Lepton flavor mixing and mass order are preserved in the 3HDM under flavor symmetry

Joris Vergeest in coll. with Bartosz Dziewit and Marek Zrałek

Silesian University

MTTD 2025, Katowice, 15-19 September 2025

Introduction:

Standard Model is not flavor blind, however Yukawa matrices are unknown.

Lepton sector: $G_F = U(3) \times U(3)$ (or $G_F = U(3) \times U(3) \times U(3)$ if RH neutrinos exist).

No constraints on masses and neutrino mixing.

Fermion masses > 0 due to the Higgs doublet of the SM.

Introduction:

Standard Model is not flavor blind, however Yukawa matrices are unknown.

Lepton sector: $G_F = U(3) \times U(3)$ (or $G_F = U(3) \times U(3) \times U(3)$ if RH neutrinos exist).

No constraints on masses and neutrino mixing.

Fermion masses > 0 due to the Higgs doublet of the SM.

In contrast: Exp data -> non-degenerate masses, and U_{PMNS} .

$$G_F$$
 cannot be $(U(3))^3$

Introduction:

Standard Model is not flavor blind, however Yukawa matrices are unknown.

Lepton sector: $G_F = U(3) \times U(3)$ (or $G_F = U(3) \times U(3) \times U(3)$ if RH neutrinos exist).

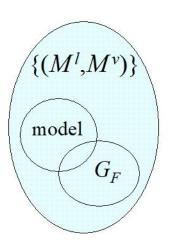
No constraints on masses and neutrino mixing.

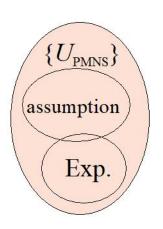
Fermion masses > 0 due to the Higgs doublet of the SM.

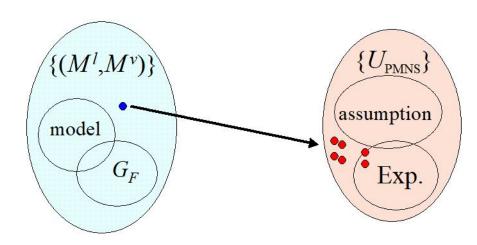
In contrast: Exp data -> non-degenerate masses, and U_{PMNS} .

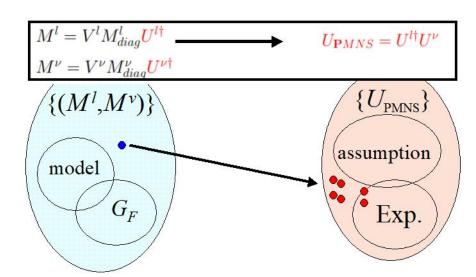
G_F cannot be $(U(3))^3$

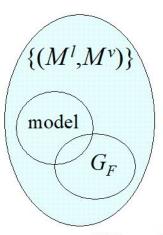
Can we find any nontrivial $G_f \subset (U(3))^3$? Or is it completely broken?

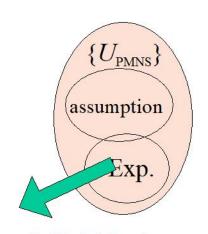




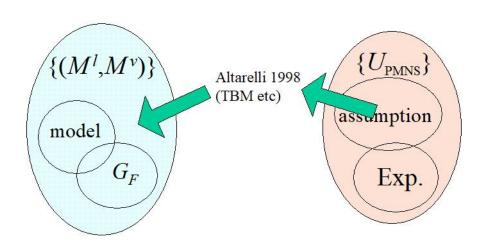


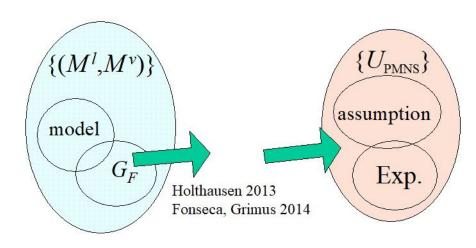


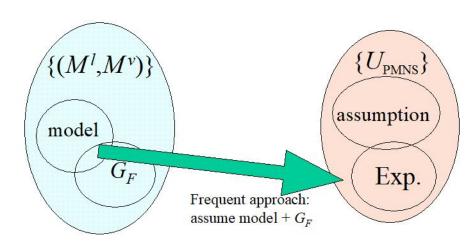




Kielanowski 2024, ($U_{\text{PMNS}} = R_{V} D(\alpha, \beta, \gamma) R_{l} \dots$) Karmakar 2024, (correlations among exp. parameters)







