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We investigate a mutual relationship between information and energy
during the early phase of LTP induction and maintenance in a large-scale
system of mutually coupled dendritic spines, with discrete internal states
and probabilistic dynamics, within the framework of nonequilibrium
stochastic thermodynamics. In order to analyze this computationally
intractable stochastic multidimensional system, we introduce a pair ap-
proximation, which allows us to reduce the spine dynamics into a lower-
dimensional manageable system of closed equations. We found that the
rates of information gain and energy attain their maximal values during
an initial period of LTP (i.e., during stimulation), and after that, they re-
cover to their baseline low values, as opposed to a memory trace that lasts
much longer. This suggests that the learning phase is much more energy
demanding than the memory phase. We show that positive correlations
between neighboring spines increase both a duration of memory trace
and energy cost during LTP, but the memory time per invested energy in-
creases dramatically for very strong, positive synaptic cooperativity, sug-
gesting a beneficial role of synaptic clustering on memory duration. In
contrast, information gain after LTP is the largest for negative correla-
tions, and energy efficiency of that information generally declines with
increasing synaptic cooperativity. We also find that dendritic spines can
use sparse representations for encoding long-term information, as both
energetic and structural efficiencies of retained information and its life-
time exhibit maxima for low fractions of stimulated synapses during LTP.
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272 J. Karbowski and P. Urban

Moreover, we find that such efficiencies drop significantly with increas-
ing the number of spines. In general, our stochastic thermodynamics ap-
proach provides a unifying framework for studying, from first principles,
information encoding, and its energy cost during learning and memory
in stochastic systems of interacting synapses.

1 Introduction

Parts of synapses known as dendritic spines play an important role in learn-
ing and memory in neural networks (Bonhoeffer & Yuste, 2002; Kasai et al.,
2003; Bourne & Harris, 2008; Takeuchi et al., 2014; Kandel et al., 2014).
Learning can be thought of as acquiring information in synapses through a
plasticity mechanism such as LTP and LTD (long-term potentiation and
depression, respectively), and memory can be regarded as storing that in-
formation. (For an experimental overview, see Yang et al., 2009; Bourne &
Harris, 2008; Takeuchi et al., 2014; and Poo et al., 2016. For a theoretical
overview, see Fusi et al., 2005; Benna & Fusi, 2016; and Chaudhuri & Fi-
ete, 2016.) Thus, learning and memory are strictly related to processing and
maintaining long-term information, which in principle could be quantified
in terms of information theory and statistical mechanics, much as it can be
done for neural spiking activity (Rieke et al., 1999). Indeed, recent results
show that information (entropy) contained in the distributions of dendritic
spine volumes and areas is nearly maximal for any of their average sizes
across different brains and cerebral regions (Karbowski & Urban, 2022).
This suggests that the concept of information can be useful in quantifying
synaptic learning and memory and that actual synapses might “use” and
optimize certain information-theoretic quantities.

Physics teaches us that there are close relationships between information
and thermodynamics, and the smaller the system, the stronger the mutual
link, since smallness contributes to fluctuations and thus unpredictability
in the system (Bennett, 1982; Leff & Rex, 1990; Berut et al., 2012; Parrondo
et al., 2015). This means that information processing always requires some
energy, and it is reasonable to assume that biological evolution favors sys-
tems that save energy while handling information because of the limited re-
sources and/or competition (Niven & Laughlin, 2008). This line of thought
was explored in neuroscience for estimating energy-efficient coding capac-
ity in (short-term) neural activities and synaptic transmissions (Rieke et al.,
1999; Levy & Baxter, 1996, 2002; Levy & Calvert, 2021; Laughlin et al., 1998;
Balasubramanian et al., 2001). All of these approaches and calculations for
neural and synaptic activities, however valuable, missed one key ingredi-
ent of real biological systems or did not make it explicit: biological systems,
including neurons and synapses, always operate far from thermodynamic
equilibrium, where balance between incoming and outgoing energy and
matter (or probability) fluxes is broken—the so-called broken detailed
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Information and Energy During LTP 273

balance. (For a general physical approach, see Maes et al., 2000; Seifert, 2012;
and Gardiner, 2004. For a biophysical approach to synapses, see Karbowski,
2019.) As a consequence, equilibrium thermodynamics (with static or sta-
tionary variables and Gibbs distributions) does not seem to be the right
approach, and to be more realistic, one has to use nonequilibrium statis-
tical mechanics, where the concepts of stochasticity and entropy produc-
tion play central roles (and where we do not know a priori the probability
distributions). Nonequilibrium statistical mechanics (or nonequilibrium
stochastic thermodynamics) provides a unifying description for stochas-
tic dynamics because it treats microscopic information and energy on the
same footing, which allows us to get the right estimates of information
and energy rates from first principles. Such an approach was initiated in
Karbowski (2019, 2021) for studying nonequilibrium thermodynamics of
synaptic plasticity. Both of these studies suggested that synaptic plasticity
can use energy rather economically, since (1) it consumes only about 4%
to 11% of energy devoted for fast synaptic transmission (Karbowski, 2019),
and (2) it can provide higher coding accuracy and longer memory time for
a lower energy cost at certain regimes (Karbowski, 2019, 2021).

There exists large experimental evidence that local synaptic coopera-
tivity on a dendrite takes place during learning and memory formation
(Makino & Malinow, 2011, and Yadav et al., 2012; for a review see Winnubst
et al., 2012), and it can also be useful for long-term memory stability (Govin-
darajan et al., 2006; Kastellakis & Poirazi, 2019). Thus, it seems that any re-
alistic model of synaptic plasticity relevant for memory formation should
include correlations between neighboring synapses. Moreover, it would be
good to know how such correlations influence the lifetime of memory trace,
as well as information gain and the energy cost associated with it.

This study explores nonequilibrium statistical mechanics for investigat-
ing the efficiency of learning and storing information in a system of inter-
acting synapses with stochastic dynamics during early LTP induction and
its maintenance (e-LTP phase, without consolidation). Not only fast synap-
tic transmission is noisy (Volgushev et al., 2004); the noise is also present in
long-term synaptic dynamics associated with slow plasticity due to large
thermal fluctuations in internal molecules and presynaptic input (Bonho-
effer & Yuste, 2002; Holtmaat et al., 2005; Choquet & Triller, 2013; Statman
et al., 2014; Meyer et al., 2014; Kasai et al., 2003; Loewenstein et al., 2011).
Thus, synaptic plasticity requires a probabilistic approach (Yasumatsu et al.,
2008), and we assume that it can be described as dynamics involving tran-
sitions between discrete mesoscopic states (Montgomery & Madison, 2004;
Fusi et al., 2005; Leibold & Kempter, 2008; Barrett et al., 2009; Benna & Fusi,
2016). Our letter extends the previous two studies (Karbowski, 2019, 2021)
in three important methodological ways. First, it provides a general frame-
work for approximating the dynamics of a multidimensional stochastic
system of N interacting synapses each with four internal states (which in
practice is computationally intractable for large N) by reducing it to a set of
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274 J. Karbowski and P. Urban

coupled lower-dimensional stochastic subsystems (which are computation-
ally tractable). This is done by applying the so-called pair approximation,
which allows us to reduce the system with 4N equations to the system with
about 4(5N − 4) equations. Second, our letter provides explicit formulas for
investigating information gain (rate of Kullback-Leibler divergence) and
energy consumption (entropy production rate) for arbitrary time during
learning and memory retention phases. Third, we use data-driven estimates
for transition rates between different synaptic states, and hence our values
of information and energy are realistic.

