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Introduction

@ How did we get started on our YFS journey?

@ 1986 Markll Radiatvie Corrections Meeting Organized by G.
Feldman at SLAC:
@ Preparation for 'Precision Z Physics’ at SLC: Did not turn-on until
1989, MKII Observed ~ 750 Z's
@ Staszek and | met in this Meeting.

@ There was a No-Go Belief: Jackson-Scharre Naive
Exponentiation-Based Methods — Nothing Better

@ We started discussing whether the approach of Yennie, Frautschi, and
Suura could do better —

@ It worked at the level of the amplitudes:

@ Could a MC realize all that?
@ Was renormalization group improvement alive?
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Introduction

@ Discussion aided by my participation in the 27th Cracow School of
Theoretical Physics

@ Long walks in the mountains
@ Staszek had already written MPI-PAE-PTH-87-6:
"Yennie-Frautschi-Suura soft photons in Monte Carlo event
generators"
@ We presented RG Improvement at the School.

@ Proof of Principle:

@ "Exponentiation of Soft Photons in the Monte Carlo: The Case of
Bonneau and Martin," University of Tennessee preprint
UTHEP-88-0101, and SLAC-PUB-4543, Phys. Rev. D38, 2897
(1988)

@ "Multiphoton Monte Carlo for Bhabha Scattering at Low Angles,"
University of Tennessee preprint UTHEP-88-11-01, 1988, Phys.
Rev. D40, 3582 (1989)"
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Introduction

@ This was followed by "YFS2-The Monte Carlo for Fermion Pair
Production at LEP/SLC with the Initial State Radiation of Two Hard and
Multiple Soft Photons", CPC 56 (1990) 351

@ = KORALZ 3.8, BHLUMI 2.01

@ "Final State Multiple Photon Effects in Fermion Pair Production at
SLC/LEP" UTHEP-91-0903, Phys. Lett. B274 (1992) 470

@ = KORALZ 4.0, BHLUMI 4.04, ...
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Introduction

@ More applications followed:

e BHWIDE, BHLUMI 2.30, YFSWW3, KORALW,
KORALW&YFSWW3

@ CEEX: Proof of Principle

@ "Coherent Exclusive Exponentiation CEEX: The Case of the
Resonant e+e- Collision," CERN-TH-98-253, UTHEP-98-0801;
Phys. Lett. B449, 97 (1999)

@ = KKMC, KKMC 4.22, KKMC-ee, KKMC-hh, KKMC-ee (C++), ...

@ Applications: SLC, LEP1 and LEP2, BaBar, BELLE, BES, ®-Factory,
LHC

@ Applications: TESLA, ILC, CLIC, FCC, SSC-RESTART, CEPC, CPPC,
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Introduction

@ The Future of Precision Theory: Dictated by Future
Accelerators — FCC, CLIC, ILC, CEPC, CPPC, ---

@ Using FCC as an example, factors of improvement from ~
51to ~ 100 are needed from Theory

@ Resummation is a key to such improvements in many
cases:
Today, we discuss amplitude-based resummation following
the YFS MC methodology made possible by Staszek’s
seminal contributions.

@ YFS — 'no limit to precision’

@ See 1989 CERN Yellow Book article by Berends et al.
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Introduction

@ The Future of Precision Theory: Dictated by Future Accelerators —

FCC, CLIC, ILC, CEPC, CPPC, ---
Gianotti: 1/10/23 -- von der Leyen: 7/16/25, EU MFF Moonshots --FCC, clean aviation, ...