Methodology and assumptions:

Model is SM $+ \nu_{Ri} +$ two extra Higgs doublets (3HDM)

 ν_i have Dirac nature

 U_{PMNS} must reflect lepton mass order

Flavor vectors are: L_L , I_R , ν_R and $(\Phi_1\Phi_2\Phi_3)^T$

Only source of flavor symmetry breaking are the Yukawa matrices

Does any G_F survive EWSB?

3HDM Yukawa term

$$\mathcal{L}' = -\overline{L}_{\alpha L}(h'_i)_{\alpha \beta} \tilde{\Phi}_i I_{\beta R} + \text{H.c.},$$

$$i = 1..3$$
 27 terms + H.c.

Relevant Yukawa terms

$$\mathcal{L}\supset\mathcal{L}'+\mathcal{L}^
u\qquad (+\mathcal{L}^{
u L}+\mathcal{L}^{
u R}+\mathcal{L}^{
u M})$$

Relevant Yukawa terms

$$\mathcal{L}\supset\mathcal{L}^I+\mathcal{L}^
u\qquad\left(+\mathcal{L}^{
u L}+\mathcal{L}^{
u R}+\mathcal{L}^{
u M}
ight)$$

 $\mathcal{L}^{\nu L}$ is not EW gauge invariant $\mathcal{L}^{\nu R}$ has no effect on phenomenology $\mathcal{L}^{\nu M}$ Majorana term not taken into account

Central question (3HDM):

Does any finite $G_F > U(1)$ exist such that $(U(3))^3 \to G_F$ is within phenomenological bounds after EWSB?

Central question (3HDM):

Does any finite $G_F > U(1)$ exist such that $(U(3))^3 \to G_F$ is within phenomenological bounds after EWSB?

At first: Can G_F accommodate the <u>mass ratios</u> of the charged leptons <u>and</u> the neutrinos?

Note: Some studies neglect masses and focus on PMNS only!

$$3 \times 3' \times 3'' = n'1 + ...$$

 n^{\prime} is the number of possible contractions, that is the number of solutions for h^{\prime} of

$$(C^{\dagger} \otimes B^T \otimes A^{\dagger}) vec(h') = vec(h').$$

(similar for
$$n^{\nu}$$
)

$$3 \times 3' \times 3'' = n'1 + ...$$

 n^{\prime} is the number of possible contractions, that is the number of solutions for h^{\prime} of

$$(C^{\dagger} \otimes B^T \otimes A^{\dagger}) vec(h^l) = vec(h^l).$$

(similar for
$$n^{\nu}$$
) (suited for Mathematica and GAP)

$$\begin{split} \mathcal{L}' &= -\overline{L}_{\alpha L}(h_i')_{\alpha\beta} \tilde{\Phi}_i I_{\beta R} + \text{ H.c.,} \\ &\quad \text{A} \quad \text{C} \quad \text{B} \\ \text{(irreducible representations of } G_F) \end{split}$$

$$3 \times 3' \times 3'' = n'1 + ...$$

 n^{l} is the number of possible contractions, that is the number of solutions for h^{l} of

$$(C^{\dagger} \otimes B^T \otimes A^{\dagger}) vec(h^{\prime}) = vec(h^{\prime}).$$

(similar for
$$n^{\nu}$$
)
(suited for Mathematica and GAP)

 h^{\prime} and h^{ν} define the mass matrices:

Solutions h^{l} , h^{ν} define the mass matrices

$$M^I = -rac{1}{\sqrt{2}}v_i^*h_i^I \ M^
u = rac{1}{\sqrt{2}}v_ih_i^
u$$

$$(v_i \text{ is VEV of } \phi_i)$$

 M^{\prime} and M^{ν} have one of patterns P1 ... P7:

$$P1 = \begin{pmatrix} 0 & v_1 & 0 \\ 0 & 0 & v_2 \\ v_3 & 0 & 0 \end{pmatrix}$$

$$P2 = \begin{pmatrix} 0 & v_3 & v_2 \\ v_3 & 0 & v_1 \\ v_2 & v_1 & 0 \end{pmatrix}$$

$$P3 = \begin{pmatrix} v_2 & v_2 & v_2 \\ v_3 & v_3 & v_3 \\ v_1 & v_1 & v_1 \end{pmatrix}$$

P4 =
$$\begin{pmatrix} v_{2} & v_{3} & v_{1} \\ v_{2} & v_{3} & v_{1} \\ v_{2} & v_{3} & v_{1} \end{pmatrix}$$
P5 =
$$\begin{pmatrix} v_{1} & v_{2} & v_{3} \\ v_{3} & v_{1} & v_{2} \\ v_{2} & v_{3} & v_{1} \end{pmatrix}$$
P6 =
$$\begin{pmatrix} 0 & v_{1} + v_{2} + v_{3} & 0 \\ 0 & 0 & v_{1} + v_{2} + v_{3} \\ v_{1} + v_{2} + v_{3} & 0 & 0 \end{pmatrix}$$
P7 =
$$\begin{pmatrix} a & b & c \\ d & e & f \\ \sigma & h & i \end{pmatrix}$$

Table: Occurrences of patterns P1 to P7 of $\{M^I, M^\nu\}$ of the 1-dimensional solutions, $n^I = 1, n^\nu = 1, |G| \le 600$

$I \backslash \nu$	P1	P2	P3	P4	P5	P6	P7
P1	9559	0	238	0	0	0	0
P2	0	9	0	0	0	0	1
P3	237	0	108	0	0	0	0
P4	0	0	0	494	0	0	0
P5	0	0	0	0	7784	0	0
P6	0	0	0	0	0	498	0
P7	0	1	0	0	0	0	1515

$$3 \times 3' \times 3'' = n^{l}1 + ...$$

 $3 \times 3' \times 3'' = n^{\nu}1 + ...$

Finite groups with $|G| \le 600$ generate 28,807 inequivalent pairs $\{M^I, M^{\nu}\}$

$n^l \backslash n^{ u}$	1	2	3
1	20,437	3816	0
2	3816	729	0
3	0	0	0

Group A_4 **permits** $n^l = n^{\nu} = 2$

$$M' \sim egin{pmatrix} 0 & \lambda_2 v_3 & \lambda_1 v_2 \ \lambda_1 v_3 & 0 & \lambda_2 v_1 \ \lambda_2 v_2 & \lambda_1 v_1 & 0 \end{pmatrix}$$

$$M^{
u} \sim egin{pmatrix} 0 & \mu_2 \mathbf{v_3} & \mu_1 \mathbf{v_2} \ \mu_1 \mathbf{v_3} & 0 & \mu_2 \mathbf{v_1} \ \mu_2 \mathbf{v_2} & \mu_1 \mathbf{v_1} & 0 \end{pmatrix},$$

Group A_4 permits $n^l = n^{\nu} = 2$

$$M' \sim \begin{pmatrix} 0 & \lambda_2 v_3 & \lambda_1 v_2 \\ \lambda_1 v_3 & 0 & \lambda_2 v_1 \\ \lambda_2 v_2 & \lambda_1 v_1 & 0 \end{pmatrix}$$

$$M^{
u} \sim egin{pmatrix} 0 & \mu_2 extbf{v}_3 & \mu_1 extbf{v}_2 \ \mu_1 extbf{v}_3 & 0 & \mu_2 extbf{v}_1 \ \mu_2 extbf{v}_2 & \mu_1 extbf{v}_1 & 0 \end{pmatrix},$$

Eigenvalues of <u>sum of matrices</u>: notoriously difficult \rightarrow resort to numerical analysis.

