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OUTLINE

1. Motivation: status of particle physics 

• Colliders 

• Cosmology 
2. Elements of lepto-baryogenesis 
3. Superweak U(1)z extension of SM (SWSM) 
4. Outlook
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Rough es!ma"s of BSM effects 

can easily be decep!ve 
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Status of particle physics:  
energy frontier

2

Colliders: SM describes final states of particle 
collisions precisely                                     

stairway         32 channels, 2 or 3 energies                  
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Status of particle physics:  
energy frontier

2

Colliders: SM describes final states of particle 
collisions precisely                                     

stairway         32 channels, 2 or 3 energies                  

… and no sign of new physics at the TeV scale
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Status of particle physics:  
cosmic and intensity frontiers

3

Established observations  
require physics beyond SM, 

but  
do not suggest rich BSM physics
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What is not explained or weird 
in the standard model?

4

Does not fit: 
• Neutrino masses 
• Dark matter and energy 
• Baryon asymmetry

1. Neutrino flavours oscillate                   
2. Universe at large scale described precisely by cosmological SM: 

ΛCDM (Ωm =0.3) ; inflation of the early, accelerated expansion of the 
present Universe                                                                        

3. Existing baryon asymmetry cannot be explained by CP asymmetry in 
SM,  from combined BBN and CMBη ≃ 6.0 ⋅ 10−10
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What is not explained or weird 
in the standard model?

5

Does not fit: 
• Neutrino masses 
• Dark matter and energy 
• Baryon asymmetry

Puzzles in the scalar sector: 
• Lagrangian and its parameters 
• Yukawa couplings 
• Connection to inflation 
• Vacuum stability (λ too small) 
• Naturalness (µ is dimensional)
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• Too heavy 
• Interact too weakly

Puzzles in the scalar sector: 
• Lagrangian and its parameters 
• Yukawa couplings 
• Connection to inflation 
• Vacuum stability (λ too small) 
• Naturalness (µ is dimensional)

Not addressed in this talk,  
they seem to fade away or not    
related fundamental physics
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What is not explained or weird 
in the standard model?

5

Does not fit: 
• Neutrino masses 
• Dark matter and energy 
• Baryon asymmetry

Hidden new particles: 
• Too heavy 
• Interact too weakly

Puzzles in the scalar sector: 
• Lagrangian and its parameters 
• Yukawa couplings 
• Connection to inflation 
• Vacuum stability (λ too small) 
• Naturalness (µ is dimensional)

Baryon asymmetry  
is our focus today   

Anomalies: 
• Muon anomalous magnetic moment 
• 2-3σ excesses at LHC experiments 
• X17 and X38 anomalies 
• CDF II result for MW
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1. Universe at large scale described precisely by cosmological SM: 
ΛCDM (Ωm =0.3)  

2. Neutrino flavours oscillate                   

3. Existing baryon asymmetry cannot be explained by CP 
asymmetry in SM,  from combined BBN and CMB                        

4. Inflation of the early, accelerated expansion of the present 
Universe                                                                        [https://pdg.lbl.gov] 

Established observations require physics beyond SM, 
but do not suggest rich BSM physics

η ≃ 6.0 ⋅ 10−10

In this talk we focus on lepto-baryogenesis 

through thermal leptogenesis

Status of particle physics:  
cosmic and intensity frontiers

6

(Presentations at previous MTTD workshops 
focused on neutrinos and DM)  
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Lepto-baryogenesis has two steps

7

1. Leptogenesis in a BSM  

followed by 

2. sphaleron process in the SM:                        
violates , but conserves   

- Suppressed exponentially with decreasing 
temperature, but  
unsuppressed above                                         

B + L B − L

Tsp ≃ 132 GeV
/21



Neutrino masses and leptogenesis

8

…can naturally be explained by adding right-
handed neutrinos (RHNs) to the particle spectrum 
with Majorana mass terms 

Decays of such RHNs lead to a non-vanishing  
that can be estimated either by 
- Kadanoff-Baym eqs. of non-equilibrium QFT, or 
- semiclassical Boltzmann eqs.  
(can be obtained from KB employing  quasi-
particle approximation, valid “near” equilibrium)

ΔL
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Boltzmann approach is much simpler technically: 
easier to apply in specific models

9

…which does not mean it is simple  
— relies on several ingredients: 
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Boltzmann eq. for comoving lepton density 
asymmetry   %ΔL = %ℓ − %ℓ̄
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d%ΔL
dz

= 1
sHz [(ϵγD − γab→Nℓ

%ΔL
% eq

ℓ ) ( %N

% eq
N

− 1) − W%ΔL]
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Boltzmann eq. for comoving lepton density 
asymmetry   %ΔL = %ℓ − %ℓ̄
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-  inverse temperature

d%ΔL
dz

= 1
sHz [(ϵγD − γab→Nℓ

%ΔL
% eq

ℓ ) ( %N

% eq
N

− 1) − W%ΔL]
z = Λ/T
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-  inverse temperature 
-  entropy density when 

d%ΔL
dz

= 1
sHz [(ϵγD − γab→Nℓ

%ΔL
% eq

ℓ ) ( %N

% eq
N

− 1) − W%ΔL]
z = Λ/T
s(z) T = Λ/z
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-  inverse temperature 
-  entropy density 
-  Hubble parameter when 

d%ΔL
dz

= 1
sHz [(ϵγD − γab→Nℓ

%ΔL
% eq

ℓ ) ( %N

% eq
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z = Λ/T
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/21



Boltzmann eq. for comoving lepton density 
asymmetry   %ΔL = %ℓ − %ℓ̄
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-  inverse temperature 
-  entropy density 
-  Hubble parameter when  

-  thermal rate for leptons

d%ΔL
dz

= 1
sHz [(ϵγD−γab→Nℓ

%ΔL
% eq

ℓ ) ( %N

% eq
N

− 1) − W%ΔL]
z = Λ/T
s
H(z) T = Λ/z
γab→leptons(T) ab →
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Boltzmann eq. for comoving lepton density 
asymmetry   %ΔL = %ℓ − %ℓ̄
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-  inverse temperature 
-  entropy density 
-  Hubble parameter when  