Figure: Future of CERN. BAYLOR
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Introduction

@ The Future of Precision Theory: Dictated by Future Accelerators —
FCC, CLIC, ILC, CEPC, CPPC, ---
Gianotti: 1/10/23

Theory

Some physics highlights:
0 Higher-order calculations of background processes for
LHC, HL-LHC and future colliders = 0 :
a Axion physics and, in particular, studies for using axion = 107"
haloscopes to detect high-frequency gravitational waves = |12
through oscillating electromagnetic signals sourced by =
spacetime distortions (arXiv: 2202.00695) 10
Q String Theory: Exploring the swampland and how its 10710
conjectures can reveal information on the energy scales 10 .
of nature (arXiv: 2205.12293) 10-» | DMRadio GW Sensitivity
0 Bounds on the energy growth of gravitational amplitudes 1072 10 100 10" 10
(arXiv: 2202.08280) f [MHz]
Other activities:
a Full restart of scientific activities and visitor programmes after Covid.
0 TH served as a focal point for the physics community to discuss eco-
friendly practices for organising scientific events and business travel.
These issues were discussed in a dedicated Theory Institute, named
“Sustainable HEP”

Figure: Future of CERN.
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Introduction

@ The Future of Precision Theory: Dictated by Future Accelerators —

FCC, CLIC, ILC, CEPC, CPPC, ---
Grojean: 2/13/24

Tera-Z EW precision measurements.

» The target is to reduce syst. uncertainties to the level of stat. uncertainties.
 (exploit the large samples and innovative control analyses)
» Exquisite Vs precision (100keV@Z, 300keV@WW) reduces beam uncertainties

~50 times better precision than LEP/LSD on EW precision observables

w/ stat. and param. only

2-0 region
010} (EWPO: stat. unc. only)
@3 HL-LHC

@ HL+CUCs
005f @ HLsICw,
@ HL+FCC,

-0.10 -0.05 0.00 0.05 0.10
T

(For the impact of the theory uncertainties on the EW fit, see bonus slides)

&G -20/ 30

Figure: Future of CERN.
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Introduction

@ YFS methods are exact in the infrared but treat the collinear logs
perturbatively in the B, residuals

@ DGLAP-based collinear factorization treats the collinear logs to all
orders but has a non-exact IR limit

@ |n this talk, we present some new results for precision collider
physics based on the usual YFS methods.

@ We then investigate improving the collinear limit of YFS theory.

@ A Key Point: Exact Amplitude-Based Resummation Realized on
Evt-by-Evt Basis — Enhanced Precision for a Given Level of Exactness:
LO, NLO, NNLO, NNNLO, ...., essential for future precision physics as
exemplified by CERN <=> Computer Algebraic Methods essential!
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dk;

_ SUMr (QCED) yeo 1 n
dGres = € ®(Q )Zrl,m=0 ntm! ij1:1 kh1

H]m ] o ku f( eV (p1+a1—pe—a—L kK —Y. K'j,)+DocEp
=
d®px &®
Bn,,m(kh-”akn; 1/5' k,)pfz qu’ (1)
where new (YFS-style) non-Abelian residuals By m(ki, ..., kni K}, ..., kL)

have n hard gluons and m hard photons.

Bunt FCCee —need exaet 0 (%, 51, (), (8) 1, (&) 2(8) 12,(2) 2.(5) 1)

= Computer Algebraic Methods < Evaluation of Feynman Diagrams
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Here,

Bk, -
DQCED = / P ( o G(Kmax - ko)) ng;ED 2)

where K., is “dummy” and

nls — nls nls
Bocep = QCD+ BQEDv
S
Beer = Bgf:tﬁ' BE’{ED,
onls — aonls nIs
Sacep = SacptSeep- 3)

Shower/ME Matching: Bn.m — Bnm
See Ann. of Phys. 323 (2008) 2147 and references therein

for more details.