Group A_4 permits $n^l = n^{\nu} = 2$

$$M' \sim egin{pmatrix} 0 & \lambda_2 \emph{v}_3 & \lambda_1 \emph{v}_2 \\ \lambda_1 \emph{v}_3 & 0 & \lambda_2 \emph{v}_1 \\ \lambda_2 \emph{v}_2 & \lambda_1 \emph{v}_1 & 0 \end{pmatrix}$$

$$M^{
u D} \sim egin{pmatrix} 0 & \mu_2 \mathbf{v}_3 & \mu_1 \mathbf{v}_2 \ \mu_1 \mathbf{v}_3 & 0 & \mu_2 \mathbf{v}_1 \ \mu_2 \mathbf{v}_2 & \mu_1 \mathbf{v}_1 & 0 \end{pmatrix},$$

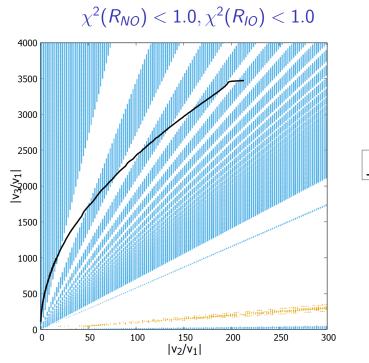
This structure is unique among |G| < 600 (besides T_7 for $n^l = 1, n^{\nu} = 2$)

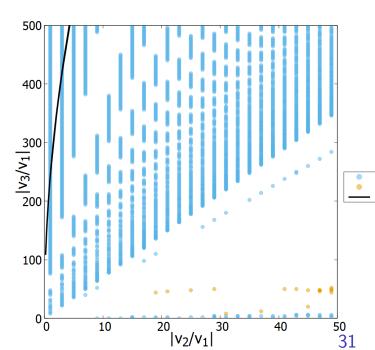
Group A_4 **permits** $n' = n^{\nu} = 2$

$$M' \sim \begin{pmatrix} 0 & \lambda_2 v_3 & \lambda_1 v_2 \\ \lambda_1 v_3 & 0 & \lambda_2 v_1 \\ \lambda_2 v_2 & \lambda_1 v_1 & 0 \end{pmatrix}$$

$$M^{
u D} \sim egin{pmatrix} 0 & \mu_2 \mathbf{v}_3 & \mu_1 \mathbf{v}_2 \ \mu_1 \mathbf{v}_3 & 0 & \mu_2 \mathbf{v}_1 \ \mu_2 \mathbf{v}_2 & \mu_1 \mathbf{v}_1 & 0 \end{pmatrix},$$

Free parameters are: v_2 , v_3 , λ_2 , μ_2 (8 real parameters).





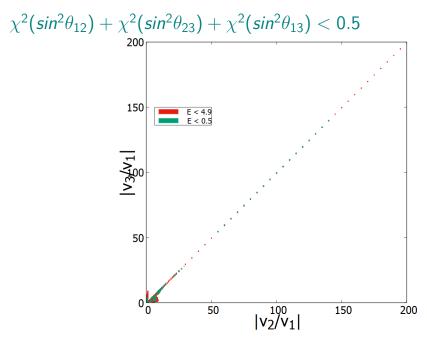
Case:
$$n' = n^{\nu} = 2$$
, $G_F = A_4$

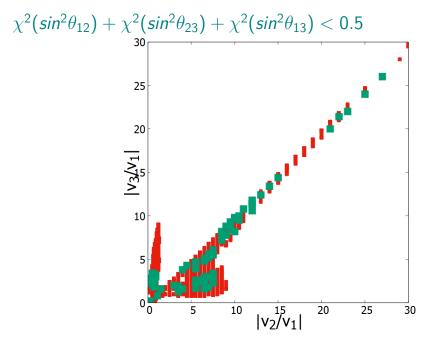
Masses of charged and neutral leptons (NO) can be accommodated in the 3HDM.