-  thermal rate for leptons 

-  equilibrium value of the lepton abundance

d%ΔL
dz

= 1
sHz [(ϵγD − γab→Nℓ

%ΔL
% eq

ℓ ) ( %N

% eq
N

− 1) − W%ΔL]
z = Λ/T
s
H(z) T = Λ/z
γab→leptons(T) ab →
% eq

ℓ
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Boltzmann eq. for comoving lepton density 
asymmetry   %ΔL = %ℓ − %ℓ̄

10

 

-  inverse temperature 

-  entropy density 

-  Hubble parameter when  

-  thermal rate for leptons 

-  equilibrium value of the lepton abundance 

-  collection of terms emerging from the scattering 
processes, leads to equilibration (washout of asymmetry)

d%ΔL
dz

= 1
sHz [(ϵγD − γab→Nℓ

%ΔL
% eq

ℓ ) ( %N

% eq
N

− 1)−W%ΔL]
z = Λ/T
s
H(z) T = Λ/z
γab→leptons(T ) ab →
% eq

ℓ
W
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CP asymmetry factor

11

 

asymmetry is generated by CP-violating decays 
of the sterile neutrinos, which is proportional to  

the CP asymmetry factor   

(other terms decrease , i.e. lead to washout)  

d%ΔL
dz

= 1
sHz [(ϵγD − γab→Nℓ

%ΔL
% eq

ℓ ) ( %N

% eq
N

− 1) − W%ΔL]

ϵ

%ΔL
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CP asymmetry factor

12

• Often used as constant coming from  QFT 
• Two cuts (2 and 3 in the vertex correction) 

  

are neglected in standard literature, but may be 
relevant for low-scale leptogenesis when 

T = 0

ℒ ⊃ L̄Yϕ̃N − N̄Y†ϕ̃†L

mN ≈ T

PN PN

K

K-PN

1 2

3

P1

P2

P3

K

K
-P

2

K-P
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a) b)

i

b

a

i
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Computation of CP asymmetry factor

13

Detailed computation with explicit integral 
representations, ready for numerical evaluation 
are presented in  
K. Seller, Z. Szép, Z.T.,  CP violation at finite temperature, 
JHEP 09 (2025) 034 [arXiv:2409.07180 [hep-ph]] 
and  
CP asymmetry factor at finite temperature, to appear in 
EPJC 09 (2025) [arXiv:2509.nnnn [hep-ph]] 
but too technical to repeat here 

/21
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Step 1: find thermal masses

14
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model dependent input  choose a model⇒
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SuperWeak extension of the Standard Model  
SWSM

15

• Introduced at MTTD 2019 (Katowice) 
• designed to  

Explain the origin of neutrino masses and oscillations through Dirac 
and Majorana neutrino mass terms generated by the SSB of two 
scalar fields, 
[Iwamoto, Kärkäinnen, Péli, ZT, arXiv:2104.14571; Kärkkäinen and ZT, arXiv:2105.13360]  

Provide a candidate for WIMP dark matter  
[Seller, Iwamoto and ZT, arXiv:2104.11248] 

Provide a viable source of lepto-baryogenesis  
[Seller, Szép, ZT, arXiv:2301.07961, 2409.07180] 

Parameter space is already partly explored 
[Péli and ZT, arXiv:2204.07100,  2305.11931, 2402.14786, 2501.04388]
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Superweak extension of SM 
(SWSM)

16

 Symmetry of the Lagrangian: local G=GSM×U(1)z 

with GSM=SU(3)c×SU(2)L×U(1)Y 

renormalizable gauge theory, including all dim 4 
operators allowed by G (except ) 

U(1)z gauge field must be massive, which requires a 
second scalar with a non-zero VEV, allowing for 
Majorana masses for right-handed neutrinos if exist 
z-charges fixed by requirement of 

gauge and gravity anomaly cancellation and 
gauge invariant Yukawa terms for neutrino mass generation

FμνF̃μν
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Particle content of SWSM 
(a take-home picture) 

17
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Leptogenesis step 1: find thermal masses

18

Thermal masses for the lighter ones of the heavy RHNs (  ), the leptons 
( ) and the Brout-Englert-Higgs field ( ) in the SWSM at two specific 
values of the VEV ratio. Vacuum masses are  = 1.1  = 440 GeV  for 
the neutrinos, and  = 650 GeV for the singlet scalar with the singlet VEV 
being  (left) or  (right)
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Leptogenesis step 2: compute CP ϵ

19

Given by the thermal average of the amplitude level 
asymmetry factor  (also model dependent): 

       

ϵℳ

ϵℳ = =
M[1]

i,−
2

M(0)
i,+

2 , M[n]
i,±

2
= ∑

a,b,α
[⟨ ℳab [n]

αi

2
⟩ ± ⟨ ℳab [n]

αi

2
⟩]

ϵa→b+c =
∫

∞

za

dya ft(a)(−ya) y2
a − z2

a ∫
1

−1
dx ϵℳ(ya, x)ft(b)(yb)ft(c)(yc)

∫
∞

za

dya ft(a)(−ya) y2
a − z2

a ∫
1

−1
dx ft(b)(yb)ft(c)(yc)

n = # of loops 
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Leptogenesis step 2: compute CP ϵ

19

Given by the thermal average of the amplitude level 
asymmetry factor  (also model dependent): 

- ,  

-  statistical factor, 
-

ϵℳ

za = ma/T
fB/F(y) = [exp(y) ∓ 1]−1
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∫

∞
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Leptogenesis step 2: compute CP ϵ

19

Given by the thermal average of the amplitude level 
asymmetry factor  (also model dependent): 

- ,  

-  statistical factor, 

- B(ose) or F(ermi) giving the statistics type of 

ϵℳ

za = ma/T
fB/F(y) = [exp(y) ∓ 1]−1

t(p) = p

ϵa→b+c =
∫

∞
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a ∫
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∫
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Leptogenesis step 2: compute CP ϵ

20

  correspond to the kinematic thresholds:
, , 

Ti (i = 1,2,3)
mNi

(T1) = mϕ(T1) + mL(T1) mϕ(T2) = mNi
(T2) + mL(T2) mϕ(T3) = mNj
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100 200 500 1000 2000
0.02

0.05

0.1

0.25

0.5

1

2

Full

Self energy + Vertex cut 1
Vertex cuts 2 + 3

0.05 0.10 0.50 1
-1

-0.8

-0.6

-0.4

-0.2

0.