On a conceptual level, our study investigates how the efficiency of en-
coded information (both amount and duration) depends on a degree of cor-
relation between neighboring synapses, a percentage of their activation by
presynaptic neurons, and the magnitude and duration of synaptic stimu-
lation during LTP. The first relates to cooperativity between synapses, the
second to sparseness of synaptic coding, and the last to the strength of learn-
ing. All of these parameters can in principle be compared to empirical data
once those are available, thus providing an important link between theory
and experiment.

Throughout the letter, we use interchangeably the terms dendritic spine
and synapse.

2 Model of Plastic Interacting Dendritic Spines

We consider a single postsynaptic neuron having one basal (main) dendrite
with N dendritic spines located along its length (see Figure 1). Because of
the small sizes of dendritic spines (about 1 μm), their dynamics are neces-
sarily probabilistic due to thermodynamic fluctuations of local environment
(with high temperature of about 300 K), as well as due to activity fluctua-
tions in neurons (both an electric and chemical nature). Moreover and im-
portantly, the spines are locally coupled by nearest-neighbor interactions,
as the experimental data suggest (Makino & Malinow, 2011; Yadav et al.,
2012; Winnubst et al., 2012).

2.1 Morphological Spine States and Stochastic Multidimensional Dy-
namics. Empirical data indicate that a single dendritic spine can be re-
garded as a four-state stochastic system with well-defined morphological
(mesoscopic) states (Montgomery & Madison, 2004; Bokota et al., 2016; Basu
et al., 2018; Urban et al., 2020; see Figure 1A). These states are denoted here
as si at each location i, with values si = 0, 1, 2, 3, corresponding respectively
to the following morphological states: nonexistent, stubby, filopodia/thin,
and mushroom (the larger si, the larger the spine size; see appendix A).
These mesoscopic states are quasi-stable, which means that there are slow
transitions between them that are much slower than microscopic transitions
between molecular, mostly unknown, processes comprising internal micro-
scopic dynamics of a dendritic spine (Kennedy, 2000; Sheng & Hoogenraad,
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Information and Energy During LTP 275

Figure 1: Mesoscopic model of dendritic spines and their interactions on a den-
drite. (A) Four state stochastic models of a dendritic spine with transitions be-
tween the mesoscopic states. (B) Interactions between spines on a dendrite are
determined only by nearest neighbors, in such a way that the spine’s intrinsic
transition rates depend on the states of neighboring spines. These interactions
can be thought of as representing inflow and outflow of different molecules be-
tween spines.

2007; Miller et al., 2005; Kandel et al., 2014). This approach can be treated as
a coarse-grained description of intrinsic spine dynamics in terms of stochas-
tic Markov process on a mesoscopic scale.

We assume stochastic dynamics for N-coupled dendritic spines and de-
note by P(s1, s2, . . . , sN; t) the probability that the spine system has the
configuration of internal states s1, s2, . . . , sN. The dynamic of this global
stochastic state is motivated by the Glauber model of time-dependent Ising
model (Glauber, 1963), and it is represented by the following master equa-
tion (see appendix A)

dP(s1, . . . , sN )
dt

=
N∑

i=1

∑
s′

i

wsi,s′
i
(si−1, si+1)P(s1, . . . , s′

i, . . . , sN )

− P(s1, . . . , sN )
N∑

i=1

∑
s′

i

ws′
i,si (si−1, si+1), (2.1)
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276 J. Karbowski and P. Urban

Table 1: Values of Intrinsic Basic Transition Rates vs,s′ in Each Synapse.

Matrix Element Value

v0,1 0.019
v1,0 0.065
v0,2 0.015
v2,0 0.007
v0,3 0.022
v3,0 0.001
v2,1 0.003
v1,2 0.061
v2,3 0.009
v3,2 0.015
v1,3 0.049
v3,1 0.008

Notes: All diagonal ele-
ments (that is vk,k) are
zero. The units are in
min−1.

where wsi,s′
i
(si−1, si+1) is the transition rate for the jumps inside spine i from

state s′
i to state si. These jumps also depend on the states of neighboring

spines si−1 and si+1, because of the nearest-neighbor coupling between the
spines (see Figure 1B). Generally we take the following form of the transi-
tion matrix wsi,s′

i
(si−1, si+1),

wsi,s′
i
(si−1, si+1) = vsi,s′

i

[
1 + θ (d(si) − d(s′

i))
γ

2d(3)
[d(si−1) + d(si+1)]

]

×[
1 + ai(1 + θ (d(si) − d(s′

i))) f (t)
]
, (2.2)

where vsi,s′
i

is the intrinsic basic transition rate between s′
i and si at spine i,

and it is independent of the neighboring synapses. These intrinsic rates are
the same for each i, setting the temporal scale for basal synaptic plasticity,
and they were estimated based on data in Urban et al. (2020) and are pre-
sented in Table 1. The symbol d(si) is the spine size at state si of spine i, and
it is proportional to the spine surface area (see appendix A), whereas θ (x)
denotes the sign function of the argument x, where θ (x) = 1 if x ≥ 0 and
θ (x) = −1 if x < 0. Note that larger spine sizes of neighboring spines gen-
erally influence more the transition rates of the given spine, which relates
to their cooperativity. The parameter γ corresponds to the magnitude of
spine cooperativity between nearest neighbors, with −1 ≤ γ ≤ 1, and there
is rescaling by the maximal spine size d(3) (size in state s = 3 called mush-
room), which ensures the positivity of all elements of the transition matrix.
The positive values of γ indicate positive correlations (positive cooper-
ativity), while its negative values mean negative correlations (negative
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Information and Energy During LTP 277

Table 2: Nominal Values of Global Parameters Used in Computations.

Description Variable Value Units

Number of synapses N 1000 Unitless
Cooperativity γ (−1.0, 1.0) Unitless
Probability of stimulation pact 0.3 Unitless
Stimulation amplitude A 200 Unitless
Decay time of stimulation τ1 15 min
Rising time of stimulation τ2 2 min
Energy scale for plasticity ε 4.6 · 105 kT

Notes: Value of stimulation amplitude A is motivated by exper-
imental facts that during LTP, the rates of protein phosphoryla-
tion at PSD increase by two or three orders of magnitude with
respect to baseline rates (Miller et al., 2005). Energy scale ε for
synaptic plasticity was taken from the estimate in Karbowski
(2021).

cooperativity). Note that for positive cooperativity, the local spine interac-
tions amplify the transitions that lead to an increase of spine size and reduce
transitions that decrease spine size. The opposite is true for negative coop-
erativity. It should be added that distant spines also can affect a given spine
at location i, but that interaction has an indirect character and thus is weaker
and mediated with some delay.