B.F.L. Ward MTTD 2025
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@ (HL-)LHC:
K KMChh: Exact O(a?L) CEEX EW corrections matched to a Herwig
parton shower (built-in) or to any other shower via Les Houches files

(see also Liu et al., to appear).=
Recent ATLAS results on Z'y production (Eur.Phys.] C 84 (2024) 195)

= F ‘ ‘ ‘ ‘ ‘ - = F ‘ ‘ ‘ . ‘ -
© L ATLAS preliminary * Data ! 1 o L ATLAS Preliminary ® Data i
8 ofL  TesTev.oo2fol — B agsphotos ] 8 ot Teetev.zo2m! — Do Y g Lphotos.
= P Zoee KKMChh (ISR+FI:FSR) ] = B Zowy KKMChh (ISR+IFI-FSR)
o r ] -+ C ]
o [ 1 kS [ ]
5 0.05— — § 0.05— —
L C ] L £ ]
g ] s ' ,:El_n—-—
o o Loty
a == | o 9 coccrrrn|
s ! e ™ = g ! R = d
= ] s 1
08f E 0af ]
15TB0 T35 TR0 %40 45 1 2025 @0 @A 45
P! [GeV] p! [GeV]

HL-LHC => Factor of ~ 10 smaller statistical errors => Test?
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@ (HL-)LHC:
K KMChh: NISR shows effect of QED contamination in non-QED
PDFs is below the errors on the PDFs:

@ NISR -
3 N o
o(s) = cho(s) ) /dx dzdr /clqux(—7 3(X — x¢%32)
=u,d,s,c,b

x (%, xg) 2 (5%, x3) p\*) (Vig(sk/m2), 2) PP (—vig(Q8/m?), 1)
MC

h
q
(Wuc),

X Gqum(sf(z)

(4)
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@ (HL-)LHC:
K KMChh: NISR shows effect of QED contamination in non-QED

PDFs is below the errors on the PDFs:

Py, Distribution Ratios of Distributions Differences between Ratios
< o1 -0.04
> — (n)LuxnisR - _br (THO) .g 2) - (1)M(0)
& —— ()Lx+ ISR + FSR 5 (2¥(0) 3 @) e
3 —— (9Lux+ISR + FSR + NISR (3¥(0) 0.03)
2 el o asds ISR+ FSR 14
o R -
k]
E
= k 1.
1.
1 T
g
"~ o
i 1 >
1
0 2 4 6 8 10 12 14 16 18 20 b2 4 6 8 1012 14 16 18 20 Oy e e 0 12 14 18 18 20
Pr, (GeV) Py, (GeV) Pr, (GeV)

Figure 3(arXiv:2211.17177): The distribution for Py, of the photon for which it is greatest for events with
at least one photon and each lepton having pry > 25 GeV, 7 < 2.5 calculated with (0) FSR only (black). (1)
FSR + ISR (blue). and (2) FSR + ISR with NISR (red) for NNPDF3.1-LuxQED NLO PDFs. For
comparison, (3) shows FSR + ISR with ordinary NNPDF3.1 NLO PDFs (green). The center graph shows
ISR on/off ratios (1)/(0) (blue).(2)/(0) (red) and (3)/(0) (green). The right-hand graph shows the fractional
differences ((1) — (2))/(0) in red and ((2) — (3))/(0) in green.
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@ FCC-ee:
BHLUMI and the Luminosity Theory Error — Current Purview
(M. Skrzypek et al., 2023 FCC Workshop, Krakow & MTTD2023; W. Placzek, here)
Bhabha cross sect. depends on detector acceptance angles

1 1 tmax — 4 -
oBh == 4ra? (— — ) = dra? (W) t = v/ tmintmax

tmm tmax

tis the characteristic scale of the process
/s is the suppression factor between s- and t-channel contributions

Machine | Bmin-bmax [mrad] | /s [GeV] | t/s Vi [GeV]

LEP 2850 M- 35x107% [1.70

FCCee | 64-86 Mz 137 x 1074 | 3.37

FCCee | 64286 240 137 x107% [ 89

FCCee | 64286 350 137 x 1074 [ 13.0

ILC 31277 500 6.0 x 10% [ 12.2

ILC 31277 1000 6.0x 104 [24.4

CLIC 39+134 3000 13.0x10~% | 108 BAYLOR
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@ FCC-ee:
BHLUMI and the Luminosity Theory Error — Current Purview