-10

-8

-6

-4

-2

0.

Left: thermal masses when vacuum masses  = 1.1  = 275 GeV,  = 
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Coming soon: leptogenesis in the SWSM 
(step 3: solving the Boltzmann eqs.)

21
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Outlook:  
Constrain the parameter space of SWSM by checking 

validity of the expected consequences

22

Does not fit: 
• Neutrino masses 
• Dark matter and energy 
• Baryon asymmetry

Anomalies: 
• Muon anomalous magnetic moment 
• 2-3σ excesses at LHC experiments 
• X17 and X38 anomalies 
• CDF II result for MW

Hidden new particles: 
• Too heavy 
• Interact too weakly

Puzzles in the scalar sector: 
• Lagrangian and its parameters 
• Yukawa couplings 
• Connection to inflation 
• Vacuum stability (λ too small) 
• Naturalness (µ is dimensional)
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the end



Appendix



Charge assignment from gauge invariant 
neutrino interactions

38(a) anomaly free charges (b) from neutrino-scalar interactions (c) from re-parametrization of couplings

(a) (b) (c)

Table 1: Assignments for the representations (for SU(N)) and charges (for U(1)) of fermion
and scalar fields of the complete model. The charges yj denote the eigenvalue of Y/2, with
Y being the hypercharge operator and zj denote the supercharges of the fields  j of Eq. (2.1)
(j = 1, 2, 3). The right-handed Dirac neutrinos ⌫R are sterile under the GSM group. The
sixth column gives a particular realization of the U(1)Z charges, motivated below, and the
last one is added for later convenience.

.

field SU(3)c SU(2)L yj zj zj rj = zj/z� � yj
UL, DL 3 2 1

6 Z1
1
6 0

UR 3 1 2
3 Z2

7
6

1
2

DR 3 1 �
1
3 2Z1 � Z2 �

5
6 �

1
2

⌫L, `L 1 2 �
1
2 �3Z1 �

1
2 0

⌫R 1 1 0 Z2 � 4Z1
1
2

1
2

`R 1 1 �1 �2Z1 � Z2 �
3
2 �

1
2

� 1 2 1
2 z� 1 1

2

� 1 1 0 z� �1 �1

fields introduced in the covariant derivative transform as

T · W µ(x)
G

�! T · W 0µ(x) = U(x)T · W µ(x) U †(x) +
i

gL
[@µ U(x)] U †(x)

Bµ G
�! B0µ(x) = Bµ(x) �

1

gY
@µ�(x)

Zµ G
�! Z 0µ(x) = Zµ(x) �

1

gZ
@µ⇣(x)

(2.5)

where U(x) = exp [iT · ↵ (x)]. The gauge invariant kinetic term for these vector fields is

LB,Z,W = �
1

4
Bµ⌫B

µ⌫
�

1

4
Zµ⌫Z

µ⌫
�

1

4
W µ⌫ · W µ⌫ , (2.6)

with Bµ⌫ = @µB⌫ � @⌫Bµ ⌘ @[µB⌫], Zµ⌫ = @[µZ⌫] and W µ⌫ = @[µW ⌫] � gW µ ⇥ W ⌫ .

The field strength T · W µ⌫ transforms covariantly under G transformations, T · W µ⌫

G
�!

U(x)T · W µ⌫ U †(x), but Bµ⌫ and Zµ⌫ are invariant, hence a kinetic mixing term of the
U(1) fields is also allowed by gauge invariance:

�
✏

2
Bµ⌫Z

µ⌫ . (2.7)

We can get rid of this mixing term by redefining the U(1) fields using the transformation
✓

B0
µ

Z 0
µ

◆
=

✓
1 sin ✓Z
0 cos ✓Z

◆✓
Bµ

Zµ

◆
, sin ✓Z = ✏ . (2.8)
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New fields: 3 right-handed neutrinos , a new scalar , and new U(1)z 
gauge boson  
fermion fields (Weyl spinors): 

with extended U(1) part of the covariant derivative: 

the new U(1) kinetic term includes kinetic mixing: 

ν f
R χ

B′ 

Particle model 

39

propose an extension of the particles zoo of the standard model with three right-handed
Dirac neutrinos‡ and the gauge symmetry of the standard model Lagrangian GSM =
SU(3)c ⇥ SU(2)L ⇥ U(1)Y to GSM ⇥ U(1)Z . Such extensions have already been consid-
ered in the literature extensively§. In particular, it was shown that the charge assignment
of the matter fields is constrained by the requirement of anomaly cancellations up to two
free charges []. To define the model completely, one has to take a specific choice for these
remaining free charges. In this article we propose a new mechanism for the generation of
neutrino masses that fixes the values of the U(1)Z charges up to an overall scale that can
be embedded in the U(1)Z coupling.

2 Definition of the model

2.1 Fermion sector

We consider the usual three fermion families of the standard model extended with one
right-handed Dirac neutrino in each family.¶ We introduce the notation

 
f

q,1 =

✓
U

f

D
f

◆

L

 
f

q,2 = U
f

R ,  
f

q,3 = D
f

R

 
f

l,1 =

✓
⌫
f

`
f

◆

L

 
f

l,2 = ⌫
f

R ,  
f

l,3 = `
f

R

(2.1)

for the quark fields  q and for the lepton fields  l. In Eq. (2.1) L and R denote the left and
right-handed projections,
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1
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except for the neutrinos, which di↵er from the charged fermions in the sense that the left and
right-handed fields are not projections of the same field, but denote di↵erent transformation
properties. Then the field content in family f (f = 1, 2 or 3) consists of two quarks, Uf ,
Df , a neutrino ⌫f and a charged lepton `f where Uf is the generic notation for the u-type
quarks U1 = u, U2 = c, U3 = t, while Df is that for d-type quarks, D1 = d, D2 = s
and D3 = b. The charged leptons `f can be `1 = e, `2 = µ or `3 = ⌧ and ⌫f are the
corresponding neutrinos, ⌫1 = ⌫e, ⌫2 = ⌫µ, ⌫3 = ⌫⌧ .