The last factor on the right in equation 2.2 indicates the effect of exter-
nal (presynaptic) stimulation, leading to LTP, with a time-varying function
known as alpha function f (t) given by

f (t) = A(e−t/τ1 − e−t/τ2 ), (2.3)

where A is the stimulation amplitude, t is the time after stimulation onset,
and τ1, τ2 are time constants related to falling and rising phases of the stimu-
lation, respectively. The latter means that LTP-related stimulation lasts only
about τ1 + τ2 (around 17 minutes; see Table 2), which we call the duration of
the learning phase. After that time, all the transition rates essentially decay
to their prestimulation basal values. Consequently, after the stimulation, the
dynamics of synaptic plasticity is driven only by the interactions between
neighboring spines and their internal states. These dynamics are slow, and
we call this stage the memory phase. The prefactor ai of f (t) in equation 2.2
assumes two values: ai = 1 when the spine i is stimulated with the probabil-
ity pact , and ai = 0 when there is no stimulation with the probability 1 − pact .
Note that LTP-related stimulation amplifies only the transitions increasing
the spine size (the sign function θ is then 1). For the transitions decreasing
the spine size, there is no amplification because then the prefactor of f (t) is
zero.
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278 J. Karbowski and P. Urban

The important point is that during learning (the phase when the func-
tion f (t) is activated), the information about the stimulation is encoded
in the patterns of the probabilities P(s1, . . . , sN ). Thus, knowing how these
patterns change in time provides necessary “data” for computing physical
characteristics of learning and memory.

2.2 Reduction of Multidimensional Spine Stochastic Dynamics
into Low-Dimensional Dynamics: Pair Approximation. Equation 2.1 de-
scribes the dynamics of the multidimensional probability that involves a
gigantic 4N number of equations. For a typical number of synapses on a
dendrite N ∼ 103, the dynamics represented by equation 2.1 require ∼10600

equations, which are impossible to simulate and solve on any computer.
This numerical impossibility forces us to find an approximation to the dy-
namics in equation 2.1. Consequently, we consider a lower-dimensional dy-
namics involving only singlets and pairs of locally interacting spines. This
strategy is sufficient to describe the global dynamics of the synaptic system
and to compute information and energy rates if we make a certain reason-
able assumption (see below).

The probabilities for singlets and doublets of spine states P(si) and
P(si, si+1) can be obtained from equation 2.1 by summations over all other
states in other synapses as

P(si) =
∑

s1

. . .
∑
si−1

∑
si+1

. . .
∑
sN

P(s1, . . . , si, . . . , sN )

and, similarly,

P(si, si+1) =
∑

s1

. . .
∑
si−1

∑
si+2

. . .
∑
sN

P(s1, . . . , si, . . . , sN ).

As a result, we obtain two equations:

dP(si)
dt

=
∑
si−1

∑
si+1

∑
s′

i

[
wsi,s′

i
(si−1, si+1)P(si−1, s′

i, si+1)

− ws′
i,si (si−1, si+1)P(si−1, si, si+1)

]
, (2.4)

which is valid for i = 2, . . . , N − 1, and

dP(si, si+1)
dt

=
∑
si−1

∑
s′

i

[
wsi,s′

i
(si−1, si+1)P(si−1, s′

i, si+1)

− ws′
i,si (si−1, si+1)P(si−1, si, si+1)

]
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Information and Energy During LTP 279

+
∑
si+2

∑
s′

i+1

[
wsi+1,s′

i+1
(si, si+2)P(si, s′

i+1, si+2)

− ws′
i+1,si+1 (si, si+2)P(si, si+1, si+2)

]
, (2.5)

which is valid for i = 2, . . . , N − 2. For the boundary probabilities, that
is, for the dynamics of P(s1), P(sN ) and P(s1, s2), P(sN−1, sN ), we have
similar equations, except we drop the boundary terms s0, sN+1 as they are
nonexistent.

Equations 2.4 and 2.5 for the dynamics of P(si) and P(si, si+1) in-
volve additionally the probabilities of spine triplets P(si−1, si, si+1) and
P(si, si+1, si+2), and thus they do not form a closed system of equations. To
close these equations, we use the so-called pair approximation for proba-
bilities. The main idea in this approximation is that the biggest influence
on a given synapse is exerted only by the nearest-neighbor synapses, and
the effects from remote neighbors can be neglected, as is implied by the
form of the transition rate wsi,s′

i
(si−1, si+1). Specifically, for three neighbor-

ing synapses indexed spatially as i − 1, i, i + 1, the dynamic of synapse i − 1
depends directly only on the state of synapse i, and the influence of i + 1
synapse can be neglected as coming from the remote site. In terms of prob-
abilities, this can be written as

P(si−1, si, si+1) ≈ P(si−1, si)P(si, si+1)/P(si), (2.6)

where we used the approximation for the conditional probability
P(si−1|si, si+1) ≈ P(si−1|si) and the fact that P(si−1|si) = P(si−1, si)/P(si). Thus,
the probabilities of the spine triplets can be effectively written as combina-
tions of the probabilities for spine singlets and doublets, which forms the
essence of the pair approximation. A similar expression can be obtained for
synapses with other combinations of indexes.

The above pair approximation allows us to write the dynamics of prob-
abilities P(si) and P(si, si+1) as

dP(si)
dt

=
∑
si−1

∑
si+1

∑
s′

i

[
wsi,s′

i
(si−1, si+1)

P(si−1, s′
i)P(s′

i, si+1)
P(s′

i)

− ws′
i,si (si−1, si+1)

P(si−1, si)P(si, si+1)
P(si)

]
(2.7)

for i = 2, . . . , N − 1, and

dP(si, si+1)
dt

=
∑
si−1

∑
s′

i

[
wsi,s′

i
(si−1, si+1)

P(si−1, s′
i)P(s′

i, si+1)
P(s′

i)

− ws′
i,si (si−1, si+1)

P(si−1, si)P(si, si+1)
P(si)

]
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280 J. Karbowski and P. Urban

+
∑
si+2

∑
s′

i+1

[
wsi+1,s′

i+1
(si, si+2)

P(si, s′
i+1)P(s′

i+1, si+2)
P(s′

i+1)

− ws′
i+1,si+1 (si, si+2)

P(si, si+1)P(si+1, si+2)
P(si+1)

]
, (2.8)

for i = 2, . . . , N − 2. Similar expressions can be written for the boundary
probabilities with i = 1 and i = N.

It is clear that equations 2.7 and 2.8 for the dynamics of P(si) and
P(si, si+1) form the closed system of equations, since now they only de-
pend on each other. Importantly, the number of equations in the reduced
dynamics (equations 2.7 and 2.8) is only 20N − 16, which is linear in N and
thus much smaller than the original 4N equations, and hence feasible for
numerical analysis. These two types of probabilities are sufficient to com-
pute quantities of interest, which are associated with LTP induction, such
as memory trace and its duration, the average sizes of spines, and the rates
of information gain (Kullback-Leibler divergence) and energy dissipated
(entropy production rate). However, first we check the accuracy of the pair
approximation.