Lumi at FCCee,, — Forecast study

Forecast study for FCCeeypy

Type of correction / Error Published [1] | Strict Redone

(a) Photonic O(L2a®) 0.10 x 10=% | 0.10 x 10~* | 0.10 x 104
(b) Photonic O(L4 4 0.06 x 10—* 0.06 x 10—* | 0.06 x 10—*
(b") Photonic O(a2L?) 017 x 10~* | 0.17 x 10—*
(c) Vacuum polariz. 0.6 x 10~ 06x10"*% | 06x 104
(d) Light pairs 0.5x 104 0.4x10~% | 0.27 x 10~4
(e) Z and s-channel 5 exch. | 0.1 x 10~* 01x10=* | 0.1 x 1074
(f) Up-down interference 0.1 x 10~ 0.08 x 10~* | 0.08 x 10~
Total 1.0 x 102 0.76 x 10=* | 0.70 x 10—2

B.F.L. Ward MTTD 2025
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@ FCC-ee:
BHLUMI and the Luminosity Theory Error — Current Purview

Lumi forecast at ILC and CLIC GeV

Forecast

Type of correction / Error ILCsqg ILC1000 CLIC3000

(a) Photonic O(LZ2a%) 0.13 x 10—* 0.15 x 10—* 0.20 x 10—
(b) Photonic O(L4a*) 0.27 x 10~* | 0.37 x10=* | 0.63 x 10~*
(¢) Vacuum polariz. 1.1 %1074 1.1x 1074 1.2 x 104
(d) Light pairs 0.4 x 10—* 0.5 x 10—* 0.7 x 10~*
(e) Z and s-channel v exch. | 1.0 x 1074(*) | 2.4 .« 10— 16 x 1074
(f) Up-down interference <01x107% | <0.1x10~* | 0.1 x 10—*
Total 1.6 x 10~* 2.7 x 1074 16 x 10~%

Note: Lattice methods with Jegerlehner's results allow, in principle, (c) -> (c)/6

Adtpaa(t) = Apaq (=0 iar + [Aanaa (1) = Adpaq (—Q8)pocpadier

B.F.L. Ward MTTD 2025
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Approach to Quantum Gravity

® Cosmological Constant Result Still Obtains:
(Phys. Dark Univ. 2 (2013) 97)

—MA (1 +Cppppk? [(360nME))? (=1 62 23

Palto) = * x % ()’
Alto 64 Z;: P? rg.q f3/3
—M},(1.0362)%(=9.194 x 107%) (25)2

>~ (2.4 x 10%eV)*.

64 t2 -

to = 13.7 x 107 yrs

Coeff =2.56x10* , cosmological index of the ST =

Constraints: BHs, etc., in progress.
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Improving the Collinear Limit in YFS Theory

@ Basic Formula for CEEX/EEX realization of the YFS resummation of

e+97 — f7+ my, f:€7q7 = eau717Veavy7VT7 q= U,d,S, Cabv t:

1 S n
o= fux L, | APz ({0}, () ©

1 1) = 1 2
atioh o= eewemy 3 ()
' helicities {\},{u}
(6)

By definition, ©(2, k) = 1 for k € Q and ©(£,k) = 0 for k & Q, with

O(Q; k) =1-0(Q,k) and

n
o(Q) =[]e(,k). BAYLOR
=1 T
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Improving the Collinear Limit in YFS Theory

@ For Q defined with the condition k° < Epnin, the YFS infrared
exponent reads

Y(S2 Pa, .., Pa) = Q5 Ya(pa, pb) + QF Ya(po, Pa)
+ Qe Q¥ YQ(paapc) + Qe Q¥ YQ(pbapd) (7)
— Qe Q¥ YQ(paapd) — Qe Q¥ YQ(pbvpC)’

BAYLOR
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Improving the Collinear Limit in YFS Theory

@ Here
Ya(p, q) =2aB(Q, p, q) + 20RB(p, q)
1 [Pk p g\’
=-20 Qk)| ———
82 @( ' )<kp kq> (8)
i 2p—k  2g9+k \?
+20m/ <2kp K2 2kq+k2> ‘

@ Fundamental Idea of YFS: isolate and resum to all orders in o the
infrared singularities so that these singularities are canceled to all such
orders between real and virtual corrections.

