
Kira 3 – Whats Next?
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In higher-order calculations, IBP reductions are the vital oil that ensures the
complex engine of computation runs without friction.
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History of Kira

Kira versions
Kira 1 [Maierhöfer,Usovitsch,Uwer,arXiv:1705.05610] made possible many

2->2 (2L) and 1->2 (3L) non-planar (massive) processes.
uses finite field (FF) methods to get linearly independent system
uses Fermat for coefficient simplification.

Kira 2 [Klappert,Lange,Maierhöfer,Usovitsch,arXiv:2008.06494] compatibility

with FireFly to reconstruct the coefficients provided with Kira’s FF

methods.
Introduction of user defined systems
More main memory efficient than Kira 1

Kira 3 [Lange, Usovitsch, Wu, arXiv:2505.20197] solves 4-loop 9 scalar

product integral reductions in 5th post-Minkowskien (PM) GW

calculation [Driesse, Jakobsen, Klemm, Mogull, Nega, Plefka, Sauer, Usovitsch,

arXiv:2403.07781, arXiv:2411.11846].
Nature publication + established a link to 5PM GW and the
Calabi-Yau
1 → 2, 2 → 2 forward scattering (4L), 2 → 2 (3L), and 2 → 3
(2L), 2 → 4 (2L)
small sized system of equations

The international journal of science / 15 May 2025

Writer’s block?
Researchers divided
over ethics of using AI
to author papers

MAKING
 WAVES
Predicting with 
high precision what
happens when two
black holes scatter

Rainfall patterns
Unpicking the paradox
of the South Asian
summer monsoon

Virgin birth
Parthenogenesis in
sunflowers could offer
faster crop breeding
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State-of-the-art overview Methods

Feynman integral reduction methods
The number of master integrals is finite [A. V. Smirnov, A.V. Petukhov, arXiv:1004.4199], however the proof is
non-constructive

Syzygy approach, [J. Gluza, K. Kajda, D. A. Kosower arXiv:1009.0472, Z. Wu, J. Boehm, R. Ma, H. Xu, Y. Zhang, arXiv:2305.08783]

Linear relations from syzygies [B. Agarwal, S. P. Jones, A. von Manteuffel, arXiv:2011.15113]

Reconstruct the rational coefficients on-the-fly, directly in a form which is decomposed in partial fractions [S.

Badger, C. Brønnum-Hansen, D. Chicherin, T. Gehrmann, H. B. Hartanto, J. Henn, M. Marcoli, R. Moodie, T. Peraro, S. Zoia, arXiv:2106.08664]

Block triangular form [X. Liu, Y.-Q. Ma, arXiv:1801.10523]

Reduction to master integrals via intersection numbers [S. Mizera, arXiv:1711.00469, G. Fontana, T. Peraro, arXiv:2304.14336]

Modern Gröbner bases [Barakat,Brüser,Fieker,Huber,Piclum,arXiv:2210.05347]
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State-of-the-art overview tools

Reduction programs
Laporta algorithm implementations available:

FIRE 6.5 [A. V. Smirnov, M. Zeng, arXiv:2311.02370]

FiniteFlow [T. Peraro, arXiv:1905.08019]

Reduze 2 [A. von Manteuffel, C. Studerus, arXiv:1201.4330]

First mover Laporta integral implementation: AIR [C. Anastasiou, A. Lazopoulos, arXiv:hep-ph/0404258]

IBP tool box: LiteRed [R. N. Lee, arXiv:1212.2685]

Feynman parameter IBP reduction Ampred: [W. Chen, arXiv:2408.06426]

Blade [Guan,Liu,Yan-Qing ,Wen-Hao,arXiv:2405.14621]

neatIBP [,Wu,Boehm, Ma,Xu,Zhang,arXiv:2305.08783,Wu,Böhm,Ma,Usovitsch,Xu,Zhang,arXiv:2502.20778]
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Technical introduction Integral family

Integral family
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Technical introduction Reduction specifications

Reduction specifications

Each integral gives L E + L2 IBP equations [K. G. Chetyrkin, F. V. Tkachov, Nucl.Phys.B 192 (1981) 159-204]

and E(E − 1)/2 Lorentz-Invariance equations [T. Gehrmann,E. Remiddi,arXiv:hep-ph/9912329]

c1({af}, s⃗, D)I(a1, . . . , aN−1) + · · · + cm({af}, s⃗, D)I(a1+1, . . . , aN ) = 0
Reduction: express all integrals with different exponents af as a linear
combination of some basis integrals (master integrals)
Generate a large set of equations: Laporta algorithm [S. Laporta, arXiv:hep-ph/0102033]