2.3 Validity of the Pair Approximation. In this section, we check how
accurate the pair approximation is by considering a small system of den-
dritic spines with N = 4, for which one can find an exact numerical solution
for the dynamics in equation 2.1. Our goal is to compare this exact solution
with its approximation given by equations 2.7 and 2.8.

Numerical calculations indicate that the pair approximation is accurate,
as exact and approximate probabilities are practically indistinguishable (see
Figure 2A), even for very strong couplings between spines (γ = −0.9 and
γ = 0.9). Moreover, the pair approximation is well defined, since it pre-
serves positivity of all probabilities and their normalization (see Figures 2A
and 2B). Additionally, as an example of the main observable used in this
study, we also compared entropy production rates computed for the ex-
act dynamics in equation 2.1, denoted as EPRex, with that computed from
the approximate dynamics in equations 2.7 and 2.8 and denoted as EPRpa

(the formulas for the exact and approximate EPR are given, respectively, in
equations 3.1 to 3.4 and 3.7 to 3.10). Both entropy production rates are also
essentially indistinguishable, with a small difference between them, at most
0.6% (see Figure 2C).

In order to give a measure of the pair approximation accuracy, we intro-
duce the ratio R for N = 4 spines, defined as

R(s1, s2, s3, s4) = Ppa(s1, s2)Ppa(s2, s3)Ppa(s3, s4)
Ppa(s2)Ppa(s3)Pex(s1, s2, s3, s4)

, (2.9)
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Information and Energy During LTP 281

Figure 2: Comparison of an exact solution and pair approximation for N = 4 in-
teracting spines. (A) Time dependence of exact P1(1)ex and approximated P1(1)pa

probability P(s1 = 1) for three different couplings γ . Both probabilities are
essentially indistinguishable. Exact solutions correspond to solid (γ = −0.9),
dashed (γ = 0.1), and dotted (γ = 0.9) lines. Pair approximations correspond to
diamonds (γ = −0.9), x (γ = 0.1), and circles (γ = 0.9). (B) Normalization con-
dition for probabilities of spine 1,

∑3
s1=0 P(s1). Solid line for γ = −0.9, dashed

line for γ = 0.1, and dotted line for γ = 0.9. Note that the sum deviates from
unity by a very small number—less than 5 · 10−5. (C) Time dependence of exact
(EPRex) and approximated (EPRpa) entropy production rate. Exact EPRex cor-
respond to solid (γ = −0.9) and dashed (γ = 0.1) lines. Pair approximations
EPRpa correspond to diamonds (γ = −0.9) and x (γ = 0.1). Note an excellent
matching of EPRpa to EPRex.

where the subscript pa refers to the pair approximation (see equations 2.7
and 2.8), while ex corresponds to the exact solution (see equation 2.1). When
R approaches 1, the pair approximation matches the exact solution per-
fectly. The larger the deviation of R from unity, the less accurate is the
approximation. This follows from the form of the pair approximation for
four spines: P(s1, s2, s3, s4) ≈ P(s1, s2)P(s2, s3)P(s3, s4)/[P(s2)P(s3)]. To have
a global numerical accuracy, we have to average R over all states, which
yields a mean ratio 〈R〉 = 1

44

∑
s1,...,s4

R(s1, . . . , s4), and its standard devia-
tion SD(R) =

√
〈R2〉 − 〈R〉2, serving as a global error. In Figure 3, we show

that 〈R〉 is very close to 1, and SD(R) is generally small, at most 0.1.
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282 J. Karbowski and P. Urban

Figure 3: Accuracy measure for pair approximation with N = 4 interacting
spines. (A) Average ratio 〈R〉 as a function of time for different magnitudes of
coupling between the spines. (B) Similar to panel A but for standard deviation
of the ratio R. Note that SD(R) is for moderate values of γ much less than 0.05,
and it maximally achieves the value ∼0.1 in the extreme case γ 	→ −1.

Taken together, the numerical results in Figures 2 and 3 indicate that the
pair approximation derived in this study is quite accurate, and its accuracy
is preserved in time. For an analytical example related to the pair approxi-
mation, see appendix B.

3 Derivation of Entropy Production Rate as an Energy Cost for
Interacting Spines

Energy expenditure of synaptic plasticity is associated with transitions be-
tween different states of a dendritic spine. The faster the transitions, the
more energy is used, and vice versa. Generally, a spine is in a thermody-
namic nonequilibrium with its environment, and thus the energy cost is
strictly related to the entropy production rate of the spine (for general ideas
of nonequilibrium thermodynamics, see Nicolis & Prigogine, 1977, and
Peliti & Pigolotti, 2021). Specifically, we assume that the energy rate associ-
ated with plasticity processes in dendritic spines is equal to the entropy pro-
duction associated with stochastic transitions between spine mesoscopic
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states, similar as in Karbowski (2019). In our case of N dendritic spines, the
entropy production rate of the whole system EPR(s1, . . . , sN ) is given by
a general formula for the entropy production (Schnakenberg, 1976; Maes
et al., 2000; Seifert, 2012; Van den Broeck & Esposito, 2015):

EPR(s1, . . . , sN ) =
N∑

i=1

EPRi (3.1)

where EPRi is the individual entropy productions of each interacting spine,

EPRi = ε

2

∑
s1,...,sN

∑
s′

i

[
wsi,s′

i
(si−1, si+1)P(s1, . . . , s′

i, . . . , sN ) − ws′
i,si (si−1, si+1)

× P(s1, . . . , si, . . . , sN )

]
ln

wsi,s′
i
(si−1, si+1)P(s1, . . . , s′

i, . . . , sN )

ws′
i,si (si−1, si+1)P(s1, . . . , si, . . . , sN )

, (3.2)

for i = 2, . . . , N − 1, and for the boundary terms

EPR1 = ε

2

∑
s1,...,sN

∑
s′

1

[
ws1,s′

1
(s2)P(s′

1, s2, . . . , sN ) − ws′
1,s1 (s2)P(s1, s2, . . . , sN )

]

× ln
ws1,s′

1
(s2)P(s′

1, s2, . . . , sN )

ws′
1,s1 (s2)P(s1, s2, . . . , sN )

(3.3)

and

EPRN = ε

2

∑
s1,...,sN

∑
s′

N

[
wsN,s′

N
(sN−1)P(s1, s2, . . . , s′

N )

− ws′
N,sN (sN−1)P(s1, s2, . . . , sN )

]
× ln

wsN,s′
N

(sN−1)P(s1, s2, . . . , s′
N )

ws′
N,sN (sN−1)P(s1, s2, . . . , sN )

, (3.4)

where ε is the energy scale for various biophysical processes taking place
inside a typical dendritic spine and related to molecular plasticity. Its value
was estimated at about ε ≈ 4.6 · 105 kT (or 2.3 · 104 ATP molecules), where
k is the Boltzmann constant and T is the absolute brain temperature (see
Karbowski, 2021). In a nutshell, these numbers can be understood by con-
sidering that a typical dendritic spine contains roughly 104 proteins, each
with a few degrees of freedom corresponding to the number of phosphory-
lation sites (Sheng & Hoogenraad, 2007).
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As before, we explore the pair approximation in equations 3.2 to 3.4,
which in the case of N spines takes the form