What collinear singularities are also resummed in the YFS resummation
algebra?

BAYLOR
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Improving the Collinear Limit in YFS Theory

@ Focusing on the s-channel and s’-channel contributions,

we have
2E, 1 50 1 x?
(25 p1,P2) = Yeln 2p1p2+4e+oen 2+3 7(9)
Yi(QF; q1,q) = rln 2Emn_ | ] +020° —7+n—2
AL a1,Q92) = Yr \/7 4f f 5T 3 )

where
o 2p1p2 o 2q1q2
7620§n<ln — —1>, yfzo?n<|n 1),

e
(10)
= The YFS exponent resums the collinear big log term
$Q?2[ to the infinite order in both the ISR and FSR
contributions.

@ Can this be improved to the result of Gribov and Lipatov to

exponentiate 3 2L via the QED form-factor? BAYLOR
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Improving the Collinear Limit in YFS Theory

@ The YFS form factor derivation illustrated in Fig. 4

p1

—D2

et

Figure: Virtual corrections which generate the YFS infrared function B.
Self-energy contributions are not shown. BAYLOR
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Improving the Collinear Limit in YFS Theory

@ = the amplitude factor

'k —i ,
M, = tamyi 2 P Qe

]
Hi— k—m+ie

i
— po— k—m+ie
(—iQee)Yau(pr)

(—ie)yu(va— aavs)

(11)
where A=yor Z.

BAYLOR
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Improving the Collinear Limit in YFS Theory

@ Scalarising the fermion propagator denominators =

d*k(—iQe2e? _ o
M, = —ielTEIGE) b g (o )y B Ty (va — aas)
ﬁ%%;;w u(py)- (12)

@ Using the equations of motion

(B k= mvas(pr) = {201~ K)o~ SKD}ulor) (@)

WP P~ o K+m) = Up){(~(@pet K"+ S [K P (b).
(13)

BAYLOR
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Improving the Collinear Limit in YFS Theory

@ = Contribution to 2Q2aB(p;,p2) corresponding to the

cross-term in the virtual IR function on the RHS of eq.(8):
i 22
20§0€B(P1 7p2)‘cross—term = fd4k(’%n4e ) ij&-ia

(2p1—k)(2p2+k)
(k2—2k;§1+i£)(k§2+2kp2+/8) - (14)

This term, together with the two squared terms in

20.Q2B(p+, p2), leads to the exponentiation of $ Q22L.

BAYLOR
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Improving the Collinear Limit in YFS Theory

@ The two commutator terms on the RHS of eq.(13), usually
dropped, can be analyzed further: possible IR finite
collinearly enhanced improvement of the YFS virtual IR

function B.
@ Isolate the collinear parts of k via the change of variables

k =cip1 +cop2 + k1. (15)

where p1k;, =0 = p:k,, = we have the relations

2

P1P2 m pok

Ol = g Pek — 5 pik — ——
(p1p2)2 —m* (p1p2)? —m* CL p1p2 (16)

P1P2 m? K —s p1k

Ty Pk ——5—— P2 )
(p1p2)? — m* 1 (p1p2)? —m* CL pi1p2

CL denotes the collinear limit = O(m?/s) dropped. BAY LOR
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Improving the Collinear Limit in YFS Theory

