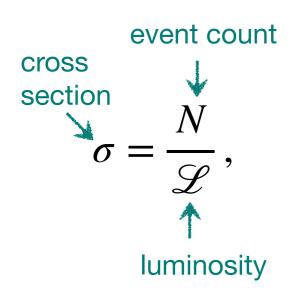
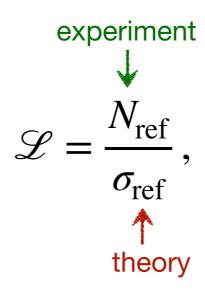
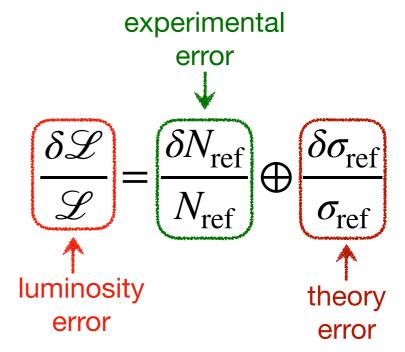

Bhabha scattering at future colliders with BHLUMI/BHWIDE

Wiesław Płaczek


Conference "Matter To The Deepest", Katowice, 15-19 September 2025


Congratulations on 50th anniversary! Happy Golden Jubilee!


Outline

- Luminosity measurement
- Small-angle Bhabha (SABH) process with BHLUMI
- Large-angle Bhabha (LABH) process with BHWIDE
- Conclusions and outlook

• Luminosity measurement at e^+e^- colliders:

- Criteria for reference process:
 - 1. **Experiment**: high event statistics $N_{\rm ref}$, low backgrounds, good control of systematics.
 - 2. **Theory**: possible high-precision calculations of $\sigma_{\rm ref}$, negligible "new physics" contributions, precise and efficient Monte Carlo event generator.

$$\frac{\delta \sigma_{\rm ref}}{\sigma_{\rm ref}} \lesssim \frac{\delta N_{\rm ref}}{N_{\rm ref}} \quad \rightarrow \mbox{luminosity precision should not be limited by theory!}$$

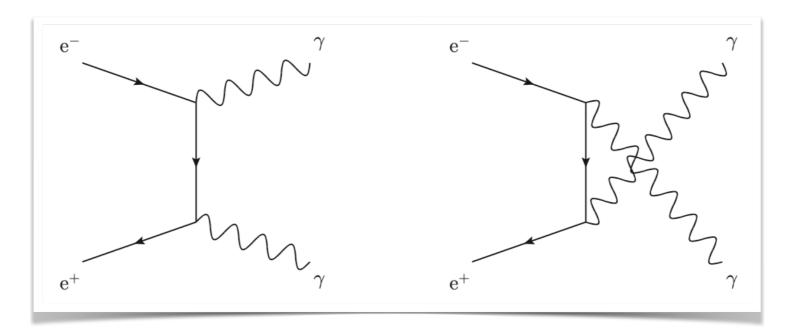
• LEP: small-angle Bhabha (SABH) scattering $(\theta_e \lesssim 100 \text{ mrad})$:

$$e^+ + e^- \longrightarrow e^+ + e^-$$

 \rightarrow dominated by *t*-channel γ exchange:

✓ pure QED process (in principle) → high-precision theoretical calculation possible!

LEP → achieved precision:


$$\delta \mathcal{L}/\mathcal{L} \sim 5 \times 10^{-4}$$

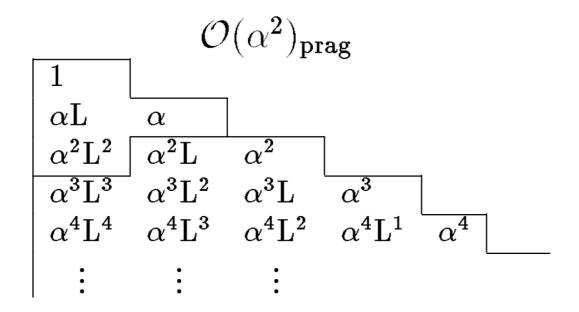
- ightharpoonup All four LEP experiments used MC event generator BHLUMI for computing σ_{ref}
- Expected precision $\delta \mathcal{L}/\mathcal{L}$ at future e^+e^- colliders:
 - at Z pole: $\lesssim 10^{-4}$
 - for higher energies: $\mathcal{O}(10^{-3})$

*Complementary process at future e^+e^- colliders

$$e^+ + e^- \rightarrow \gamma + \gamma$$

at wide angles:

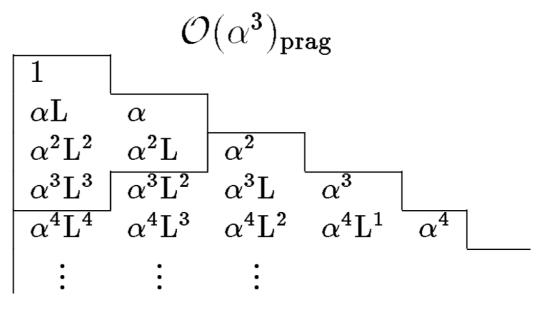
- Pros: low-angle acceptance less critical, hadronic vacuum polarisation less important (NNLO)
- Cons: lower cross section, high background from largeangle Bhabha process, weak corrections needed at NLO, ...


- **BHLUMI 4.04** MC event generator for **SABH** process including $\mathcal{O}(\alpha^2)_{\text{prag}}^{\text{exp}}$ QED corrections based on Yennie-
 - Frautschi-Suura (YFS) exclusive exponentiation
 - [S. Jadach, WP, E. Richter-Was, B.F.L. Ward, Z. Was, CPC 102 (1997) 229]
 - → https://github.com/KrakowHEPSoft/BHLUMI
 - → Size of canonical coefficients in QED perturbative expansion:

Canonical coefficients					
		$ heta_{min} = 30 \mathrm{mrad}$		$ heta_{min} = 60 \mathrm{mrad}$	
		LEP1	LEP2	LEP1	LEP2
$\mathcal{O}(\alpha L)$	$rac{lpha}{\pi}4L$	137×10^{-3}	152×10^{-3}	150×10^{-3}	165×10^{-3}
$\mathcal{O}(\alpha)$	$2\frac{1}{2}\frac{lpha}{\pi}$	2.3×10^{-3}	2.3×10^{-3}	2.3×10^{-3}	2.3×10^{-3}
$\mathcal{O}(lpha^2 L^2)$	$rac{1}{2}\left(rac{lpha}{\pi}4L ight)^2$	9.4×10^{-3}	11×10^{-3}	11×10^{-3}	14×10^{-3}
$\mathcal{O}(lpha^2 L)$	$\frac{\alpha}{\pi} \left(\frac{\alpha}{\pi} 4L \right)$	0.31×10^{-3}	0.35×10^{-3}	$0.35{ imes}10^{-3}$	0.38×10^{-3}
$\mathcal{O}(\alpha^3 L^3)$	$\frac{1}{3!} \left(\frac{\alpha}{\pi} 4L \right)^3$	0.42×10^{-3}	0.58×10^{-3}	0.57×10^{-3}	0.74×10^{-3}

[S. Jadach et al., "Event generators for Bhabha scattering", DOI: 10.5170/ CERN-1996-001-V-2.229, hep-ph/9602393]

Table 2: The canonical coefficients indicating the generic magnitude of various leading and subleading contributions up to third-order. The big-log $L=\ln(|t|/m_e^2)-1$ is calculated for $\theta_{min}=30$ mrad and $\theta_{min}=60$ mrad and for two values of the center of mass energy: at LEP1 ($\sqrt{s}=M_Z$), where the corresponding $|t|=(s/4)\theta_{min}^2$ are 1.86 and 7.53 GeV², and at LEP2 energy ($\sqrt{s}=200$ GeV), where the corresponding |t| are 9 and 36 GeV², respectively.


Pragmatic QED perturbative expansion:

BHLUMI 4.04

√This was sufficient for LEP

To be done

(components available)

✓ Necessary for future e^+e^- colliders: FCC-ee, ...

❖SABH process in BHLUMI 4.04:

$$e^{-}(p_1) + e^{+}(q_1) \rightarrow e^{-}(p_2) + e^{+}(q_2) + n\gamma(k_j) + n'\gamma(k_l')$$

 \rightarrow Master formula (r = 0,1,2):

