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In higher-order calculations, IBP reductions are the vital oil that ensures the

complex engine of computation runs without friction.
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History of Kira

Kira versions

@ Kiral [Maierhdfer, Usovitsch,Uwer,arXiv:1705.05610] made possible many

2->2 (2L) and 1->2 (3L) non-planar (massive) processes. Theimermatonajouralotscence/svrors |/

@ uses finite field (FF) methods to get linearly independent system
@ uses Fermat for coefficient simplification.

@ Kira 2 [Klappert,Lange,Maierhfer, Usovitsch,arXiv:2008.06494] compatibility
with FireFly to reconstruct the coefficients provided with Kira's FF
methods.

@ Introduction of user defined systems
@ More main memory efficient than Kira 1

@ Kira 3 [Lange, Usovitsch, Wu, arXiv:2505.20197] solves 4-loop 9 scalar
product integral reductions in 5th post-Minkowskien (PM) GW
calculation [Driesse, Jakobsen, Klemm, Mogull, Nega, Plefka, Sauer, Usovitsch,
arXiv:2403.07781, arXiv:2411.11846].

@ Nature publication + established a link to 5PM GW and the
Calabi-Yau

@ 1 — 2, 2 — 2 forward scattering (4L), 2 — 2 (3L), and 2 — 3
(2L), 2 — 4 (2L)

@ small sized system of equations

Writer's block? Virgin birth
) dox
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State-of-the-art overview Methods

Feynman integral reduction methods

@ The number of master integrals is finite [A. V. Smirmov, A.V. Petukhov, arXiv:1004.4199], however the proof is
non-constructive

("] SyZygy approach, [J. Gluza, K. Kajda, D. A. Kosower arXiv:1009.0472, Z. Wu, J. Boehm, R. Ma, H. Xu, Y. Zhang, arXiv:2305.08783]
@ Linear relations from syzygies [B. Agarwal, S. P. Jones, A. von Manteuffel, arXiv:2011.15113]

@ Reconstruct the rational coefficients on-the-fly, directly in a form which is decomposed in partial fractions s.
Badger, C. Brgnnum-Hansen, D. Chicherin, T. Gehrmann, H. B. Hartanto, J. Henn, M. Marcoli, R. Moodie, T. Peraro, S. Zoia, arXiv:2106.08664]

@ Block triangular form [X. Liu, Y.-Q. Ma, arXiv:1801.10523]
@ Reduction to master integrals via intersection numbers [S. Mizera, arXiv:1711.00469, G. Fontana, T. Peraro, arXiv:2304.14336]

@ Modern Grébner bases [Barakat,Briiser, Fieker, Huber, Piclum,arXiv:2210.05347]
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State-of-the-art overview  tools

Reduction programs
@ Laporta algorithm implementations available:

@ FIRE 6.5 [A. V. Smirmov, M. Zeng, arXiv:2311.02370]
@ FiniteFlow [T. Peraro, arxiv:1905.08019]
@ Reduze 2 [A. von Manteuffel, C. Studerus, arXiv:1201.4330]
e First mover Laporta integral implementation: AIR [c. Anastasiou, A. Lazopoulos, arXiv:hep-ph/0404258]
o IBP tool box: LiteRed [Rr. N. Lee, arxiv:1212.2685]
e Feynman parameter IBP reduction Ampred: [w. chen, arxiv:2408.06426]
@ Blade [GuanLiu,Yan-Qing ,Wen-Hao,arXiv:2405.14621]

@ neatIBP [ Wu,Boehm, Ma,Xu,Zhang,arXiv:2305.08783,Wu,Bdhm,Ma,Usovitsch,Xu,Zhang,arXiv:2502.20778]
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Technical introduction Integral family

Integral family

dPk,dPk,

p1 P

U 5 [k1® — mi]™ [(p1 + k1)%]% [k2®]% (01 + k2)?]* [(k2 — k1)]*
N
ky pal o2 P‘;l 3 P F,;s

= [(§,D|a1,...,a5)

qj :k17"'7kL7p17"'7pE
sij =¢iq;, t=1,...,L, j=4i,...,L+FE
&= ({si}, {m?}), dimensional regularization parameter D = 4 — 2¢

The integral family definition is complete, if all P; are linearly independent in the s;;

s11 =mi + P, 312:%(mf+P1+P3—P5), S22 = P3, 813:%(—m%—p%—1’_’14-1'_’2)v
523:%(*13%*133+P4)
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Technical introduction Reduction specifications