@ = (2p; —k)*in eq.(13(a)) combines with the commutator
term in eq.(13(b)) to produce

V(P2){(2p1 — K)o 3 LK, Y1} Yu(va — aa¥s ) u(pr)
= V(p2) K, p1]Vu(va — aa¥s)u(py)
Py v(p2)[cz b2, p1]Yu(va— aays)u(pr)

= V(p2)(=22p1p2)Vu(Va — aas)u(p+)
= V(P2)(=2p1k)Yu(va — aa¥s)u(pr). (17)
@ Similarly, —(2p2 + k)* in eq.(13 (b)) combines with the
commutator term in eq.(13(a)) to produce
V(p2)Vu(va aAvs)§(2pz+k)°‘(;[/wa])}U(m)

= V(p2)Yu(va — aa¥s) [ £, f2)u(py)
V(p2)Yu(va — aa¥s)[ci p1, p2lu(py)

= (
o V(P2)Yu(va — aavs)(2c1p1p2)u(pr)
= V(P2)Yu(va — aa¥s)(2p2k)u(p )- EAYLOR
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Improving the Collinear Limit in YFS Theory

@ = Shift of the factor (2p; — k)(2p2 + k) on the RHS of
eq.(14) as

(2p1 —k)(2p2 + k) —> (2p1 — k) (2p2 + k) +2p1k —2pok. (19)

BAYLOR
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Improving the Collinear Limit in YFS Theory

@ What does the term quadratic in the commutator (C?) contribute?
@ Superficial UV divergence = Cannot naively drop k|
@ Proceed directly: we need
d*k(iQ2e?) 1
2Q%0B Mp, = / °
Qe (P 7p2)‘02 Bu 8t K2+ e
%V(Pz)[k,Yu]'Yy[kaYa](—fe)(VA —apys)u(py)

(k2 — 2kpy + i€)(k? + 2kpo + i) oL
(20)

where we define

Mpy = —iev(p2)Yu(va — aa¥s)u(p1). (21)

@ CL now further restricted to contributions singular as m? /s — 0.

BAYLOR
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Improving the Collinear Limit in YFS Theory

@ Four terms in the numerator of eq.(20) from the respective
sum of gamma matrix products
{KY Y Ko KV Yoo K=V Koy Ko +7* Ko K} =
{Y}VY(XYWNYOL — PV YY" — VYN Yo+ PV Mk =

N ko ko
@ This defines N}V

BAYLOR
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Improving the Collinear Limit in YFS Theory

@ Using standard methods, we need

ez [ [ g0 0L

o (22)
/ 22
STV [ g+ BB l(—ie) (v — aats)u(pr)
(K2 = A2+ i’

where A = a4y — OlpPo.
@ Equations of motion = term involving A is not collinearly enhanced.

BAYLOR
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Improving the Collinear Limit in YFS Theory

@ The term contracted with gy, gives us

—3Q5a
PEL

@ = No collinearly enhanced contribution from /,.
@ Eq.(19) gives the complete collinear enhancement of B.

@ Change in B does not affect its IR behavior — shift terms
are IR finite = Entire YFS IR resummation is unaffected.

=0 (23)
cL

@ Shifted terms can be seen to extend the YFS IR
exponentiation to obtain the entire exponentiated 2 Q2oL

BAYLOR
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Improving the Collinear Limit in YFS Theory

@ We have

(d*k(iQ2e?) 1 2p1k —2pok
200Q2AB(p1, p2) = I e
e AB(p1.p2) 8t K21 ie (K2 —2kpy + ie) (K2 + 2kps + i€)

. d* K (iQRe?
=2 Px8(1—x1 —xp— x3) LT H %) (24)
X>0,i=1,2,3 8T
2(p1 — p2)px
(k2 —d+ie)3
where d = p2 with py = x{p1 — Xap2.
@ = We get
a
2Q2aRAB(p1,p2) = oﬁEL. (25)
@ We see that indeed the entire term %Oﬁ%L is now exponentiated by our collinearly
improved YFS virtual IR function Be,
Bcr = B+ AB
_rdk i 2p—k  2q+k \? 4pk — Agk (26)
“J k2 (2n)3 |\ 2kp— k2 2kq+k? (2pk — k2)(2gk + k2) |

See S. Jadach, Durham talk, 2002, for integrated form of Bg.