P(s1, . . . , si−1, s′
i, si+1, . . . , sN )

≈ P(s1, s2) . . . P(si−1, s′
i)P(s′

i, si+1) . . . P(sN−1, sN )
P(s1) . . . P(si−1)P(s′

i)P(si+1) . . . P(sN−1)
. (3.5)

This is a straightforward generalization of formula 2.6, which can be easily
verified. Application of equation 3.5 leads to simplification of the ratio of
probabilities under the logarithm in equation 3.2 as

P(s1, . . . , si−1, s′
i, si+1, . . . , sN )

P(s1, . . . , si−1, si, si+1, . . . , sN )
≈ P(si−1, s′

i)P(s′
i, si+1)P(si)

P(si−1, si)P(si, si+1)P(s′
i)

, (3.6)

which allows us to perform summation over almost all states s1, s2, . . . , sN

except the few in equations 3.2 to 3.4. This step produces the final expression
for the approximate total entropy production rate EPR(s1, . . . , sN ) of our
interacting spines:

EPR(s1, . . . , sN ) =
N∑

i=1

EPRi, (3.7)

where

EPRi ≈ ε

2

∑
si−1,si+1

∑
si,s′

i

[
wsi,s′

i
(si−1, si+1)

P(si−1, s′
i)P(s′

i, si+1)
P(s′

i)
− ws′

i,si (si−1, si+1)

× P(si−1, si)P(si, si+1)
P(si)

]
ln

wsi,s′
i
(si−1, si+1)P(si−1, s′

i)P(s′
i, si+1)P(si)

ws′
i,si (si−1, si+1)P(si−1, si)P(si, si+1)P(s′

i)

(3.8)

for i = 2, . . . , N − 1, and for the boundary terms

EPR1 ≈ ε

2

∑
s1,s2

∑
s′

1

[
ws1,s′

1
(s2)P(s′

1, s2) − ws′
1,s1 (s2)P(s1, s2)

]

× ln
ws1,s′

1
(s2)P(s′

1, s2)

ws′
1,s1 (s2)P(s1, s2)

(3.9)
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and

EPRN ≈ ε

2

∑
sN−1,sN

∑
s′

N

[
wsN,s′

N
(sN−1)P(sN−1, s′

N ) − ws′
N,sN (sN−1)P(sN−1, sN )

]

× ln
wsN,s′

N
(sN−1)P(sN−1, s′

N )

ws′
N,sN (sN−1)P(sN−1, sN )

. (3.10)

Note that the total entropy production of all spines EPR(s1, . . . , sN ) is deter-
mined exclusively in terms of the two types of probabilities considered in
equations 2.7 and 2.8, that is, one- and two-point probabilities. It is also in-
teresting to mention that the form of the approximated EPR in equation 3.8
can be also deduced instantly from the form of the approximated dynamics
for probabilities in equation 2.7. This is possible if one realizes that the ex-
pression in the bracket on the right in equation 2.7 represents a probability
flux.

The total energy E used by all spines for LTP induction and its mainte-
nance up to recovery (during synaptic stimulation and post stimulation) is
the energy needed to keep the memory trace above the threshold. E is the
total energy cost of LTP, and it is defined as

E =
∫ TM

0
dt EPR(t), (3.11)

where t = 0 relates to the onset of stimulation, EPR(t) is the total en-
tropy production rate given by equations 3.7 to 3.10 and TM = TM + τ1 + τ2,
where TM is the memory time, and τ1 + τ2 is the duration of the stimulation
(learning phase; see equation 2.3). The energy used solely for LTP induction
and maintenance is denoted as Eltp, and it is given by Eltp = E − EPR0TM,
where EPR0 is the baseline entropy production rate of all spines.

4 Definition of Memory Trace and Memory Time

We define the signal associated with dendritic spine activation as

S = 1
N

N∑
i=1

si. (4.1)

The signal at a steady state (baseline) is denoted as Sss. Memory trace MT
is defined as the average normalized signal-to-noise ratio. The normal-
ized signal is simply its deviation from the steady state or baseline. Con-
sequently, the memory trace takes the form
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MT = (〈S〉 − 〈Sss〉)√
〈S2〉 − 〈S〉2

, (4.2)

where 〈Sn〉 = ∑
s1

. . .
∑

sN
SnP(s1, . . . , sN ) for n = 1, 2. The explicit forms for

the signals and variance of the signal are

〈S〉 = 1
N

N∑
i=1

〈si〉, (4.3)

〈S〉ss = 1
N

N∑
i=1

〈si〉ss, (4.4)

〈S2〉 − 〈S〉2 = 1
N2

N∑
i=1

[〈s2
i 〉 − 〈si〉2] + 1

N2

∑
i �= j

N∑
j=1

[〈sis j〉 − 〈si〉〈s j〉
]
, (4.5)

where 〈sn
i 〉 = ∑

si
sn

i P(si), 〈si〉ss = ∑
si

siPss(si), and 〈sis j〉 = ∑
si

∑
s j

sis jP(si, s j ),
where Pss(si) is the probability distribution at baseline state. The first sum on
the right in equation 4.5 is the sum of variances of individual spines, while
the second sum is the total cross-correlation of spines. In the pair approxi-
mation for the probability, the last sum associated with the correlations sim-
plifies, as only the cross-correlations between neighboring spines provide
nonzero contributions, since generally P(si, s j ) ≈ P(si)P(s j ) for |i − j| ≥ 2.

Memory time TM is defined as the time t after stimulation for which
memory trace MT is in a declining phase and assumes value 1 (Fusi
et al., 2005; Leibold & Kempter, 2008; Karbowski, 2019). This is the mo-
ment in time when a normalized signal becomes comparable to its noise
component.

5 Derivation of Information Gain for Interacting Spines

Information gain I, for all spines, right after the end of LTP (i.e., when mem-
ory trace decays to the noise level MT = 1), is defined as the Kullback-
Leibler divergence at time t = TM, that is, KL(t = TM), between the baseline
steady-state initial probability P(s1, . . . , sN )ss at time t = 0 (before LTP stim-
ulation) and final probability at time t = TM, that is, P(s1, . . . , sN; t = TM).
Its form is given by

I ≡ KL
(

P(s1, . . . , sN; t = TM)||P(s1, . . . , sN )ss

)

=
∑

s1,...,sN

P(s1, . . . , sN; t = TM) ln
P(s1, . . . , sN; t = TM)

P(s1, . . . , sN )ss
. (5.1)

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/36/2/271/2213745/neco_a_01632.pdf by R
am

ona M
archand on 22 January 2024



Information and Energy During LTP 287

For the pair approximation for the probabilities (see equation 3.5), infor-
mation gain I takes the form

I =
N−2∑
i=1

∑
si

∑
si+1

P(si, si+1) ln
P(si, si+1)Pss(si+1)
Pss(si, si+1)P(si+1)

+
∑
sN−1

∑
sN

P(sN−1, sN ) ln
P(sN−1, sN )
Pss(sN−1, sN )

, (5.2)

which is used in the computations.
The rate of information gain is equivalent to the rate of Kullback-Leibler