‡
The negative results of the experiments searching for neutrinoless double �-decay make the Majorana

nature of neutrinos increasingly unlikely.
§
For an incomplete set of popular examples and their studies see [?,?,?]
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We find natural to assume one extra neutrino in each family although known observations do not

exclude other possibilities.
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II. PARTICLE MODEL, MIXINGS AND INTERACTIONS

We consider an extension of the standard model by a U(1)z gauge group with particle content

and charge assignment defined in Ref. [28]. The super-weak model is an economical extension of

the standard model that provides a framework to explain the origin of (i) neutrino masses and

oscillations [29], (ii) dark matter [30], (iii) cosmic inflation and stabilization of the electroweak

vacuum [31], (iv) matter-antimatter asymmetry of the universe. The complete model including

Feynman rules in the unitary gauge was presented fully in Ref. [28]. As we are to compute

one-loop corrections to neutrino masses, we recall the details relevant to such computations,

with Feynman rules in the R⇠ gauge. We generated those Feynman rules with SARAH[32–35]

but here we present simpler forms for the rules needed in our computations to make those more

comprehensive. We also recall some of the conventions that are different in SARAH and the

original definition of the model. We stick to the SARAH conventions throughout this work.[36]
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ĝzy ĝzz

1

A =

0

@gy �⌘g0z

0 g0z

1

A

0

@ cos ✏0 sin ✏0

� sin ✏0 cos ✏0

1

A . (II.3)

4

II. PARTICLE MODEL, MIXINGS AND INTERACTIONS

We consider an extension of the standard model by a U(1)z gauge group with particle content

and charge assignment defined in Ref. [28]. The super-weak model is an economical extension of

the standard model that provides a framework to explain the origin of (i) neutrino masses and

oscillations [29], (ii) dark matter [30], (iii) cosmic inflation and stabilization of the electroweak

vacuum [31], (iv) matter-antimatter asymmetry of the universe. The complete model including

Feynman rules in the unitary gauge was presented fully in Ref. [28]. As we are to compute

one-loop corrections to neutrino masses, we recall the details relevant to such computations,

with Feynman rules in the R⇠ gauge. We generated those Feynman rules with SARAH[32–35]

but here we present simpler forms for the rules needed in our computations to make those more

comprehensive. We also recall some of the conventions that are different in SARAH and the

original definition of the model. We stick to the SARAH conventions throughout this work.[36]

A. Mixing of neutral gauge bosons

The particle content of the standard model is extended by 3 right-handed neutrinos ⌫R, a

new scalar �, and the U(1)z gauge boson B0. As the field strength tensors of the U(1) gauge

groups are gauge invariant, kinetic mixing is allowed between the gauge fields belonging to the

hypercharge U(1)y and the new U(1)z gauge symmetries, whose strength is measured by ✏ in

L � �1

4
F µ⌫Fµ⌫ �

1

4
F 0µ⌫F 0

µ⌫ �
✏

2
F µ⌫F 0

µ⌫ ,

DU(1)
µ = �i(ygyBµ + zgzB

0
µ)

(II.1)

where Bµ is the U(1)y gauge field. However, equivalently, we can choose the basis—the con-

vention in SARAH—in which the gauge-field strengths do not mix, while the couplings are given

by a 2⇥ 2 coupling matrix in the covariant derivative

DU(1)
µ = �i

⇣
y z

⌘
0

@ĝyy ĝyz
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The coupling mixing matrix containing ⌘ is equivalent to the kinetic mixing in the Lagrangian

(II.1) and the parameters of the two representations are related by g0z = gz/
p
1� ✏2 and ⌘ =

✏gy/gz. In this paper, it will be convenient to use the kinetic mixing representation defined by

(II.1).

The rotation with angle ✏0 is unphysical as it can be absorbed into the mixing of the neutral

gauge fields Bµ, B0µ and W 3µ to the mass eigenstates Aµ, Zµ and Z 0µ, which then can be

described by a rotation matrix
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This matrix depends on two mixing angles: ✓W is the weak mixing (or Weinberg) angle and ✓Z

is the Z � Z 0 mixing angle [37]. In terms of the coupling parameters

 = cos ✓W(�0
y � 2�0

z) and ⌧ = 2 cos ✓W�0
z tan � , (II.5)

introduced in Ref. [28], this new mixing angle is given implicitly by tan(2✓Z) = 2/(1�2�⌧ 2).

In Eq. (II.5) tan � = w/v is the ratio of the vacuum expectation values (VEVs) of the scalar

fields (see below) and �0
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p
1� ✏2)(gy/gL), �0

z = g0z/gL, i.e. the couplings are normalized

by the SU(2)L coupling.
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Z0⌫⌫ can be obtained from CL/R

Z⌫⌫ by the replacement
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C. Masses of neutral gauge bosons

As expected, the elements of the diagonal matrix m2
diag,A coincide with the squares of the

masses of the neutral gauge bosons [28],
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and

M2
Z0 =

✓
MW

cos ✓W

◆2 h
(sin ✓Z +  cos ✓Z)

2
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2
i
, (II.24)

which can also be expressed conveniently with the chiral couplings and Goldstone mixing angle.

