
Monte Carlo phase space integration of
multiparticle cross sections with carlomat 4.5

Karol Kołodziej

Institute of Physics
University of Silesia

Matter To The Deepest
Recent Developments In Physics Of Fundamental Interactions
XLVI International Conference of Theoretical Physics

Katowice, 15-19 September, 2025

Karol Kołodziej MC phase space integration with carlomat 4.5 1/25



Outline

Motivation

Multichannel phase space parameterization

Automatic generation of different phase space
parameterizations and adaptation of integration weights in the
multichannel probability distribution

The use of VEGAS vs plain Monte Carlo integration routine
carlos

Some illustrative results

Summary

Based on a publication
K. Kołodziej, Computer Physics Communications 315 (2025)
109697, e-Print: 2504.00155 [hep-ph].

Karol Kołodziej MC phase space integration with carlomat 4.5 2/25



Motivation

Questions about

the non-Abelian nature of the SM gauge symmetry group and

the mechanism of the symmetry breaking

can be directly addressed in processes of a few heavy particles
production at a time, such as

a few heavy bosons production at a time,

the top-quark pair production, possibly associated with the
Higgs or a heavy electroweak gauge boson.

To get insight into the nature of interactions of the heavy particles
produced, which almost immediately decay, it is necessary to
investigate multiparticle reactions, including distributions and spin
correlations of light particles in the final state.
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Motivation
Such multiparticle reactions can be best measured in a clean
experimental environment of the planned electron-positron
colliders, as
the Future Circular Collider (FCC-ee) and Compact Linear
Collider (CLIC) at CERN,
the International Linear Collider (ILC) in Japan,
the Circular Electron-Positron Collider (CEPC) in China.

The measurements may also bring discoveries of phenomena
beyond the scope of SM.

The multiparticle reactions can be handled with several publicly
available multipurpose Monte Carlo (MC) generators as, e.g.,
MadGraph/MadEvent/HELAS, CompHEP/CalcHEP, ALPGEN,
HELAC-PHEGAS, SHERPA/Comix, O’Mega/Whizard, or carlomat.
Some multipurpose programs, as FeynArts/FormCalc, GRACE,
MadGraph5 aMC@NLO, SHERPA 2.2, HELAC-NLO and
Babayaga@NLO, enable automatic calculation of the NLO EW or
QCD corrections.
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Motivation

Reactions with multiparticle final states must also be taken into
account if one wants to determine precisely hadronic contributions
to the vacuum polarization which influences precision of theoretical
predictions for the muon g − 2 anomaly and plays an important
role in the evolution of the fine structure constant α(Q2) from the
Thomson limit to high energy scales.
The hadronic contributions to the vacuum polarization can be
determined through dispersion relations from the energy
dependence of the ratio

Rγ(s) ≡ σ(0)(e+e− → γ∗ → hadrons)/4πα
2

3s

Below the J/ψ threshold, σe+e−→hadrons(s) must be measured,
either by the initial beam energy scan or with the use of a radiative
return method.
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Motivation

The considered multiparticle reactions, in addition to the signal
Feynman diagrams, i.e. those which contain the Feynman
propagators of the heavy particles of interest, receive contributions
from typically several dozen thousand or even several hundred
thousand background Feynman diagrams.
The corresponding amplitudes must be added and the squared
modulus of the sum must be averaged over spins and integrated
over a multidimensional phase space.

Most of the programs mentioned offer a possibility of integrating
the generated matrix elements over the phase space.

The integration over a multidimensional phase space is often as
complicated as calculation of the matrix elements. It is possible
only with the Monte Carlo method.
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Phase space parameterization
The phase space integration element is parameterized in the
following way

d3nf−4Lips = (2π)4δ(4)
(
p1 + p2 −

n∑
i=3

pi
) n∏
i=3

dp3i
(2π)32Ei

,

with nf = n − 2.
Amplitudes of multiparticle reactions involve very many peaks,
mostly due to denominators of the Feynman propagators, which
cannot be mapped out with a single change of integration
variables.