(KL) divergence at arbitrary time t, that is, KL(t) (given by equation 5.1,
but for arbitrary t). We are interested in the rate of information gain, since
we want to compare it directly to the entropy production rate, which has a
similar information-theoretic meaning. The rate of KL, which we denote as
KLR, is given by KLR = dKL(t)/dt. We find

KLR =
∑

s1,...,sN

dP(s1, . . . , sN )
dt

ln
P(s1, . . . , sN )
Pss(s1, . . . , sN )

, (5.3)

where we used the fact that
∑

s1,...,sN
dP(s1, . . . , sN )/dt = 0. The next step is

to substitute equation 2.1 for dP(s1,...,sN )
dt and to perform summations over

almost all states s1, . . . , sN, except the few, similar to the calculation for EPR.
Finally, we use the pair approximation. As a result, we obtain the total rate
of information gain for all spines as

KLR =
∑
s1,s′

1

∑
s2

[
ws1,s′

1
(s2)P(s′

1, s2) − ws′
1,s1 (s2)P(s1, s2)

]
ln

P(s1, s2)
Pss(s1, s2)

+
∑
sN,s′

N

∑
sN−1

[
wsN,s′

N
(sN−1)P(sN−1, s′

N ) − ws′
N,sN (sN−1)P(sN−1, sN )

]

× ln
P(sN−1, sN )
Pss(sN−1, sN )

+
N−1∑
i=2

∑
si,s′

i

∑
si−1,si+1

[
wsi,s′

i
(si−1, si+1)

P(si−1, s′
i)P(s′

i, si+1)
P(s′

i)

− ws′
i,si (si−1, si+1)

P(si−1, si)P(si, si+1)
P(si)

]
ln

P(si−1, si)P(si, si+1)Pss(si)
Pss(si−1, si)Pss(si, si+1)P(si)

.

(5.4)

As can be seen, the rate of information gain KLR depends, similar to EPR, on
the transition rates between states in all spines. In all figures, we plot KLR
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per spine: KLR/N. Finally, note that the information gain I is the temporal

integral of KLR from t = 0 to t = TM: I = ∫ TM

0 dt KLR(t).

6 Numerical Results on Memory Trace, Information Gain, and Energy
Cost during LTP

We divide the global dynamics of our system of interacting dendritic spines
into two stages. The first stage relates to approaching and reaching a steady
state, starting from random initial conditions (with f (t) = 0 for each spine).
This steady state is a thermodynamic nonequilibrium steady state that
uses some small but nonzero energy (small but nonzero EPR) and can be
thought of as the state in which some background information is written
in synapses. After reaching the steady state, we start a second stage associ-
ated with spine stimulation, which we call the LTP (long-term potentiation)
phase. This stage consists of a brief stimulation of the synaptic system by
amplifying the transition rates by the function f (t) present in equations 2.2
and 2.3, and then observation of the system recovery to the steady state,
with simultaneous recording of the most important observables. Stimula-
tion of synapses is done by turning on the amplifier function f (t), which
amplifies the transition rates between synaptic states. We call this stimula-
tion phase the learning phase and the recovery phase as the memory phase.

6.1 Dynamics of Memory Trace, Information, and Energy Rates, and
Synaptic Size Associated with LTP Induction. Following LTP induction
(starting at time t = 0 in the f (t) function) memory trace MT contained in
synapses behaves differently from the rates of information gain (KLR) and
energy (EPR) (see Figure 4). Initially all three quantities increase sharply,
similar to f (t), but later their dynamics diverge. Specifically, memory trace
exhibits a long temporal tail; it decays much more slowly than the stimu-
lation function f (t), with a longer tail for positive cooperation (γ > 0) be-
tween neighboring spines than for negative cooperation (see Figure 4B).
Both KLR and EPR (per synapse) decay extremely quickly to their base-
line values, much faster than f (t) (see Figures 4C and 4D). This strongly
suggests that keeping memory trace high does not require large rates of en-
ergy. Moreover, the dynamics of KLR and EPR are very similar in shape, and
their ratio is positive only initially, when synaptic stimulation increases in
time (see Figure 4E). This behavior indicates that the amount of information
written at synapses increases sharply only at the beginning of LTP (learn-
ing); at later stages (memory), it weakly decreases (note the negative values
of KLR/EPR). The rates of information gain (KLR) and energy (EPR) de-
pend weakly, and in the opposite way, on the sign of cooperativity γ ; the
peak of KLR is greater for negative γ , while the peak of EPR is greater for
positive γ (see Figures 4C and 4D). At its peak, during stimulation, energy
is consumed at rate 4.6 · 105 kT/min per spine, and information is gained
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Information and Energy During LTP 289

Figure 4: Dynamics of memory trace and the rates of information gain and en-
ergy. Temporal dependence of (A) stimulation function f (t) (amplifier of tran-
sitions between the states), (B) memory trace MT, (C) information gain rate per
spine (KLR/N), (D) entropy production rate (energy rate) per spine (EPR/N
in units of ε/min), and of (E) the ratio of information gain rate to entropy pro-
duction rate per spine (KLR/EPR). The learning phase, equivalent to stimula-
tion phase, lasts up to 20 min (A). The memory phase, quantified by memory
trace, starts after the end of stimulation and lasts up to about 120 minutes (B).
Note that with stimulation, the rates of information gain and entropy produc-
tion (KLR and EPR) achieve peaks quickly, but they also decay quickly. In con-
trast, memory trace lasts much longer. The EPR value at its peak is ∼ε/min
≈ 4.6 · 105 kT/min per spine, which is about two to three orders of magnitude
larger than at baseline (before or long after the stimulation).
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290 J. Karbowski and P. Urban

Figure 5: Dynamics of spine size, correlations, and information gain per spine
size. Temporal dependence of (A) stimulation function f (t), (B) average spine
size 〈S〉, (C) normalized correlations between spines, and (D) the ratio of KLR
per spine to average spine size 〈S〉.

at rate 0.1 bits/min per spine, which indicates that acquiring 1 bit at that
moment in time is very expensive and costs about 4.6 · 106 kT per spine.

The dynamics of spine sizes following LTP induction are similar to the
behavior of memory trace, except that sizes stabilize at some finite level
(see Figure 5). Positive cooperativity among synapses (γ > 0) generally in-
dicates positive correlations between them, and vice versa (see Figure 5C).
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Consequently, positive correlations lead to higher mean spine sizes than
negative correlations (see Figure 5B). An opposite effect is seen for the ratio
of KLR and spine size; higher peaks are observed for negative cooperativ-
ity between synapses (see Figure 5D). Interestingly, normalized correlations
are more variable during learning and memory phases for negative coop-
erativity than for positive one (see Figure 5C).

6.2 Memory Time, Spine Size, Information Gain after LTP, and Their
Energy Costs as Functions of Synaptic Cooperativity. Memory time TM

grows monotonically but very weakly with cooperativity γ up to a point
where γ is close to its maximal value 1 (see Figure 6A). In that regime of
very high positive cooperativity, TM increases sharply with γ . The oppo-
site dependence on γ is present for information gain I and average spine
size (see Figures 6B and 6E). I generally decreases with γ (for negative γ ,
the decay is stronger than for positive γ ; see Figure 6B), whereas mean spine
size monotonically increases with γ (the increase is stronger for γ close to
1; see Figure 6E). Total energy E consumed during LTP and its part Eltp

related solely to LTP depends nonmonotonically on cooperativity γ , ex-
hibiting broad maxima for γ = 0 (see Figures 6C and 6D). For γ close to its
maximal value 1, E and Eltp behave in opposite ways: the former increases
while the latter decreases with γ . This suggests that the cost of LTP alone
drops for very high cooperativity.