N is number of propagators, t = ∑N
f=1 θ(af − 1

2),

r =
N∑

f=1
afθ(af − 1

2), s = −
N∑

f=1
afθ(1

2 − af ), d =
N∑

f=1
(af − 1)θ(af − 1

2)
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Feynman integral reduction problem

The maze problem

A reduction is a multidimensional maze with up to 20 dimensions at 4-loops.
There are multiple possible paths to the goal.
Identifying the fastest path is highly non-trivial.
Designing code to follow the fastest path is far from straightforward.
Kira 3 is a C++ program.
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New main algorithms Selection of Equations

The Don’t-Lose-the-Knot Problem

The knot represents the initial system of equations
Every laze represents a chain of equations
Pulling the correct lazes is non trivial
Pulling the correct chain of euations representing on
chain is even more non-trivial
Math problem: which laze to pull without
destroying the knot ↔ which equations to drop
without destorying the system of equations

m2
1

m2
2

p1

p2

p3

p4

2.3, smax = 5 2.3, smax = 6 3.0, smax = 5 3.0, smax = 6

# of generated eqs. 3 317 357 6 009 193 4 053 617 7 511 785
# of selected eqs. 62 514 85 119 30984 30984

Kira 3 generates IBP for all sectors even if they are symmetric unlike in Kira 2.3.
Generating IBPs for all sectors gives Kira more freedom to choose more efficient equations.
New: Increasing smax does not change the number of selected integrals. Kira 3 selects 50% less equations than Kira 2.3.
I am still suprised to see improvements with topo7 (figure above), a topology I study since my master thesis.
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New main algorithms Truncation of Seeds

Main feature: Small sized system of equations

Real example: SF2[1, 1, 1, 1, -2, -1, 0, -5, 1, 0, 1, 1, 1, 1, 1, -1, 1, 0, 0, 1, 0, 1], s=9, r=13, d=0
Kira 2.3 would seed integrals like: SF2[1, 1, 1, 1, -2, -1, 0, -5, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0], s=9, r=4, d=0
Laporta algorithm with s=9 leads to 4,686,825 necessary seeds, very bad
Kira 3 only seeds integrals like: SF2[1, 1, 1, 1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], s=1, r=4, d=0
This time only 19 seeds are needed, very good
New option: truncate_sp: [l: 5]
forces Kira to generate seeds with s ≤ max(1, t − l + 1, smax,sector)

"That’s great progress, but it’s also a bit frustrating. Over almost twenty-five years, no one had guessed this one simple change?"
– Matthew von Hippel, 4Gravitons blog
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Benchmark Comparing Kira to other methods

Comparison of methods

(r.s.d) 8.5.0 Kira 3 syzygies syzygies (spc.) block triangular
Tgen 8.8 s ∼ hours ∼ hours ∼ hours
# eq. 41 998 26 106 23 834 3 497

# terms 734 833 1 498 728 544 355 388 973
disk [MiB] 3.7 46 8.6 23
TpyRed [s] 1.3 3.3 0.42 0.63

TRatracer [s] 0.25 1.31 0.068 0.5

Kira 3 generates the system in under 10 seconds and uses significantly less disk space. In contrast, system generation with
NeatIBP [arXiv:2305.08783, arXiv:2502.20778] and blade [arXiv:2405.14621] takes hours and requires more storage.
Number of equations is the biggest with Kira 3 but the coefficients are as simple as they can get.
Run time of Kira 3 is either comparable or better, especially in combination with Ratracer.
Current implementation of spanning cuts (spc.) in NeatIBP is not generic.
Implementing spc. in Kira 3 is possible.
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Benchmark Universality

Kira effect universal
pr

ob
le

m
r.s.d 8.5.0 (doublePentagon) (l=4)

version Kira 2.3 Kira 3

topology massless (108) one-mass (142) two-mass (185) three-mass (172)

ge
ne

ra
tio

n # generated 16 872 564 73 902 76045 77286 78480
# independent 4 842 650 53 648 55596 57034 57918