First we note that using Eq. (II.23), we find the simple relation
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sin ✓Z
cos ✓W

MW

MZ
(II.25)

between the Goldstone and neutral boson mixing angles, and also
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MW
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. (II.26)

Next, we can substitute the relations found in Eq. (II.20) into Eqs. (II.23) and (II.24) together

with the definition of the right handed couplings defined in Eq. (II.7), resulting in

M2
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From Eq. (II.25) and (II.26) we can express

wg0z sin ✓Z = MZ sin ✓G and wg0z cos ✓Z = MZ0 cos ✓G , (II.29)

which after substitution and simple rearrangement leads to
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D. Mass terms and mixing of neutrinos

The masses of the neutrinos are generated by the leptonic Yukawa terms in the Lagrangian

[28],

� L`
Y =

1

2
⌫c
R YN ⌫R�+ LL �c Y⌫ ⌫R + h.c. (II.31)
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Gauge coupling, :  
in order to avoid SM precision constraints  

Vacuum expectation value of  singlet, :   
in the gauge sector rather use the mass of  & assume that  

 mixing angle, : 

 

 gauge mixing parameter, : 
its value can be determined from RGE:  

Masses of sterile neutrinos: 
assume  to be light (keV-MeV scale), while 

gz

O(gz /gZ0) ≪ 1
χ w

Z′ MZ′ ≪ MZ

Z − Z′ θZ

tan(2θZ) =
4ζϕgz

gZ0
+ 5 ( g3

z

g3
Z0 ) ≪ 1

U(1)y ⊗ U(1)z η
0 ≤ η ≲ 0.66

N1 M2,3 = O(MZ0)



Neutral current couplings

45

for neutrinos 

obeying 
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can be rewritten as 

 

for neutrinos:  

for electrons: 
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Z′ ff = − igzγμ [qf cos2 θW(2 − η) + (zf − 2yf ) + 5(g2

z /g2
Z0)]

Γμ
Z′ νiνi

≃ Γμ
Z′ N1N1

≃ − i
gz

2 γμ
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Z′ ee ≃ − igzγμ [(η − 2)cos2 θW + 1

2 ]
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is the Z � Z 0 mixing angle [37]. In terms of the coupling parameters

 = cos ✓W(�0
y � 2�0

z) and ⌧ = 2 cos ✓W�0
z tan � , (II.5)

introduced in Ref. [28], this new mixing angle is given implicitly by tan(2✓Z) = 2/(1�2�⌧ 2).

In Eq. (II.5) tan � = w/v is the ratio of the vacuum expectation values (VEVs) of the scalar

fields (see below) and �0
y = (✏/

p
1� ✏2)(gy/gL), �0

z = g0z/gL, i.e. the couplings are normalized

by the SU(2)L coupling.

We can express the elements of the Z � Z 0 mixing matrix explicitly,

sin ✓Z = sgn ()

"
1

2

 
1� 1� 2 � ⌧ 2p

(1 + 2 + ⌧ 2)2 � 4⌧ 2

!#1/2
,

cos ✓Z =

"
1

2

 
1 +

1� 2 � ⌧ 2p
(1 + 2 + ⌧ 2)2 � 4⌧ 2

!#1/2
,

(II.6)

which also appear in the neutral currents �
µ
V f̄f

= �ie�µ
(CR

V f̄f
PR + CL

V f̄f
PL) where e is the

electromagnetic coupling and PR/L ⌘ P± =
1
2(1 ± �5

) are the usual chiral projections. In

particular, for neutrinos

eCL
Z⌫⌫ =

gL
2 cos ✓W

h
cos ✓Z � (�0

y � �0
z) sin ✓Z cos ✓W

i
, eCR

Z⌫⌫ = �gL
2
�0
z sin ✓Z ,

eCL
Z0⌫⌫ =

gL
2 cos ✓W

h
sin ✓Z + (�0

y � �0
z) cos ✓Z cos ✓W

i
, eCR

Z0⌫⌫ =
gL
2
�0
z cos ✓Z ,

(II.7)

i.e. CL/R
Z0⌫⌫ can be obtained from CL/R

Z⌫⌫ by the replacement

(Z ! Z 0
) ) (cos ✓Z , sin ✓Z) ! (sin ✓Z ,� cos ✓Z) . (II.8)
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Production of DM in freeze-out scenario
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We consider  decoupling happens at 
 

At this temperature electrons and SM neutrinos are abundant, 
negligible amounts of heavier fermions  
Relevant cross section for the production process 

M1 = O(10) MeV ⇒
Tdec = O(1) MeV

N1N1 → fSM fSM : σt ∝ g4
z 1 − 4M2

1
s

s
(s − M2

Z′ 
)2 + M2

Z′ 
Γ2

Z′ 

fSM N1

N1

Z'

fSM



Resonant production of DM
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Need to increase  without increasing  (excluded 
experimentally): exploit resonant production ( ) 
the integral: 

the Bessel function  vanishes exponentially at large 
arguments 

,  hence  can be small at the 
resonance  depending on the ratio 

⟨σvMol⟩ gz
2M1 ≲ MZ′ 

K1

Tdec ≈ 0.1M1 K1(10MZ′ 
/M1)

s = M2
Z′ 

MZ′ 
/M1

⟨σvMol⟩ = ( . . . )∫
∞

4M2
1

ds
( . . . )

(s − M2
Z′ )2 + M2

Z′ Γ2
Z′ 

strongly peaked around s=M2
Z′ 

× K1 ( s
T )



Resonant amplification: example
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calculated within the SWSM for  & M1 = 10 MeV MZ′ 
= 30 MeV

Reson
anc

e do
minat

ed

Resonance
negligible



Masses of the neutral gauge bosons again
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can also be expressed with chiral couplings: 

which are crucial for checking gauge independence

C. Masses of neutral gauge bosons

As expected, the elements of the diagonal matrix m2
diag,A coincide with the squares of the

masses of the neutral gauge bosons [28],

M2
Z =

✓
MW

cos ✓W

◆2 h
(cos ✓Z �  sin ✓Z)

2
+ (⌧ sin ✓Z)

2
i

(II.23)

and

M2
Z0 =

✓
MW

cos ✓W

◆2 h
(sin ✓Z +  cos ✓Z)

2
+ (⌧ cos ✓Z)

2
i
, (II.24)

which can also be expressed conveniently with the chiral couplings and Goldstone mixing angle.