Therefore, the integration can be in practice performed
only with the use of the multichannel MC approach, which
combines different phase space parameterizations dedicated to
mappings of different poles.
To obtain a satisfactory convergence of the MC integration, usually
quite many phase space parameterizations are needed. Thus, it is
vital to generate the corresponding multichannel MC integration
routine in a fully automatic way.
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Multichannel phase space parameterization
Denote i-th of N phase space parameterizations generated by

fi (x) = d3nf−4Lipsi (x) , i = 1, . . . ,N,

where x = (x1, ..., x3nf−4) are random arguments, xi ∈ [0, 1].
It must satisfy the normalization condition

1∫
0

dx3nf−4fi (x) = vol(Lips).

All the parameterizations fi (x) are then automatically combined
into a single multichannel probability distribution

f (x) =
N∑
i=1

ai fi (x),

with non negative weights ai , i = 1, ...,N, satisfying the condition

N∑
i=1

ai = 1 ⇔
1∫
0

dx3nf−4f (x) = vol(Lips).
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Multichannel phase space integration

The actual MC integration is performed with the random numbers
generated according to probability distribution f (x).
Integration can be performed iteratively, with or without initial
scan of all generated kinematics channels.

If the initial scan is turned on, then the MC integral is calculated
N times with a rather small number of calls to the integrand, each
time with a different phase space parameterization fi (x).
The result σi obtained with the i-th parameterization is used to
calculate new weights according to the following formula

ai = σi/
N∑
j=1

σj .

ai is the probability of choosing i-th parameterization in the first
iteration ⇒ channels with small weights ai are not chosen and
will have zero weights in the following iterations.
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Generation of the particle four momenta

The actual probability density function fi (x) according to which
the final state particle four momenta are generated, which are
needed to calculate the corresponding matrix element or to be
stored as MC events, is chosen from the set

{fj(x), j = 1, ...,N}

if uniformly distributed random number ξ ∈ [0, 1] falls into the
interval

a0 + ...+ ai−1 ¬ ξ ¬ a0 + ...+ ai , with a0 = 0.

In the following, the corresponding LO SM matrix elements are
generated by carlomat 4.5, but it is also possible to use higher
order matrix elements generated with other programs.
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Generation of phase space parameterizations

An obvious way to follow in order to map out all the peaks is to
generate one subroutine containing the phase space
parameterization for each individual Feynman diagram, as it was
originally done in carlomat 1.0.
However, for multiparticle reactions, this approach leads to a large
number of subroutines and the resulting multichannel phase space
routine is huge indeed and usually difficult to compile and the
execution time of the MC integration may become rather long.

A modification of this approach was introduced in carlomat 2.0,
where several phase space parameterizations corresponding to the
Feynman diagrams of the same topology were combined into a
single subroutine which resulted in a substantially shorter
multichannel MC integration routine.
The efficiency of that approach was further improved in
carlomat 4.0 by automatic inclusion of parameterizations which
map away the t-channel poles and peaks due to soft and collinear
photon or gluon emission.
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Generation of phase space parameterizations

However, for some multiparticle reactions as, e.g., 2→ 8 particle
scattering which are relevant for the associated production of the
top quark pair and the Higgs or vector boson, the resulting
multichannel MC kinematics routine may be still difficult to
compile and would need quite a long execution time.
To overcome these difficulties a different approach was proposed in
PSGen, a program for generation of phase space parameterizations
for the multichannel MC integration, where the phase space
parameterizations of a given reaction are generated automatically
according to predefined patterns which are supposed to smooth
only the most relevant peaks of the matrix element.

This reduces substantially the size of the multichannel MC
kinematics routine which can be very fast generated and compiled
and executed in a much shorter time. However, it is obvious that,
as not all the peaks present in the matrix element are taken into
account by PSGen, some loss of the MC integration accuracy
should be expected.
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carlomat 4.5

In order to facilitate the challenging task of calculating the
multidimensional phase space integrals, carlomat 4.5, a new
version of the multipurpose Monte Carlo program carlomat has
been written.
It allows to calculate the cross section either with the kinematics
routine generated by carlomat, or with the kinematics routine
generated by PSGen 1.1, the current version of PSGen, dependent
on user’s choice.