Improving the Collinear Limit in YFS Theory

@ What about the real YFS IR algebra? Collinear enhancement desired in
some applications

@ = Recall the original YFS EEX form~ulation of the respective algebra =
the formula for the YFS IR function B given above in eq.(8).

@ See Fig. 5.
_ b 0
k
v + Y
_k
et ——<—— V2 ¢ —p

Figure: Real corrections which generate the YFS infrared function B.
Figure 2: Real corrections which generate the YFS infriilahiae
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Improving the Collinear Limit in YFS Theory

@ Following the steps in the usual YFS algebra for real emission =

[ &Pk(—1)e2 Q2 [(p1)(2p} — K + F 1K, Y1) Vu(va — aavs)v(p2)

Vil L=
2005 BMp, Mg 2ky(2m)3 K2 — 2kp;
U(p1)Yu(va — aa¥s)(—20% + k* + ;[KY"])V(Pz)]
+ 2
Kk — 2kp2
V(p2) Y (va — aa¥s)(2pip — ko — 51K, ) u(pr)
k2 — 2kp1
V(p2) (=220, + k. — [k Y)Y (va — aavs)u(pi )
+ 2 + K‘u,u’
k= —2kpo K2=0
(27)
where K, is infrared finite,
o
Mpy = V(p2)Yu(va — aavs)u(pr) (28)

BAYLOR
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Improving the Collinear Limit in YFS Theory

@ If we drop the commutator terms on the RHS of eq.(27) we
recover the usual YFS formula for 20cO§B.

@ We again isolate collinearly enhanced contributions by
using the representation in eq.(yfsalg4) for k, respecting
the condition k? = 0. = Maintain
0= (012 + C%)m2 +201 CoP1 P2 — |kL|2.

@ = Collinear enhancement of B:

—o@2 [ d®k 1 K

L @ )

472 kpi  kpo' | kpit pipe

1 kp:
+—(2-—)¢.
kpz( p1p2)}

@ Agreement with Berends et al.

20(02 BCL =

(29)
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Improving the Collinear Limit in YFS Theory
@ What about CEEX?

@ In Fig. 5, use of amplitude-level isolation of real IR divergences, K-S
photon polarization vectors =

My, = Mpuscrs(k), (30)
with

pil < ko|py —o > kC < ko|piA >
scLe(k) = V2Qee| — 4 | "R —— 1+ 8 oy | = ———
aol) ° { KC 2pik "o\ bt 2pik

n pL§<kc\b2—c>+8 kG <pohlk—o >
kKO 2pok "\l pl 2pek '
(31)

Here, { = (1,1,0,0) and p = p— {m?/(2(p).

@ Upon taking the modulus squared of s¢; (k) we see that the extra
non-IR divergent contributions reproduce the known collinear big R
log contribution which is missed by the usual YFS algebra. :
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@ Amplitude-based resummation (Staszek’s contributions thereto were
essential) allows improved control of IR and Collinear limits

@ MC realizations are needed for current and future precision collider
physics, using residuals made amenable by computer algebraic methods.

@ New, collinearly enhanced soft functions < Higher level of accuracy for
a given level of exactness in the IR-finite YFS hard photon residuals.

@ Enhanced toolbox available to extend the (CEEX) YFS MC method to
the other important processes at present and future colliders.

@ Some New Physics may hang in the balance at both LHC, FCC, and
other future colliders.

@ We wish Staszek were still here to share the possible excitement with
us, we really do miss him very much.
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