First we note that using Eq. (II.23), we find the simple relation

sin ✓G = ⌧
sin ✓Z
cos ✓W

MW

MZ
(II.25)

between the Goldstone and neutral boson mixing angles, and also

cos ✓G = ⌧
cos ✓Z
cos ✓W

MW

MZ0
. (II.26)

Next, we can substitute the relations found in Eq. (II.20) into Eqs. (II.23) and (II.24) together

with the definition of the right handed couplings defined in Eq. (II.7), resulting in

M2
Z = v2e2

⇣
CL

Z⌫⌫ � CR
Z⌫⌫

⌘2

+ w2g0 2z sin
2 ✓Z (II.27)

and also using Eq. (II.8),

M2
Z0 = v2e2

⇣
CL

Z0⌫⌫ � CR
Z0⌫⌫

⌘2

+ w2g0 2z cos
2 ✓Z . (II.28)

From Eq. (II.25) and (II.26) we can express

wg0z sin ✓Z = MZ sin ✓G and wg0z cos ✓Z = MZ0 cos ✓G , (II.29)

which after substitution and simple rearrangement leads to

M2
Z =

v2e2

cos2 ✓G

⇣
CL

Z⌫⌫ � CR
Z⌫⌫

⌘2

, M2
Z0 =

v2e2

sin
2 ✓G

⇣
CL

Z0⌫⌫ � CR
Z0⌫⌫

⌘2

. (II.30)

D. Mass terms and mixing of neutrinos

The masses of the neutrinos are generated by the leptonic Yukawa terms in the Lagrangian

[28],

� L`
Y =

1

2
⌫c
R YN ⌫R�+ LL �c Y⌫ ⌫R + h.c. (II.31)
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D. Mass terms and mixing of neutrinos
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recall: 
which reads on the basis of propagating mass 
eigenstates as 

where 

and also: 

Neutral current couplings on mass basis

51

The coupling mixing matrix containing ⌘ is equivalent to the kinetic mixing in the Lagrangian

(II.1) and the parameters of the two representations are related by g0z = gz/
p
1� ✏2 and ⌘ =

✏gy/gz. In this paper, it will be convenient to use the kinetic mixing representation defined by

(II.1).

The rotation with angle ✏0 is unphysical as it can be absorbed into the mixing of the neutral

gauge fields Bµ, B0µ and W 3µ to the mass eigenstates Aµ, Zµ and Z 0µ, which then can be

described by a rotation matrix
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. (II.4)

This matrix depends on two mixing angles: ✓W is the weak mixing (or Weinberg) angle and ✓Z

is the Z � Z 0 mixing angle [37]. In terms of the coupling parameters
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by the SU(2)L coupling.

We can express the elements of the Z � Z 0 mixing matrix explicitly,

sin ✓Z = sgn ()

"
1

2

 
1� 1� 2 � ⌧ 2p

(1 + 2 + ⌧ 2)2 � 4⌧ 2

!#1/2
,

cos ✓Z =

"
1

2

 
1 +

1� 2 � ⌧ 2p
(1 + 2 + ⌧ 2)2 � 4⌧ 2

!#1/2
,

(II.6)

which also appear in the neutral currents �
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V f̄f

= �ie�µ
(CR

V f̄f
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V f̄f
PL) where e is the

electromagnetic coupling and PR/L ⌘ P± =
1
2(1 ± �5

) are the usual chiral projections. In

particular, for neutrinos
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(II.7)

i.e. CL/R
Z0⌫⌫ can be obtained from CL/R

Z⌫⌫ by the replacement

(Z ! Z 0
) ) (cos ✓Z , sin ✓Z) ! (sin ✓Z ,� cos ✓Z) . (II.8)
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where LL is the Dirac adjoint of the left handed lepton dublet, YN and Y⌫ are 3⇥ 3 matrices,

the superscript c denotes charge conjugation, ⌫c
= �i�2⌫⇤. After SSB this Lagrangian becomes

� L`
Y =

w + s0 + i��

2
p
2

⌫c
R YN ⌫R +

v + h0 � i��p
2

⌫L Y⌫ ⌫R + h.c. (II.32)

and the terms proportional to the VEVs provide the mass matrices

MN =
wp
2
YN , MD =

vp
2
Y⌫ (II.33)

where the Majorana mass matrix MN is real and symmetric, while the Dirac mass matrix MD

is complex and Hermitian.

In flavour basis the 6⇥ 6 mass matrix for the neutrinos that can be written in terms of 3⇥ 3

blocks as

M0
=

0

@ 03 MT
D

MD MN

1

A . (II.34)

The weak (flavour) eigenstates (⌫e, ⌫µ, ⌫⌧ , ⌫R,1, ⌫R,2, ⌫R,3) can be transformed into the basis of

⌫i (i = 1 � 6) mass eigenstates with a 6 ⇥ 6 unitary matrix [38] U where the mass matrix is

diagonal,

UTM0U = M = diag(m1,m2,m3,m4,m5,m6) . (II.35)

It is helpful to decompose the matrix U into two 3⇥ 6 blocks UL and U⇤
R,

U =

✓
UL

U⇤
R

◆
, (II.36)

so UT
= (UT

L,U
†
R) where both blocks are 6⇥ 3 matrices. It may be worth to emphasize that in

spite of what might be implied by the notation, the matrices UL and U⇤
R are only semi-unitary.

Useful relations of these matrices are collected in Appendix A.

E. Gauge boson – neutrino interactions

As the neutral currents are written in terms of flavour eigenstates, the interactions between

the neutral gauge bosons and the propagating mass eigenstate neutrinos include also the neu-

trino mixing matrices:

�µ
V ⌫i⌫j

= �ie�µ
⇣
�L

V ⌫⌫PL + �R
V ⌫⌫PR

⌘

ij
(II.37)

where

�L
V ⌫⌫ = CL

V ⌫⌫U
†
LUL � CR

V ⌫⌫U
T
RU⇤

R (II.38)
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R) where both blocks are 6⇥ 3 matrices. It may be worth to emphasize that in

spite of what might be implied by the notation, the matrices UL and U⇤
R are only semi-unitary.

Useful relations of these matrices are collected in Appendix A.

E. Gauge boson – neutrino interactions

As the neutral currents are written in terms of flavour eigenstates, the interactions between

the neutral gauge bosons and the propagating mass eigenstate neutrinos include also the neu-

trino mixing matrices:

�µ
V ⌫i⌫j

= �ie�µ
⇣
�L

V ⌫⌫PL + �R
V ⌫⌫PR

⌘

ij
(II.37)

where

�L
V ⌫⌫ = CL

V ⌫⌫U
†
LUL � CR

V ⌫⌫U
T
RU⇤

R (II.38)
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and

�R
V ⌫⌫ = �CL

V ⌫⌫U
T
LU⇤

L + CR
V ⌫⌫U

†
RUR = �

⇣
�L

V ⌫⌫

⌘⇤
(II.39)

for both V = Z and V = Z 0.