The kinematics chosen can be automatically combined with the
LO matrix element generated by carlomat or with the user
provided matrix element, either in the LO or in higher orders.
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Options of the MC integration
The MC integration can be performed either with carlos, a plain
MC integration routine of carlomat, or VEGAS which has been
implemented in carlomat 4.5.
VEGAS handles peaks of the integrand with an importance sampling
technique which is based on appropriate adaptation of the
integration grid in subsequent iterations of the integral.

As the original version of VEGAS is limited to calculation of
integrals up to 10 dimensions, its Fortran source has been modified
so that it can also be used to calculate integrals of higher
dimension. However, as it will be discussed later on, its use may
then encounter some problems.

In the following, a few issues concerning efficiency and convergence
of the MC integration will be addressed by comparing results for
the cross sections of a few physically interesting multiparticle
reactions that could be measured at any future high energy e+e−

collider.
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so that it can also be used to calculate integrals of higher
dimension. However, as it will be discussed later on, its use may
then encounter some problems.

In the following, a few issues concerning efficiency and convergence
of the MC integration will be addressed by comparing results for
the cross sections of a few physically interesting multiparticle
reactions that could be measured at any future high energy e+e−

collider.
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Some illustrative results

Let us consider the LO SM cross sections of a few physically
interesting multiparticle reactions, which could potentially be
measured at any future high energy e+e− collider.

e+e− → µ+νµµ
−ν̄µ, nd = 8, 19 diagrams, (1)

e+e− → bµ+νµb̄µ
−ν̄µ, nd = 14, 452 diagrams, (2)

e+e− → bb̄bµ+νµb̄µ
−ν̄µ, nd = 20, 46890 diagrams, (3)

where dimension nd of the corresponding phase space integral and
the number of the LO SM Feynman diagrams are indicated on the
right hand side of each reaction.
The final states of reactions (1), (2) and (3) represent relatively
clean detection channels of, respectively, W+W−, top quark pair
production and associated production of the Higgs boson and top
quark pair.
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Some illustrative results

To enable their identification the following cuts:

5◦ < θ(l, beam), θ(q, beam) < 175◦, θ(l, l’), θ(q, q’), θ(q, l) > 10◦,

El, Eq > 15GeV, ETmissing > 15GeV,

where l, l′ stand for either µ− or µ+ and q, q′ stand for either b
or b̄, are imposed.
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σLO(e
+e− → µ+νµµ−ν̄µ) [fb]
√
s ivegas/ iscan=0 iscan=1 iscan=0 iscan=1

(GeV) ipsgen iwadapt=0 iwadapt=0 iwadapt=1 iwadapt=1

360 0/0 111.06(45) 111.48(17) 111.16(16) 111.74(15)
360 1/0 106.10(18) 111.69(5) 111.61(4) 111.62(4)
360 0/1 111.58(42) 111.71(16) 111.65(16) 111.53(15)
360 1/1 119.66(18) 112.57(5) 111.88(4) 111.81(4)

500 0/0 70.51(44) 70.85(16) 70.42(15) 70.55(15)
500 1/0 66.87(13) 70.62(4) 70.48(3) 70.50(3)
500 0/1 70.18(40) 70.66(15) 70.67(15) 70.36(14)
500 1/1 74.79(13) 70.98(4) 70.59(3) 70.58(3)

1000 0/0 21.09(24) 20.90(8) 20.93(8) 20.89(8)
1000 1/0 19.66(4) 20.88(1) 20.89(1) 20.90(1)
1000 0/1 20.75(21) 20.87(8) 20.95(8) 20.93(8)
1000 1/1 21.59(4) 20.82(1) 20.92(1) 20.92(1)
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The initial scan reduces MC error by ∼ 3.
No scan ⇒ results non reliable
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σLO(e
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VEGAS reduces the MC error substantially. (nd = 8)
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σLO(e
+e− → µ+νµµ−ν̄µ) [fb]