Reduction specifications

@ Each integral gives LE+ L? IBP equations [k. . Chetyrkin, F. V. Tkachov, Nucl.Phys.B 192 (1981) 150-204]
and E(E — 1)/2 Lorentz-Invariance €quations [T. Gehrmann E. RemiddiarXiv:hep-ph/9912329]

o ci({as},5,D)(ar,...,an—1) + -+ cn{ar}, s, D)I(a1+1,...,an) =0

@ Reduction: express all integrals with different exponents a as a linear
combination of some basis integrals (master integrals)

@ Generate a large set of equations: Laporta algorithm is. taperta, arxiv:hep-ph/0102033]

@ N is number of propagators, t = Zﬁcvzl O(ar — %)

N N N
r=>Y af(ar—1), s=-=> a3 —ay), = > (ay—1)0(as — 3)
f=1 F=1 f=1
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Feynman integral reduction problem

The maze problem

r——ll:—'_nldm—'n
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@ A reduction is a multidimensional maze with up to 20 dimensions at 4-loops.
@ There are multiple possible paths to the goal.

@ Identifying the fastest path is highly non-trivial.

@ Designing code to follow the fastest path is far from straightforward.

@ Kira 3 is a C++ program.
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New main algorithms  Selection of Equations

The Don't-Lose-the-Knot Problem

The knot represents the initial system of equations
Every laze represents a chain of equations

Pulling the correct lazes is non trivial

Pulling the correct chain of euations representing on
chain is even more non-trivial

Math problem: which laze to pull without

2
pomi

P2

2
m;

3

P1

destroying the knot <+ which equations to drop
without destorying the system of equations

| 2.3, Smax =5 | 2.3, Smax =6 | 3.0, Smax =5 | 3.0, Smax =6

# of generated egs. 3317357 6009 193 4053617
7 of selected egs. 62514 85119 30984

7511785
30984

@ Kira 3 generates IBP for all sectors even if they are symmetric unlike in Kira 2.3.

@ Generating IBPs for all sectors gives Kira more freedom to choose more efficient equations.

@ New: Increasing smax does not change the number of selected integrals. Kira 3 selects 50% less equations than Kira 2.3.
@ | am still suprised to see improvements with topo7 (figure above), a topology | study since my master thesis.
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New main algorithms  Truncation of Seeds

Main feature: Small sized system of equations

Black Hole 1

Graviton

Black Hole 2

Real example: SF2[1,1,1,1,-2,-1,0,-5,1,0,1,1,1,1,1,-1,1,0 0 S 1
Kira 2.3 would seed integrals like: SF2[1,1,1,1,-2,-1,0,-50,0,0,0,0,0,0,-1,0,0,0,0, 0, 0], s=9, r=4, d=0
Laporta algorithm with s=9 leads to 4,686,825 necessary seeds, very bad

Kira 3 only seeds integrals like: SF2[1,1,1,1,0,-1,0,0,0,0,0,0,0,00,0,0,0,0,0, 0, 0], s=1, r=4, d=0

This time only 19 seeds are needed, very good

New option: truncate_sp: [1l: 5]

forces Kira to generate seeds with s < max(1, t — 1+ 1, Smax,sector)

, 0,1, =9, r=13, d=0
0 1

"That's great progress, but it's also a bit frustrating. Over almost twenty-five years, no one had guessed this one simple change?"
— Matthew von Hippel, 4Gravitons blog
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Comparison of methods

Benchmark

Comparing Kira to other methods

(r.s.d) 8.5.0 Kira 3 syzygies syzygies (spc.)  block triangular
Tgen 8.8s ~ hours ~ hours ~ hours
#eq. 41998 26106 23834 3497

7 terms 734833 1498728 544 355 388973
disk [MiB] 37 46 8.6 23

Tyynea [5] 13 33 0.42 0.63
Thateacer [s] | 0.25 1.31 0.068 0.5

Kira 3 generates the system in under 10 seconds and uses significantly less disk space. In contrast, system generation with
NeatIBP [arXiv:2305.08783, arXiv:2502.20778] and blade [arXiv:2405.14621] takes hours and requires more storage.

Number of equations is the biggest with Kira 3 but the coefficients are as simple as they can get.
Run time of Kira 3 is either comparable or better, especially in combination with Ratracer.
Current implementation of spanning cuts (spc.) in NeatIBP is not generic.