F. Scalar boson – neutrino and Goldstone boson – neutrino interactions

The terms containing the scalar and Goldstone bosons in Eq. (II.32) provide interactions

between those and the neutrinos. These interactions have the same structure with small dif-

ferences. For the propagating scalar states Sk or �k (k = 1 denoting h or the Goldstone

boson belonging to Z and k = 2 referring to s or the Goldstone boson belonging to Z 0) such

interactions can be decomposed into left and right chiral terms

�Sk/�k ⌫i⌫j =

⇣
�L

Sk/�k ⌫⌫PL + �R
Sk/�k ⌫⌫PR

⌘

ij
(II.40)

where the matrices �L/R contain both the mixing matrix of the neutrinos and the mixing matrix

of the scalar or Goldstone bosons. The left chiral coefficients are

�L
Sk⌫⌫

= �i

⇣
MU†

LUL + UT
LU⇤

LM
⌘
(ZS)k1

v
+ U†

RMNU⇤
R

(ZS)k2

w

�
, (II.41)

and

�L
�k⌫⌫

= �
⇣

MU†
LUL + UT

LU⇤
LM

⌘
(ZG)k1

v
+ U†

RMNU⇤
R

(ZG)k2

w

�
(II.42)

and the right chiral ones are related by complex conjugation, �R
Sk/�k ⌫⌫ = �

⇣
�L

Sk/�k ⌫⌫

⌘⇤
.

III. NEUTRINO MASS MATRIX AT ONE-LOOP ORDER

We are interested in the one-loop correction �ML to the tree-level mass matrix of the light

neutrinos. In perturbation theory we deal with propagating states which are mass eigenstates.

Hence, we can compute loop corrections to self energies of mass eigenstates of neutrinos. The

neutrino mass matrix at one-loop order is then obtained from Eq. (II.35), with diagonal mass

matrix substituted at one loop, M + �M where

�M = diag(�m1, �m2, �m3, �m4, �m5, �m6) . (III.1)
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calculation is simple conceptually 
self energy can be decomposed as 

and 
takes contributions from 

with Feynman rules given in the Appendix

Hence, the correction is obtained by

�M0
=

0

@�ML �MT
D

�MD �MN

1

A = U⇤�MU† . (III.2)

Using Eq. (II.36), we can compute the 3⇥ 3 blocks as

�ML = U⇤
L�MU†

L, �MD = UR�MU†
L, �MN = UR�MUT

R . (III.3)

In the following subsections we prove that the one-loop correction to the mass matrix of the

active neutrinos have the form

�ML =
1

16⇡2

X

k=1,2


3(ZG)

2
k1

M2
Vk

v2
F(M2

Vk
) + (ZS)

2
k1

M2
Sk

v2
F(M2

Sk
)

�
(III.4)

where we introduced the finite matrix valued function

Fij(M
2
) =

6X

a=1

(U⇤
L)ia(U

†
L)aj

m3
a

M2

ln
m2

a
M2

m2
a

M2 � 1
(III.5)

of dimension mass and with summation running over all neutrinos.

A. Self-energy decomposition

The neutrino self energy is a 6⇥ 6 matrix that can be decomposed as

i⌃(p) = AL(p
2
)/pPL + AR(p

2
)/pPR + BL(p

2
)PL + BR(p

2
)PR . (III.6)

Using this decomposition, �ML is given by [24]

�ML = U⇤
LBL(0)U†

L . (III.7)

The matrix BL(0) receives contributions involving a neutrino and either a neutral vector

boson Z, Z’, or a scalar boson �Z , �Z0 (Goldstone boson), h, s (Higgs-like scalar) in the loop.

The relevant Feynman graphs that give contributions to the neutrino self energies at one-loop

order are shown in Fig. 1. There are also tadpole contributions to BL(0). Those are proportional

to the scalar-neutrino coupling �L
Sk⌫i⌫j

given in Eq. (II.40), which vanishes when sandwiched

between U⇤
L and U†

L, see Eq. (A.5). The charged vector boson together with a charged lepton

in the loop (bottom right diagram in Fig. 1) contributes only to AL/R. Thus we compute the

first three graphs explicitly. For a given boson x in the loop, the matrix BL(0) depends on the

mass Mx and also the tree-level masses of the neutrinos {ma}, BL(0) = Bx
L(Mx, {ma}).
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FIG. 1. One-loop graphs contributing to the neutrino self energy. Top left: Goldstone boson contri-

bution. Top right: scalar contribution. Bottom left: neutral gauge boson contribution. Bottom right:

charged gauge boson contribution. Note that W boson loop does not contribute to the matrix BL.

B. Contributions with neutral gauge bosons in the loop

The contribution of the neutral gauge boson V is

⇣
BV

L (MV , {ma}; ⇠V )
⌘

ij
PL = i

Z
d
d`

(2⇡)d

6X

a=1

�
µ
V ⌫i⌫a

/p� /̀+ma

(p� `)2 �m2
a

�
⌫
V ⌫a⌫jPµ⌫(`,M

2
V ; ⇠V ) (III.8)

where ⇠V is the gauge parameter and

Pµ⌫(`,M
2
V ; ⇠V ) =

gµ⌫
`2 �M2

V

� (1� ⇠V )
`µ`⌫

(`2 �M2
V )(`

2 � ⇠VM2
V )

. (III.9)

Introducing the 6⇥ 6 matrix

m(n)
` = diag

✓
mn

1

`2 �m2
1

, . . . ,
mn

6

`2 �m2
6

◆
, (III.10)

and using the result of Appendix B, we obtain the following expression for a neutral vector

boson in the loop:

�MV
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V ⌫⌫ � CR
V ⌫⌫

⌘2
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d
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
d m(1)

`
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✓
1

`2 � ⇠VM2
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U†
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(III.11)
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C. Contributions with neutral Goldstone bosons in the loop