Accumulated results for the LO SM cross section at
√
s = 500 GeV

as functions of the number of iterations, calculated with f (x) of
carlomat 4.5 (left panel) and f (x) of PSGen 1.1 (right panel).
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In both panels, the violet histogram has been integrated with
carlos and the green histogram with VEGAS, with the initial scan
(iscan=1) and weight adaptation (iwadapt=1).
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σLO(e
+e− → bµ+νµb̄µ

−ν̄µ) [fb]
√
s ivegas/ iscan=0 iscan=1 iscan=0 iscan=1

(GeV) ipsgen iwadapt=0 iwadapt=0 iwadapt=1 iwadapt=1

500 0/0 5.7721(334) 5.7444(45) 5.7584(52) 5.7416(45)
500 1/0 5.3242(326) 6.2811(23) 5.7385(70) 5.7384(35)
500 0/1 5.7628(173) 5.7625(28) 5.7606(30) 5.7618(26)
500 1/1 6.0091(155) 5.8128(23) 5.7627(25) 5.7644(22)

800 0/0 2.8451(214) 2.8395(56) 2.8585(93) 2.8420(68)
800 1/0 2.4527(352) 3.2007(20) 2.8013(44) 2.7906(58)
800 0/1 2.8583(91) 2.8662(20) 2.8647(22) 2.8688(20)
800 1/1 3.0329(83) 3.0706(12) 2.8634(17) 2.8625(15)

1000 0/0 1.9306(202) 1.9433(68) 1.9363(77) 1.9230(69)
1000 1/0 2.3477(276) 2.0881(9) 0.4127(430) 1.9841(50)
1000 0/1 1.9675(65) 1.9644(18) 1.9634(18) 1.9621(17)
1000 1/1 2.0288(60) 2.0864(6) 1.8903(42) 1.8667(20)

The initial scan reduces the MC error, but the use of VEGAS may
give non reliable results. (nd = 14)
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σLO(e
+e− → bµ+νµb̄µ

−ν̄µ) [fb]

Accumulated results for the LO SM cross section at
√
s = 500 GeV

as functions of the number of iterations, calculated with f (x) of
carlomat 4.5 (left panel) and f (x) of PSGen 1.1 (right panel).
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In both panels, the violet histogram has been integrated with
carlos and the green histogram with VEGAS, with the initial scan
(iscan=1) and weight adaptation (iwadapt=1).
The advantage of VEGAS is not clearly visible any more.
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σLO(e
+e− → bb̄bµ+νµb̄µ

−ν̄µ) [fb]
nd = 20 ⇒ VEGAS does not seem applicable any more.
Accumulated results for the LO SM cross section at

√
s = 500 GeV

and
√
s = 800 GeV as functions of the number of iterations:

√
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The violet histogram has been integrated with f (x) of
carlomat 4.5 and the green one with f (x) of PSGen 1.1,
iscan=1 and iwadapt=1 have been used.
nd = 46890, hence very many peaks are present ⇒ f (x) of
carlomat 4.5 works better.
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Summary

Efficient integration of the multiparticle reaction cross sections
over a multidimensional phase space is a challenge.
As the corresponding matrix elements involve many peaks, the
variance of the MC integral can be reduced only if those peaks are
mapped out which is achieved by the use of the multichannel MC
approach, with different phase space parameterizations generated
and combined in the single probability distribution in a fully
automatic way.

A few different approaches to this task have been addressed in this
talk.
It has been shown that there is no single golden recipe to obtain
reliable results for the MC integrals of interest. Which particular
approach should be used depends mostly on the dimension of the
phase space integral, but also on the centre of mass energy of the
considered reaction.
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Summary

carlomat 4.5 and PSGen 1.1 can be useful tools to find the right
solution of the problem of MC phase space integration for
mutiparticle reactions.
The Fortran code with which the results shown in the present work
were obtained is public. It can be downloaded from the web pages:

https://www.kk.us.edu.pl/carlomat.html

https://www.kk.us.edu.pl/PSGen.html

and freely used.

Thank you for your attention.
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