How do these results translate to energy and structural efficiency of
memory lifetime and information gain? Figure 7 provides the answers. The
ratios of memory time and the energies, TM/E and TM/Eltp, are essentially
constant for γ up to ∼0.8 (see Figure 7A), suggesting that memory time and
both of these energies grow proportionally with cooperativity for a wide
range of γ . For larger γ , these ratios grow significantly with γ , especially
TM/Eltp, indicating that energy efficiency of memory time is enhanced in the
regime of very high, positive synaptic cooperativity (see Figure 7A).

Energy efficiency of information gain is more complex (see Figure 7B).
Generally the ratio of information to total energy during LTP I/E decreases
monotonically with γ , meaning that the efficiency of I is maximal for neg-
ative cooperativity between synapses. On the other hand, the ratio of in-
formation to energy solely to LTP, that is, I/Eltp as a function of γ , has a
U-shape, with large values for both high negative and high positive cooper-
ativity. The latter means that information efficiency in that energy currency
has two regimes of higher values (see Figure 7B). However, it should be
emphasized that the overall energy efficiency of information gain is rather
low, at (5 − 10) · 10−4 bits/ε or (1 − 2) · 10−9 bits/kT, that is, 1 bit of stored
memory (after the decline of LTP, that is, after time ∼TM) costs about 109 kT
(see also below).

Structural efficiency (or energy efficiency of transmission) of memory
time and information gain exhibit different behavior as functions of synap-
tic cooperativity (see Figures 7C and 7D). The ratio of information gain to
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292 J. Karbowski and P. Urban

Figure 6: Dependence of memory time, information gain, energy cost, and
spine size on the synaptic cooperativity. (A, B) Monotonic but opposite de-
pendence of memory time TM and total information gain I on cooperativity γ .
(C, D) Total energy consumption of all spines E during LTP and its part Eltp,
related solely to LTP induction and maintenance, exhibit nonmonotonic depen-
dence on γ (energy units are in ε). During the full LTP, a typical spine used
about 5ε ≈ 2.3 · 106 kT of energy (all N = 1000 spines used 5000ε ≈ 2.3 · 109 kT).
(E) Average spine size increases monotonically with γ .
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Figure 7: Energetic and structural efficiencies of memory time and information
gain in comparison to spine correlations. Ratios of (A) memory time TM and (B)
information gain I to two energies E and Eltp exhibit two opposite dependence.
Similar behavior for the ratios of (C) memory time and (D) information gain
to average spine size 〈S〉 as functions of γ . (E) Normalized correlations always
increase with γ , reaching ∼0.3 for γ 	→ 1.

mean spine size I/〈S〉 decreases monotonically with γ , which indicates that
structural efficiency of information is the largest for negative cooperativity
(see Figure 7D), similar to the (total) energy efficiency of I (see Figure 7B).
The ratio of memory time to mean spine size TM/〈S〉 decreases slightly with
increasing cooperativity from negative values of γ , but for γ ≈ 0.4, this ratio
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increases sharply with γ (see Figure 7C). This result shows that the struc-
tural efficiency of memory time is the highest for strong, positive synaptic
cooperativity (see Figure 7C), where spine normalized correlations reach
values of 0.2 to 0.3 (see Figure 7E).

6.3 Sparse Representations of Synaptic Memory and Information Are
More Energy Efficient. Next we investigate how memory time, informa-
tion gain, average spine size, and energy cost depend on the fraction pact of
stimulated synapses by presynaptic neurons (see Figure 8). Memory time
TM, energy cost solely due to LTP Eltp, and mean spine size grow monoton-
ically with pact , though the first one saturates for larger pact (see Figures 8A,
8C, and 8D). In contrast, information gain I and total energy cost E display
nonmonotonic behavior: the former has a maximum, while the latter a mini-
mum for a small fraction of active synapses (see Figures 8B and 8C). In terms
of energy efficiency, the ratios of TM/E, TM/Eltp and I/E, I/Eltp have maxima
at around the same small fraction pact , regardless of the sign of synaptic co-
operativity γ (see Figures 9A and 9B). This means that there exist, an opti-
mal percentage of activated synapses on a dendrite that yields the highest
information gain and memory lifetime per invested energy (whether to-
tal or only due to LTP). For that optimal pact , the energy cost of 1 bit of
stored information is about 107 kT, which is much lower (and thus more
efficient) than for values pact away from the optimality. Interestingly, the
normalized correlations between spines are essentially independent of pact

(see Figure 9E).
Structural efficiency of information gain and memory time is qualita-

tively similar to their energy efficiency (see Figure 9). The information per
spine size I/〈S〉 has a similar sharp peak as I/E for low pact (see Figure 9D).
However, memory time per spine size TM/〈S〉 has a much broader maxi-
mum at higher values of pact (see Figure 9C).

Taken together, these results indicate that energetic and structural effi-
ciency of information and its duration in synapses can be optimized for
low fractions of activated synapses during LTP. In other words, acquiring
and storing of synaptic information can be most efficient by using sparse
synaptic representations, regardless of the nature of synaptic cooperativity.

6.4 Memory Time, Spine Size, Information Gain, and Their Energy
Costs as Functions of Strength and Duration of Stimulation. In Figures 10
and 11, we show how the main observables depend on the duration of
stimulation τ1 (decay time of the stimulation). Memory time TM and its en-
ergy costs E, Eltp both grow proportionally with τ1 (see Figures 10A and
10C), such that their ratios TM/E and TM/Eltp are almost constant, although
with a weak increasing trend (see Figure 11A). Information gain I as well
as its energy efficiencies I/E, I/Eltp decrease with τ1 for small τ1, but for
larger τ1, all of these quantities saturate at some small level (see Figures 10B
and 11B). Average spine size shows a similar saturation effect after a small
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Figure 8: Dependence of memory time, information gain, energy cost, and
spine size on probability of synaptic stimulation. (A) Memory lifetime TM satu-
rates for large pact . (B) Information gain exhibits a sharp peak for very small pact .
(C, D) Energy solely due to LTP and average spine size increases linearly with
pact .

initial increase (see Figure 10D). In terms of structural efficiency, TM/〈S〉
grows linearly with τ1 (see Figure 11C), and I/〈S〉 first decreases with τ1

and then saturates (see Figure 11D). The results in Figure 11 indicate that
longer stimulation times are not particularly beneficial for energy effi-
ciency of memory lifetime and information gain (see Figures 11A and 11B).
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296 J. Karbowski and P. Urban

Figure 9: Energetic and structural efficiencies of memory time and information
gain as functions of probability of synaptic stimulation (A–D). All the ratios of
memory time and information gain to energies and to spine size 〈S〉 exhibit max-
ima. At the peak, the ratio I/E is ∼0.05 bit/ε and I/Eltp is ∼0.15 bit/ε, which
means that 1 bit of stored information after LTP degradation requires about
107 kT of energy (A–E).