The contribution of the neutral Goldstone boson �V (V = 1 means the Goldstone boson

belonging to the Z field and V = 2 refers to the Z 0 field) is

⇣
B�V

L (m�V , {ma}; ⇠V )
⌘

ij
PL = �i

Z
d
d`

(2⇡)d

6X

a=1

��V ⌫i⌫a

ma

`2 �m2
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��V ⌫a⌫j

1

`2 � ⇠VM2
V

. (III.12)

Using the matrix notation, we can write

U⇤
LB

�V
L (0)U†

LPL = �i

Z
d
d`

(2⇡)d
U⇤

L��V ⌫⌫m
(1)
` ��V ⌫⌫U†

L

1

`2 � ⇠VM2
V

. (III.13)

Substituting the vertex functions of Eq. (II.40) and employing the matrix relations in Eqs. (A.2)

and (A.5), we obtain the correction to the mass matrix as

�M�V
L = �i

Z
d
d`

(2⇡)d
U⇤

LMm(1)
` MU†

L

✓
(ZG)V 1

v

◆2
1

`2 � ⇠VM2
V

. (III.14)

We now substitute Mm(1)
` M = m(3)

` and using Eq. (II.30), we obtain

�M�V
L = �ie2
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V ⌫⌫ � CR
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(2⇡)d
U⇤

L

m(3)
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D. Contributions with scalar bosons in the loop

The scalar – neutrino vertex is very similar to the Goldstone boson neutrino vertex, so the

contribution with a scalar boson Sk in the loop can be written immediately in analogy with

Eq. (III.14):

�MSk
L = i

Z
d
d`

(2⇡)d
U⇤

LMm(1)
` MU†
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`2 �M2
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.

(III.16)

E. The complete one-loop mass correction

Combining Eqs. (III.11), (III.15) and (III.16), we find that that the gauge-dependent pieces

of the vector boson contribution cancel exactly with the Goldstone boson contribution, and
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FIG. 1. One-loop graphs contributing to the neutrino self energy. Top left: Goldstone boson contri-

bution. Top right: scalar contribution. Bottom left: neutral gauge boson contribution. Bottom right:

charged gauge boson contribution. Note that W boson loop does not contribute to the matrix BL.

B. Contributions with neutral gauge bosons in the loop

The contribution of the neutral gauge boson V is
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and using the result of Appendix B, we obtain the following expression for a neutral vector

boson in the loop:
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D. Contributions with scalar bosons in the loop

The scalar – neutrino vertex is very similar to the Goldstone boson neutrino vertex, so the

contribution with a scalar boson Sk in the loop can be written immediately in analogy with

Eq. (III.14):
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(III.16)

E. The complete one-loop mass correction

Combining Eqs. (III.11), (III.15) and (III.16), we find that that the gauge-dependent pieces

of the vector boson contribution cancel exactly with the Goldstone boson contribution, and
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FIG. 1. One-loop graphs contributing to the neutrino self energy. Top left: Goldstone boson contri-

bution. Top right: scalar contribution. Bottom left: neutral gauge boson contribution. Bottom right:

charged gauge boson contribution. Note that W boson loop does not contribute to the matrix BL.

B. Contributions with neutral gauge bosons in the loop

The contribution of the neutral gauge boson V is
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where ⇠V is the gauge parameter and
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Introducing the 6⇥ 6 matrix
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and using the result of Appendix B, we obtain the following expression for a neutral vector

boson in the loop:
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C. Contributions with neutral Goldstone bosons in the loop

The contribution of the neutral Goldstone boson �V (V = 1 means the Goldstone boson

belonging to the Z field and V = 2 refers to the Z 0 field) is
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Using the matrix notation, we can write
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Substituting the vertex functions of Eq. (II.40) and employing the matrix relations in Eqs. (A.2)

and (A.5), we obtain the correction to the mass matrix as
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We now substitute Mm(1)
` M = m(3)

` and using Eq. (II.30), we obtain
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D. Contributions with scalar bosons in the loop

The scalar – neutrino vertex is very similar to the Goldstone boson neutrino vertex, so the

contribution with a scalar boson Sk in the loop can be written immediately in analogy with

Eq. (III.14):
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E. The complete one-loop mass correction

Combining Eqs. (III.11), (III.15) and (III.16), we find that that the gauge-dependent pieces

of the vector boson contribution cancel exactly with the Goldstone boson contribution, and

13



Numerical estimates
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FIG. 4. Eigenvalues of the matrix F as a function of the mass of the boson in the loop mloop, assuming

mtree
1 = 0.01 eV, mtree

4 = 30 keV, mtree
5 ⇡ mtree

6 = 2.5 GeV, and normal neutrino mass hierarchy.

V. CONCLUSIONS

In this paper, we have computed the one-loop corrections to the mass matrix of the active

neutrinos in a gauged U(1) extension of the standard model of particle interactions. The field

content of the model consists of a new complex scalar field and three right-handed neutrinos—

sterile under the standard model interactions—in addition to the fields in the standard model.

The neutrino masses are generated by Dirac and Majorana type Yukawa terms, which after

spontaneous symmetry breaking of both scalar fields give rise to neutrino masses in the way

of the type I see-saw mass generation. We used R⇠ gauge and have shown that the one-loop

corrections are (i) independent of the gauge fixing parameters, (ii) finite and (iii) independent

of the regularization scale. We also demonstrated how the formula for the one-loop mass

corrections can be generalized to the case of arbitrary number of new U(1) groups, complex

scalars and right-handed neutrinos.

We have provided a numerical estimate of the size of the mass corrections in the context of the
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Eigenvalues of the matrix F as a function of the mass 
of the boson in the loop mloop, assuming m1tree = 
0.01 eV, m4tree = 30 keV, m5tree ≈ m6tree = 2.5 GeV, 
and normal neutrino mass hierarchy 

eigenvalues can be large, but coupling suppression tames the relative 
correction to the tree-level mass below percent level



Scanning couplings for vacuum stability:  
allowed region of scalar couplings at 2 loops
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For given input 
  

Check  
 (VEV of 2nd scalar exists) 
Run RGE and check  

stability 
perturbativity

{λϕ(mt), λχ(mt), λ(mt), yx(mt)}
w(1)(mt) > 0

yx = 0.2