$$\begin{split} \sigma^{(r)} &= \sum_{n=0}^{\infty} \sum_{n'=0}^{\infty} \frac{1}{n!} \frac{1}{n'!} \int \frac{d^3 p_1}{p_1^0} \int \frac{d^3 q_1}{q_1^0} \\ &\prod_{j=1}^n \int\limits_{k_j \notin \Omega_U} \frac{d^3 k_j}{k_j^0} \tilde{S}_p(k_j) \prod_{l=1}^{n'} \int\limits_{k_l' \notin \Omega_L} \frac{d^3 k'_l}{k'_l^0} \tilde{S}_q(k_l') \\ &\delta^{(4)} \bigg(p_1 - p_2 + q_1 - q_2 - \sum_{j=1}^n k_j - \sum_{l=1}^{n'} k'_l \bigg) \, e^{Y_p(\Omega_U) + Y_q(\Omega_L)} \\ & \bigg\{ \bar{\beta}_0^{(r)} + \sum_{j=1}^n \frac{\bar{\beta}_{1U}^{(r)}(k_j)}{\tilde{S}_p(k_j)} + \sum_{l=1}^{n'} \frac{\bar{\beta}_{1L}^{(r)}(k_l')}{\tilde{S}_q(k_l')} + \sum_{n \geq j > k \geq 1} \frac{\bar{\beta}_{2UU}^{(r)}(k_j, k_k)}{\tilde{S}_p(k_j) \tilde{S}_p(k_k)} \\ & + \sum\limits_{n' \geq l > m \geq 1} \frac{\bar{\beta}_{2LL}^{(r)}(k_l, k_m)}{\tilde{S}_q(k_l') \tilde{S}_q(k_m')} + \sum_{j=1}^n \sum_{l=1}^{n'} \frac{\bar{\beta}_{2UL}^{(r)}(k_j, k_l')}{\tilde{S}_p(k_j) \tilde{S}_q(k_l')} \bigg\}. \end{split}$$

YFS form factor:

$$\begin{split} Y(\Omega_U;p_1,p_2) &= 2\alpha \tilde{B}(\Omega,p_1,p_2) + 2\alpha \Re B(p_1,p_2) \\ &= -\frac{\alpha}{4\pi^2} \int\limits_{k\in\Omega_U} \frac{d^3k}{k^0} \bigg(\frac{p_1}{kp_1} - \frac{p_2}{kp_2}\bigg)^2 \\ &+ 2\alpha \Re \int \frac{d^4k}{k^2} \frac{i}{(2\pi)^3} \bigg(\frac{2p_1-k}{2kp_1-k^2} - \frac{2p_2-k}{2kp_2-k^2}\bigg)^2 \end{split}$$

Non-IR beta-functions:

 $ilde{S}_p(k_1) = rac{lpha}{4\pi^2} \left(rac{2p_1p_2}{(kp_1)(kp_2)} - rac{m^2}{(k_1p_1)^2} - rac{m^2}{(k_1p_2)^2}
ight)$

$$\begin{split} \bar{\beta}_0^{(r)} &= \left\{D_{[0,0]}^{(r)} \exp(-Y_p(\Omega_U) - Y_q(\Omega_L)\right\} \bigg|_{\mathcal{O}(\alpha^r)}, \\ \bar{\beta}_{1U}^{(r)}(k_i) &= \left\{D_{[1,0]}^{(r)}(k_i) \exp(-Y_p(\Omega_U) - Y_q(\Omega_L)\right\} \bigg|_{\mathcal{O}(\alpha^r)} \\ -\tilde{\beta}_{2UU}^{(r)}(k_i,k_j) &= D_{[2,0]}^{(2)}(k_i,k_j) - \bar{\beta}_{1U}^{(1)}(k_i)\tilde{S}_p(k_j) \\ -\bar{\beta}_{2UL}^{(1)}(k_i,k_j') &= D_{[1,1]}^{(2)}(k_i,k_j') - \bar{\beta}_{1U}^{(1)}(k_i)\tilde{S}_q(k_j') \\ -\bar{\beta}_{1L}^{(1)}(k_j')\tilde{S}_p(k_i) - \bar{\beta}_0^{(0)}\tilde{S}_p(k_i)\tilde{S}_q(k_j') \\ -\bar{\beta}_{1L}^{(1)}(k_j')\tilde{S}_p(k_i) - \bar{\beta}_0^{(0)}\tilde{S}_p(k_i)\tilde{S}_q(k_j'). \end{split}$$
 virtual corrections up to 2 loops

→More details in: S. Jadach, B.F.L. Ward, Acta Phys. Pol. B **28** (1997) 1907

$\Phi \mathcal{O}(\alpha^2)_{\text{prag}}^{\text{exp}}$ BHLUMI at LEP:

Table 2 [S. Jadach *et al.*, Phys. Lett. B **790** (2019) 314]

Summary of the total (physical+technical) theoretical uncertainty for a typical calorimetric LEP luminosity detector within the generic angular range of 18–52 mrad. Total error is summed in quadrature.