# selected 1 157 381 41 998 43827 45359 46231
RAM [GiB] 25.04 0.34 0.37 0.46 0.43

time to generate 33:46.0 0:08.8 0:09.9 0:12.8 0:11.6

FF [Kira/Ratracer] 33/- 1.3/0.25 1.6/0.38 2.5/0.45 2.1/0.43

230 times less equations compared to version Kira 2.3
25 faster numerical evaluation of the system of equations on
a prime finite field
High performance sustained with next to no difference in
number of scales ("difficulties")
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Benchmark Universality

3-loop Example
pr

ob
le

m

r.s.d 10.3.0 10.4.0 10.5.0 10.6.0 10.7.0

version Kira 2.3 Kira 3

truncate_sp - l=7 l=6 l=5 l=4 l=3

ge
ne

ra
tio

n # gen. 8 272 762 460 257 1 054 294 3 719 838 12 011 203 34 303 672
# indep. 4 890 067 333 097 719 512 2 211 669 6 300 414 16 169 898
# sel. 2 768 144 140 098 389 248 1 187 692 3 363 240 8 319 835
RAM [GiB] 35.44 0.64 1.87 5.97 18.23 54.07
Tgen [min:s] 41:36.3 0:30.4 1:18.4 4:03.6 13:47.0 58:05.9

FF TpyRed [s] 146 1.0 4.4 15.6 53 206
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Kira Version Comparison for TennisCourt

Kira 3
Kira 2.3

p1

p2

p3

p4m2
1

Generic algorithm works with tennis-court topology and beyond

Kira 3 generates 18 times less, selects 20 times less, uses 56 times less main
memory, and 83 times faster in generating the system than Kira 2.3

Effect of algorithm improvements is illustrated in the plot
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New feature

Numerical IBP
IBP reductons can be saved with finite field coefficients
Instead of using firefly: true we use the new option numerical_points: numerics
Use case: Generate with Kira fast and small sized system of equations.
The file numerics contains user input,

prime 9223372036854771977
d s12 s23 s34 s45 s56 s16 s123 s234 s345
11111 -1 -38 -1039/6 -2712776 -50409 -1662120 -95 -19926 -2752175
11112 -1 -38 -1039/6 -2712776 -50409 -1662120 -95 -19926 -2752175

Used in the study of 2 → 4 planar differential equations [Abreu, Monni, Page, Usovitsch, 2412.19884], similar to [Henn,

Matijašić, Miczajka, Peraro, Xu, Zhang, arXiv:2501.01847]
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Whats next

New directions

Will AI give the next hint towards a new reduction algorithm?
Will AI be able to find the fastest path in the maze?
Will AI be able to minimize the Don’t-Lose-the-Knot Problem?
Link to other software: calculation of integrals (improving Ampred, AMFlow),
generation of diagrams (Diagen in collaboration With Michał Czakon and Marco
Niggetiedt)
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Conclusions

Conclusions

Kira hopefully is the tool to make the new
generation of perturbative calculations happen.

Is floating point Gaussian elimination possible?

Kira is universal tool, all algorithms also work
with user defined systems

Tested up to 4-loops

To some, integrals are numbers; to others,
they are art.
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Backup

Differential Equation Matrix

(d + A(ϵ, s⃗))I⃗ = 0, where D = 4 − 2ϵ

(d + ϵA(s⃗))I⃗ = 0 [arXiv:1304.1806]

CY3:
[(

x d
dx − 1

)4
− x4

(
x d

dx + 1
)4]

ϖ(x) = 0
[arXiv:2108.05310, arXiv:2503.20655]
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Backup

Gravitational Waves

Classical physics, scattering of black holes, following Worldline QFT in [arXiv:2010.02865]
Post-Minkowskian (PM) expanding the metric tensor in a power series of the gravitational constant G

Third generation telescopes, Einstein Telescope, Cosmic Explorer, and LISA wish list: [arXiv: 2203.08228]
Detection of black hole scattering events with LISA, launching in 2035
Analytic calculations for speed / used next to the numerical relativity calculations

17 / 15



Post-Minkowskian Expansion in WQFT

Post-Minkowskian (PM) Expansion

The 5PM integrand is generated using the Berends-Giele type recursion relation, with collected self-force (SF) sectors according
to their scaling with the masses m1 and m2:

∆p
(5)µ
1 =m1m2

(
m

4
2∆p

(5)µ

0SF + m1m
3
2∆p

(5)µ

1SF + m
2
1m

2
2∆p

(5)µ

2SF

+ m
3
1m2∆p

(5)µ

1SF + m
4
1∆p

(5)µ

0SF

)
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