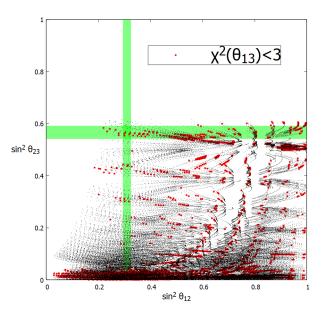
Neutrino masses:

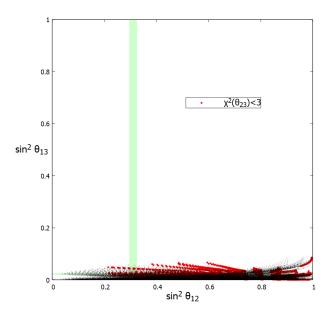
m_1	\approx	$5.0 imes 10^{-6} ext{ eV}$
m_2	\approx	$0.86 imes 10^{-2} \text{ eV}$
m_3	\approx	$5.03 \times 10^{-2} \text{ eV}.$

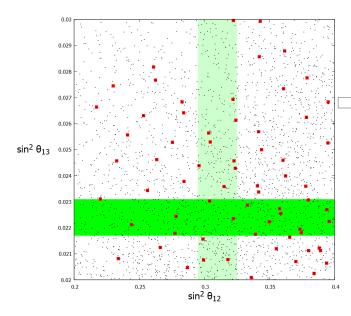
These values are within experimental bounds.

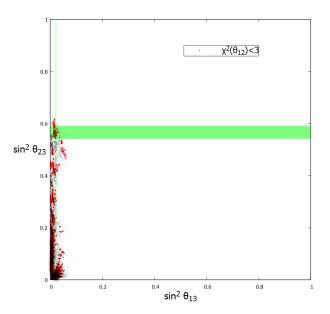


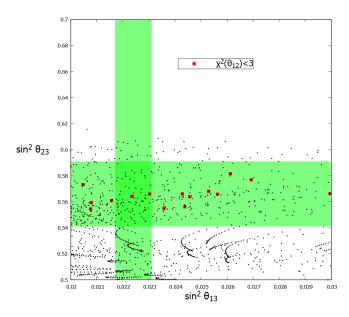








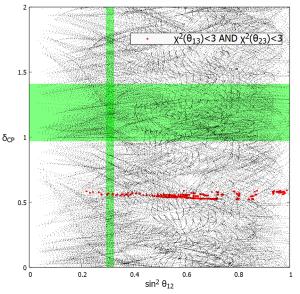


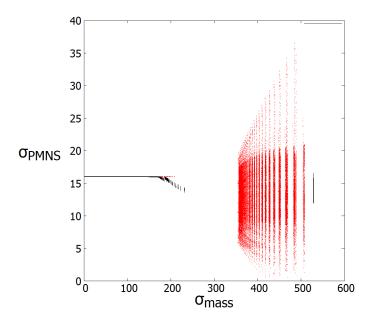


Case: $n' = n^{\nu D} = 2$

PMNS Mixing angles can be accommodated in the 3HDM, while respecting the lepton mass order

Calculated $\delta_{CP} \approx 0.6$, is 4σ away from 1.4.





Case: $n^{l} = n^{\nu D} = 2$, $G_F = A_4$

Observed in 8-dimensional parameter space:

calculated U_{PMNS} AND mass order are within exp. bounds

calculated U_{PMNS} OR mass ratios are within exp. bounds calculated U_{PMNS} AND mass ratios are NOT within exp.

calculated δ_{CP} is off by $\approx 4\sigma$

bounds

Viability of G_F GF mass mass mass mass order order ratios ratios +PMNS +PMNS 1HDM (1,1) (\sim SM) X X X 2HDM (1,1) X X X 3HDM (1,1) X X X 3HDM(1,(1,1))X X T_7 X 3HDM(3,(1,1))X X 3HDM ((1,1),1) X X X X X 3HDM((1,1),3)X X 3HDM ((1,1),(1,1))

Thank you!