Type of correction/error	1999	Update 2018	
(a) Photonic $\mathcal{O}(L_e\alpha^2)$	0.027% [5]	0.027%	
(b) Photonic $\mathcal{O}(L_e^3 \alpha^3)$	0.015% [6]	0.015%	
(c) Vacuum polariz.	0.040% [7,8]	0.013% [26]	main
(d) Light pairs	0.030% [10]	0.010% [18,19]	changes
(e) Z and s -channel γ exchange	0.015% [11,12]	0.015%	3 - 3
(f) Up-down interference	0.0014% [28]	0.0014%	
(f) Technical Precision	_	(0.027)%	
Total	0.061% [13]	0.038%	

Based mainly on **internal** tests with MC generator OLDBIS \oplus LUMLOG ($\mathcal{O}(\alpha) \oplus \mathcal{O}(L_e^3 \alpha^3)$) and **semi-analytical** calculations as well as **external** cross-checks with independent MC generator **SABSPV** [M. Cacciari, G. Montagna, O. Nicrosini, F. Piccinini, CPC **90** (1995) 301].

 $\Phi \mathcal{O}(\alpha^3)_{\text{prag}}^{\text{exp}}$ BHLUMI for future e^+e^- colliders:

$$\sigma_{\rm Bh} \simeq 4\pi\alpha^2 \left(\frac{1}{t_{\rm min}} - \frac{1}{t_{\rm max}}\right) = 4\pi\alpha^2 \left(\frac{t_{\rm max} - t_{\rm min}}{\bar{t}^2}\right), \quad \bar{t} = \sqrt{t_{\rm min}t_{\rm max}}$$

Machine	$\theta_{\min} - \theta_{\max}$ (mrad)	\sqrt{s} (GeV)	\bar{t}/s	$\sqrt{\bar{t}}$ (GeV)
LEP	28–50	M_Z	3.5×10^{-4}	1.70
FCCee	64–86	M_Z	13.7×10^{-4}	3.37
FCCee	64–86	350	13.7×10^{-4}	13.0
ILC	31–77	500	6.0×10^{-4}	12.2
ILC	31–77	1000	6.0×10^{-4}	24.4
CLIC	39–134	3000	13.0×10^{-4}	108

[S. Jadach, WP, M. Skrzypek, B.F.L. Ward, Eur. Phys. J. C 81 (2021) 1047]

Forecast study for FCCee _{M2}			
Type of correction / Error	Published [2]	Redone	
(a) Photonic $\mathcal{O}(L_e^2 \alpha^3)$	0.10×10^{-4}	0.10×10^{-4}	
(b) Photonic $\mathcal{O}(L_e^4 \alpha^4)$	0.06×10^{-4}	0.06×10^{-4}	
(b') Photonic $\mathcal{O}(\alpha^2 L_e^0)$		0.17×10^{-4}	
(c) Vacuum polariz.	0.6×10^{-4}	0.6×10^{-4}	
(d) Light pairs	0.5×10^{-4}	0.27×10^{-4}	
(e) Z and s -channel γ exch.	0.1×10^{-4}	0.1×10^{-4}	
(f) Up-down interference	0.1×10^{-4}	0.08×10^{-4}	
Total	1.0×10^{-4}	0.70×10^{-4}	

Forecast			
Type of correction / Error	ILC ₅₀₀	ILC ₁₀₀₀	CLIC ₃₀₀₀
(a) Photonic $\mathcal{O}(L_e^2 \alpha^3)$	0.13×10^{-4}	0.15×10^{-4}	0.20×10^{-4}
(b) Photonic $\mathcal{O}(L_e^4 \alpha^4)$	0.27×10^{-4}	0.37×10^{-4}	0.63×10^{-4}
(c) Vacuum polariz.	1.1×10^{-4}	1.1×10^{-4}	1.2×10^{-4}
(d) Light pairs	0.4×10^{-4}	0.5×10^{-4}	0.7×10^{-4}
(e) Z and s -channel γ exch.	$1.0 \times 10^{-4(*)}$	2.4×10^{-4}	16×10^{-4}
(f) Up-down interference	$< 0.1 \times 10^{-4}$	$< 0.1 \times 10^{-4}$	0.1×10^{-4}
Total	1.6×10^{-4}	2.7×10^{-4}	16×10^{-4}

[B.F.L. Ward et al., PoS ICHEP2024 (2025) 554, arXiv:2410.09115]

→ See also: M. Skrzypek et al., Acta Phys. Pol. B Proc. Supp. 17 (2024) 2-A4

How to reach the requisite precisions?