Implementing spc. in Kira 3 is possible.
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Kira effect universal

Benchmark

Universality

r.s.d 8.5.0 (doublePentagon) (I1=4)

é version Kira 2.3 Kira 3
o
o topology massless (108) one-mass (142)  two-mass (185) three-mass (172)
c # generated 16 872 564 73902 76045 77286 78480
-8 # independent 4 842 650 53648 55596 57034 57918
g # selected 1157 381 41998 43827 45359 46231
g RAM [GiB] 25.04 0.34 0.37 0.46 0.43

time to generate 33:46.0 0:08.8 0:09.9 0:12.8 0:11.6
FF  [Kira/Ratracer] 33/~ 1.3/0.25 1.6/0.38 2.5/0.45 2.1/0.43

230 times less equations compared to version Kira 2.3

25 faster numerical evaluation of the system of equations on

a prime finite field

High performance sustained with next to no difference in
number of scales ("difficulties")
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3-loop Example

Benchmark Universality

r.s.d 10.3.0 10.4.0 10.5.0 10.6.0 10.7.0 Kira Version Comparison for TennisCourt
£ 5000
< . . . °
'8 version Kira 2.3 Kira 3 [ ]
s 2 1000 ¢
truncate_sp - 1=7 1=6 =5 1=4 I=3 £ s00
] °
c  Fgen. 8272762 460257 1054294 3719838 12011203 34303672 Ei 100 .
2 #indep. 4890067 333097 719512 2211669 6300414 16169898 + 50 s a3
g 7 sel. 2768144 140098 389248 1187692 3363240 8319835 kira 2.3
gCJD RAM [GiB] 35.44 0.64 1.87 5.97 18.23 54.07 00— 4 5 3 7
Tgen [min:s] 41:36.3 0:30.4 1:18.4 4:03.6 13:47.0 58:05.9 Smax
b Tyyrea [s] 146 1.0 4.4 15.6 53 206
Generic algorithm works with tennis-court topology and beyond
n ps Kira 3 generates 18 times less, selects 20 times less, uses 56 times less main
memory, and 83 times faster in generating the system than Kira 2.3
2
P2 mi P @ Effect of algorithm improvements is illustrated in the plot
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New feature

Numerical IBP

@ |BP reductons can be saved with finite field coefficients

@ Instead of using firefly: true we use the new option numerical_points: numerics
@ Use case: Generate with Kira fast and small sized system of equations.

@ The file numerics contains user input,

prime 9223372036854771977

d s12 s23 s34 s45 sb6 s16 s123 s234 s345

11111 -1 -38 -1039/6 -2712776 -50409 -1662120 -95 -19926 -2752175
11112 -1 -38 -1039/6 -2712776 -50409 -1662120 -95 -19926 -2752175

@ Used in the study of 2 — 4 planar differential equations [Abreu, Monni, Page, Usovitsch, 2412.19884], similar to [Henn,
Matijasi¢, Miczajka, Peraro, Xu, Zhang, arXiv:2501.01847]
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Whats next

New directions

e Will Al give the next hint towards a new reduction algorithm?

@ Will Al be able to find the fastest path in the maze?

e Will Al be able to minimize the Don’t-Lose-the-Knot Problem?

@ Link to other software: calculation of integrals (improving Ampred, AMFlow),
generation of diagrams (Diagen in collaboration With Michat Czakon and Marco
Niggetiedt)
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Conclusions

Conclusions

e Kira hopefully is the tool to make the new
generation of perturbative calculations happen.

@ Is floating point Gaussian elimination possible?

@ Kira is universal tool, all algorithms also work
with user defined systems

@ Tested up to 4-loops

@ To some, integrals are numbers; to others,
they are art.
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Backup

Differential Equation Matrix

o (d+ A(e,3)I =0, where D = 4 — 2¢

o (d+ eA(3))I = 0 [ariv:1304.1806]

4 4
o CY3: [(xdi — 1) — ! (xdé + 1) ]w(x) =0
[arXiv:2108.05310, arXiv:2503.20655]
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Backup

Gravitational Waves

Erad

6.1 Leading order (1IPM)

At leading order Apf is described by a single diagram:
1
w=0

4 .M1me ig-b v,p Pup;aA o, A
=i—— | €7%(q - v1)d(q - v2)(—v vig" vIvy
& > ot g [ etq )it ) o) g

Classical physics, scattering of black holes, following Worldline QFT in [arXiv:2010.02865]
Post-Minkowskian (PM) expanding the metric tensor in a power series of the gravitational constant G

Third generation telescopes, Einstein Telescope, Cosmic Explorer, and LISA wish list: [arXiv: 2203.08228]
Detection of black hole scattering events with LISA, launching in 2035

Analytic calculations for speed / used next to the numerical relativity calculations

(6.4)
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Post-Mink kian E: ion in WQFT

Post-Minkowskian (PM) Expansion

e : folw
1

= n a(e-vs)
[GEE e et B =

G G? ek Gt il

R HTIUT LT bt HT
MFTINT %+ W ¥ T
T oG AT T HITT

+ 18 more + 190 more + 417 more

@ The 5PM integrand is generated using the Berends-Giele type recursion relation, with collected self-force (SF) sectors according
to their scaling with the masses m; and mo:

AP —myma (A AEY + i m3ARG + mimd Ap S

3 5y 45 (B
+ mima Api " 4+ mi Apgg! )
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