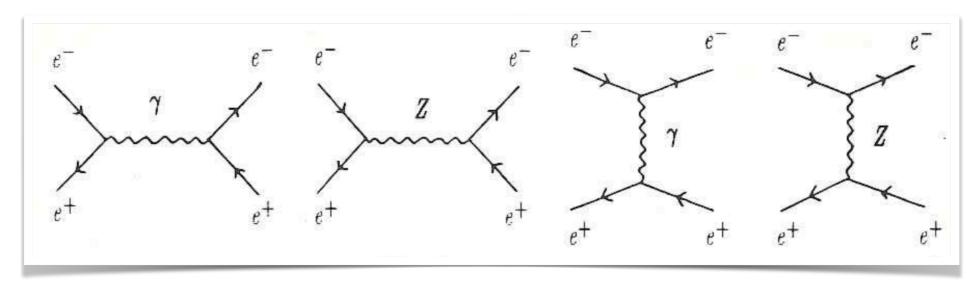
* Stage 1:

- (a) Photonic $\mathcal{O}(L_e^3\alpha^3)$ available in LUMLOG MC generator [see e.g. S. Jadach, B.F.L. Ward, PLB 389 (1996) 129 and APPB 28 (1997) 1907] \rightarrow to be implemented in BHLUMI
- (b) Photonic $\mathcal{O}(L_e \alpha^2)$ available [S. Jadach, M. Melles, B.F.L. Ward, S.A. Yost: PLB 377 (1996) 168 and PLB 450 (1999) 262] and tested numerically \rightarrow to be implemented in BHLUMI
- (c) Vacuum polarisation (hadronic) to be improved in near future: Lattice QCD computations, new low-energy e^+e^- experiments, MUonE (?)
- (d) Z and s-channel γ exchange available in BHWIDE MC generator, including YFS $\mathcal{O}(\alpha^1)_{\rm exp}$ EW corrections \rightarrow to be computed and combined with BHLUMI results
- (e) Light-fermion pairs available in KoralW MC generator (subset of $e^+e^- \rightarrow 4f$) \rightarrow to be combined with BHLUMI results, if needed
- BHLUMI ⊕ BHWIDE ⊕ KoralW

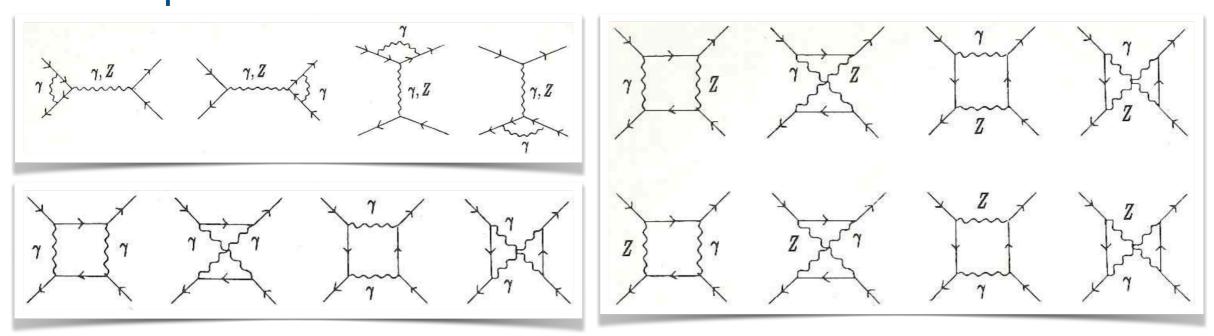
* Stage 2:

- Z and s-channel γ exchange implementing BHWIDE matrix element in BHLUMI, restoring up-down interferences in YFS exponentiation ($\mathcal{O}(\alpha)$) EW corrections can also be included, if necessary)
- Light-fermion pairs implementing corresponding matrix elements in BHLUMI, if necessary
 - **⇒ EEX BHLUMI**
- * Stage 3 (ultimate solution):
 - Applying CEEX (Coherent Exclusive EXponentiation) formalism based on spin amplitudes, instead of EEX based matrix elements squared like in KKMC MC generator for $e^+e^- \rightarrow 2f \ (f \neq e)$
 - Using C++ (and Python?) for programming instead of Fortran
 - **→ CEEX BHLUMI**
- * Tests are important both for technical and physical precision!
 - Internal tests upgrade of BHLUMI 4.04 testing software needed: both semi-analytical calculations and LUMLOG+OLDBIS-type MC program
 - External independent MC generator (like SABSPV) needed (BabaYaga?)

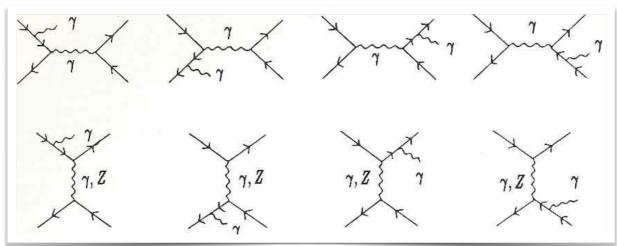
Large-angle Bhabha (LABH) scattering:

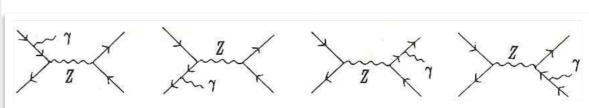

$$\theta_e \gtrsim 100 \, \mathrm{mrad}$$

at Z-boson peak:


$$\sigma_e^{\text{peak}} = \frac{12\pi\Gamma_e^2}{M_Z^2\Gamma_Z^2}$$

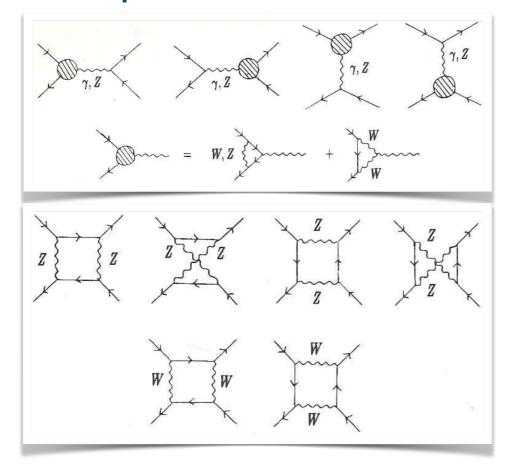
- \Longrightarrow direct measurement of Γ_e high sensitivity: $\propto \Gamma_e^2$
- ightharpoonup needed for measurement of other $\Gamma_f \quad \left[\sigma_f^{\mathrm{peak}} \propto \Gamma_e \Gamma_f \right]$
- at **Z**-peak and **above** large **background** for other processes, in particular $e^+e^- \to \gamma\gamma$ (complementary for LUMI)
- at **lower-energy** e^+e^- colliders (flavour factories: $\sqrt{s} \lesssim 10\,\mathrm{GeV}$)
 - **luminosity** measurement with typical precision 1% ÷ 0.1%

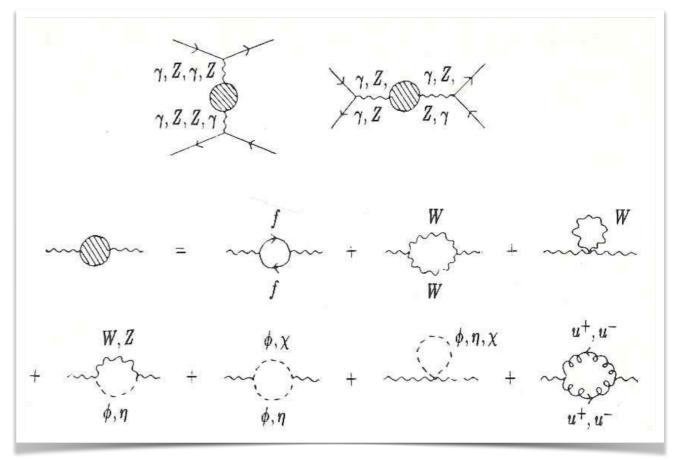

• Born-level diagrams [M. Boehm, A. Denner, W. Hollik, NPB 304 (1988) 687]



- \Rightarrow s and t channel γ and Z contributions
- 1-loop QED corrections:

1-real photon radiation:





Resonant

Non-resonant

1-loop weak corrections:

* BHWIDE - Monte Carlo event generator for wide-angle **Bhabha** scattering with **YFS EEX** including $\mathcal{O}(\alpha)$ EW (electroweak) corrections → https://placzek.web.cern.ch/bhwide [S. Jadach, WP, B.F.L. Ward, PLB 390 (1997) 298; WP et al., hep-ph/9903381]

$$e^{-}(p_1) + e^{+}(q_1) \rightarrow e^{-}(p_2) + e^{+}(q_2) + \gamma(k_1) + \dots + \gamma(k_n)$$

$$d\sigma = e^{2\alpha \operatorname{Re} B + 2\alpha \tilde{B}} \sum_{n=0}^{\infty} \frac{1}{n!} \int \prod_{j=1}^{n} \frac{d^{3}k_{j}}{k_{j}^{0}} \int \frac{d^{4}y}{(2\pi)^{4}} e^{iy(p_{1} + q_{1} - p_{2} - q_{2} - \sum_{j} k_{j}) + D} \bar{\beta}_{n}(k_{1}, \dots, k_{n}) \frac{d^{3}p_{2}d^{3}q_{2}}{p_{2}^{0}q_{2}^{0}}$$

$$2\alpha \tilde{B} = \int_{-\infty}^{k \le K_{\text{max}}} \frac{d^3k}{k_0} \tilde{S}(k), \quad D = \int_{-\infty}^{\infty} d^3k \frac{\tilde{S}(k)}{k^0} \left(e^{-iy \cdot k} - \theta(K_{\text{max}} - k) \right) \qquad \tilde{S}(k) = \frac{\alpha}{4\pi^2} \left[Q_f Q_{f'} \left(\frac{p_1}{p_1 \cdot k} - \frac{q_1}{q_1 \cdot k} \right)^2 + \ldots \right]$$

$$\tilde{S}(k) = \frac{\alpha}{4\pi^2} \left[Q_f Q_{f'} \left(\frac{p_1}{p_1 \cdot k} - \frac{q_1}{q_1 \cdot k} \right)^2 + \ldots \right]$$

• Non IR-divergent perturbative terms up to $\mathcal{O}(\alpha)$ EW:

$$\frac{1}{2}\bar{\beta}_{0} = \frac{d\sigma^{1-100p}}{d\Omega} - 2\alpha \operatorname{Re} B \frac{d\sigma_{\operatorname{Born}}}{d\Omega}$$

$$1-\operatorname{loop} EW \text{ corrections}$$

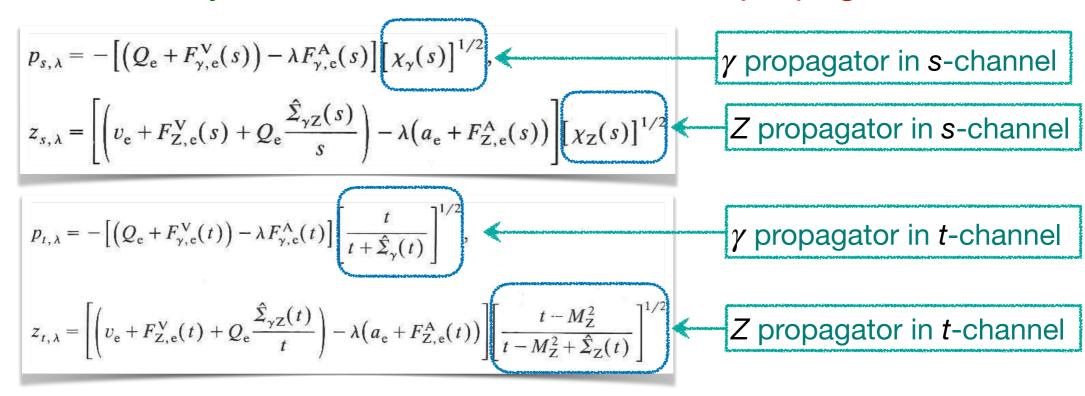
$$\frac{1}{2}\bar{\beta}_{1} = \frac{d\sigma^{B1}}{kdkd\Omega_{2}d\Omega} - \tilde{S}(k) \frac{d\sigma_{\operatorname{Born}}}{d\Omega}$$

$$1 \text{ real-photon emission: single-bremsstrahlung matrix element}$$

Two one-loop EW libraries:

- 1. M. Boehm, A. Denner, W. Hollik, NPB 304 (1988) 687 (BABAMC)
- 2. W. Beenakker, F.A. Berends, S.C. van der Marck, NPB 349 (1991) 323 (ALIBABA)

Two single-bremsstrahlung matrix elements:


- 1. Our calculation based on spin amplitudes using methods of Z. Xu, D.-H, Zang, L. Cheng NPB 291 (1987) 392
- 2. F.A. Berends *et al.* (CALKUL), NPB 206 (1982) 61 for matrix element squared

Monte Carlo algorithm:

- similar to that of BHLUMI
- all up-down interferences restored by MC weights in LAB frame

Vacuum polarisation

- Self-energy corrections to γ and Z propagators contain light-fermion loop contribution which is sizeable for LABH at high energies: $\sim 10\%$ at $\mathcal{O}(\alpha)$
 - ✓ Dyson resummation need → running couplings
 - Not easy for LABH because of mix of s and t channel γ and Z contributions running coupling does not factorise!
- ► In EW library of Beenakker et al. resumed propagators:

* Tests and cross-checks:

- Small angles: BHWIDE was cross-check with BHLUMI 4.04 for $1^{\rm o} < \theta_e < 10^{\rm o}$ agreement within 0.1% was found
- ► Large angles: BHWIDE was compared other MC and semianalytical programs for LABH, e.g. with ALIBABA, TOPAZ0 and SABSPV - based on this its precision was assessed:
 - for **LEP1**: 0.3%
 - **-** for **LEP2**: 1.5%
 - → sufficient for these experiments
- ► Flavour factories: BHWIDE was/is used in low-energy e^+e^- experiments, such as BaBar, Belle, VEPP, BES, KLOE, in particular for luminosity measurement \rightarrow precision $\mathcal{O}(0.1\%)$
 - comparisons with other MC programs: BabaYaga, BHAGENF, BKQED, MCGPJ → see: S. Actis *et al.*, EPJC 66 (2010) 585.

- **\Leftrightarrow** BHWIDE for **future** e^+e^- **colliders**
 - FCC-ee/CEPC will require precision of theory predictions for LABH at least a factor of 10 better than LEP
 - $\rightarrow \mathcal{O}(\alpha^2)$ (NNLO) QED corrections will be necessary (perhaps $\mathcal{O}(L^3\alpha^3)$?), and at *Z*-peak probably also NNLO weak corrections
 - 2-loop QED corrections with massive leptons, e.g. M. Delto,
 C. Duhr, L. Tancredi, Y.J. Zhu, PRL 132 (2024) 231904
 - 1-loop corrections to single bremsstrahlung: software packages for automated 1-loop calculations, e.g. OpenLoops, Recola
 - tree-level double bremsstrahlung matrix element: calculation "by hand" using spin amplitudes or using automated software packages
 - NNLO weak corrections at Z-peak: e.g. GRIFFIN EW library
 pole expansion about Z-resonance with NNLO corrections for leading-pole terms and NLO for subleasing ones

- → Modern 1-loop EW libraries:
 - OpenLoops [F. Buccioni, J.M. Lindert, S. Pozzorini, H. Zhang, M. Zoller]
 - √ many processes, numerical stability, Fortran and C/C++
 interfaces, massive fermions in recent versions looks OK for
 BHWIDE (to be tested)
 - Recola [A Denner, J.-N. Lang, S. Uccirati]
 - √ many processes, massive fermions, IR regularisation with "photon mass" looks best for BHWIDE (to be tested)
 - GRIFFIN [A. Freitas, L. Chen]
 - √ weak correction up to NNLO at Z-pole and NLO off-pole (QED subtracted)
 - not clear how to combine with QED corrections for Bhabha scattering (to be discussed with authors)
- → Dyson resummation of light-fermion self-energy correction should be possible - with hadronic vacuum-polarisation contribution to be provided by external dedicated routine

Conclusions and outlook

- *** BHLUMI 4.04** MC event generator for SABH process including YFS $\mathcal{O}(\alpha^2)_{\rm prag}^{\rm exp}$ QED corrections
 - state-of-the art at LEP for LUMI measurement
 - √ precision of 0.038% at Z-peak
 - * starting point for future e^+e^- colliders luminometry: FCC-ee, CEPC, ILC/CLIC
 - √ at Z-peak, precision of 0.01% or better can be achieved
 - ✓ at higher energies sub-permille precision possible
 - → Needed:
 - upgrade to (CEEX) YFS $\mathcal{O}(\alpha^3)^{\rm exp}_{\rm prag}$ photonic corrections
 - inclusion of Z and s-channel γ contributions (possibly with NLO EW correction)
 - perhaps light-fermion pairs
 - √ Components available

Conclusions and outlook

- **BHWIDE** MC event generator for wide-angle Bhabha process including YFS $\mathcal{O}(\alpha)_{\rm exp}$ EW corrections
 - used by LEP experiments for LABH
 - ✓ precision of **0.3**% at LEP1 and **1.5**% at LEP2 energies
 - used by flavour factories (BaBar, Belle, BEPC, VEPP, KLOE, ...), e.g. for LUMI $\rightarrow \mathcal{O}(0.1\%)$ precision
 - starting point for LABH at future e⁺e⁻colliders: FCCee/CEPC, ILC/CLIC
 - ✓ precision requirements at least 10 times higher than at LEP, particularly at FCC-ee/CEPC
 - → Needed:
 - upgrade to (CEEX) YFS $\mathcal{O}(\alpha^2)_{\rm exp}$ QED corrections (EW at Z-peak?)
 - new 1-loop EW library, e.g. Recola, OpenLoops
 - 2-loop QED corrections, e.g. M. Delto et al., PRL 132 (2024) 231904, J. Gluza et al. (?); 2-loop EW at Z-pole, e.g. GRIFFIN