However, longer stimulation may be advantageous for structural efficiency
of memory duration (see Figure 11C), though not for information I (see Fig-
ure 11D).
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Figure 10: Dependence of memory time, information gain, energy cost, and
spine size on duration of stimulation τ1 (A–D).

In Figures 12 and 13, we present the dependence of memory time, in-
formation gain, energy cost, and mean spine size on the amplitude of
stimulation A. Memory time TM and energy costs both grow weakly but
saturate with A (see Figures 12A and 12C). On the other hand, I and spine
size 〈S〉 stay almost constant (see Figures 12B and 12D). These results trans-
late into very weak variability of energy and structural efficiencies of mem-
ory time and information gain on A, which are close to constancy, except
the ratio TM/〈S〉 that exhibits an increasing trend but with a saturation
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298 J. Karbowski and P. Urban

Figure 11: Energetic and structural efficiencies of memory time and informa-
tion gain as functions of duration of stimulation τ1 (A–D). Note that energetic
efficiency of information gain drops with increasing the duration of stimulation
(B). Structural efficiency of memory lifetime grows linearly with τ1 (C).

(see Figure 13). This suggests that stimulations that are too strong are also
not advantageous over weaker stimulations for the efficiency of informa-
tion gain and its duration.

6.5 Influence of Synaptic Number on the Efficiencies of Memory Life-
time and Information Gain. In Figure 14, we show that energy efficiency of
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Figure 12: Dependence of memory time, information gain, energy cost, and
spine size on strength of stimulation A (A–D). Note that information gain (B)
and mean spine size (D) are essentially independent of A.

both memory lifetime TM and information gain I exhibit a decreasing trend
with increasing the number of dendritic spines N. The biggest drop in ef-
ficiency is for changing N from 10 to approximately 2000 (see Figures 14A
and 14B). For higher values of N, the rate of decline is much slower. This
result suggests that having a large number of spines on a dendrite is gener-
ally highly inefficient in terms of energy for storing information. For exam-
ple, for N = 10, we obtain TM/E ≈ 1 min/ε and I/E ≈ 4 · 10−2 bits/ε (i.e.,
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Figure 13: Energetic and structural efficiencies of memory time and informa-
tion gain as functions of strength of stimulation A (A–D). Note that stimulation
amplitudes that are too large are not beneficial for the energy and structural
efficiencies (saturation effects).

storing 1 minute of memory in the spines costs about ε ≈ 4.6 · 105 kT of en-
ergy, and storing 1 bit after the degradation of LTP costs 25ε ≈ 107 kT. In
contrast, for N = (8 − 10) · 103, we have TM/E ≈ 2 · 10−3 min/ε and I/E ≈
10−4 bits/ε, which means that in this case, storing 1 minute of memory costs
∼500ε ≈ 2 · 108 kT and storing 1 bit in all N spines after LTP degradation
costs 104ε ≈ 4.6 · 109 kT.
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Figure 14: Energy and structural efficiencies of memory lifetime and informa-
tion gain drop with increasing synaptic numbers N. (A, B) Energy efficiency of
TM and I decrease dramatically, by two orders of magnitude, with increasing
the number of spines from N = 10 to N = 2000, and much slower with increas-
ing the number of spines from N = 2000 to N = 10,000. (C, D) Essentially the
same declining effect is observed for the structural efficiency of TM and I, that
is, TM/(N〈S〉) and I/(N〈S〉).

Since memory lifetime and information gain are collective variables, to
determine structural efficiencies of these variables as functions of N, we
have to divide TM and I by the whole structural cost of all spines, that is, by
N〈S〉. Thus, the structural efficiencies in this case are the ratios TM/(N〈S〉)
and I/(N〈S〉) (see Figures 14C and 14D), and they drop significantly with
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increasing N, in a similar manner as the corresponding energy efficiencies
(in Figures 14A and 14B).

Taken the two types of the efficiency together, it is clear that having too
many synapses on a dendrite is not beneficial for information storage and
its duration in terms of energy and biochemical resources.

7 Summary and Discussion

We formulated the probabilistic approach to global dynamics of interact-
ing synapses (on a single dendrite) and to their nonequilibrium thermo-
dynamics to study information processing in synaptic internal degrees of
freedom. In order to make the high-dimensional system of interacting
synapses computationally tractable, we introduced the so-called pair ap-
proximation, which effectively reduces the dimensionality and number of
equations describing the system dynamics in a closed form by considering
only the probabilities of singlets and doublets of dendritic spines. We ver-
ified on a simplified example that this approximation provides very good
accuracy of the exact dynamics, as well as entropy production rate. We also
gave the analytical condition for the applicability of the pair approximation
in the equilibrium Ising model in appendix B (for a more general discussion
about the accuracy of the pair approximation, see Matsuda et al., 1992, and
Van Baalen, 2000).

The master equation approach combined with stochastic thermodynam-
ics allows us to treat information contained in synaptic states on equal
footing with its energy cost by relating them to, respectively, the rates of
Kullback-Leibler divergence and entropy production. Both of these quan-
tities depend on state probabilities as well as on transitions between the
states, and we provided explicit formulas for their calculations. The for-
malism makes it clear that every plastic transition in a synaptic system is
associated with some information processing (flow) and some energy ex-
penditure (entropy production). Even stationary states out of thermody-
namic equilibrium (baseline states) require some energy (usually small) in
order to maintain them, which essentially means that keeping information
always costs some energy for nonequilibrium systems even in stationary
conditions. Physically, this energy dissipation (entropy production) in a sta-
tionary state is a consequence of breaking the so-called detailed balance
in probability flows, and it is a generic feature of systems out of thermo-
dynamic equilibrium (in the context of physics, see Maes et al., 2000, and
Seifert, 2012 and for a dendritic spine, see Karbowski, 2019).

Our main results are, first, that the learning phase of a signal (spine stim-
ulations) involves high levels of both information and energy rates, which
are much larger than their values during a memory phase (see Figure 4).
This indicates that keeping information (memory) is relatively cheap in
comparison to acquiring it (learning). This result on a level of many inter-
acting synapses is qualitatively similar to the result in Karbowski (2019),
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where it was shown that a memory trace resulting from molecular tran-
sitions in a single synapse (protein phosphorylation) decouples from the
energy rate after the stimulation phase, leading to a relatively cheap long
memory trace of protein configurations. In our model, the maximal energy
rate of spine plasticity taking place during stimulation is about 4.6 · 105

kT/min (for pact = 0.3, but it depends on A). Second, memory lifetime and
its energy efficiency can significantly increase their values for very strong,
positive synaptic cooperativity, while the opposite is observed for informa-
tion gain right after LTP drops to its noise level (see Figure 7). This result
suggests that strong, local positive correlations between neighboring spines
can be beneficial for memory storage, especially in the range of 0.3 (see Fig-
ure 7E), that is, for values reported experimentally (Makino & Malinow,
2011). This conclusion supports the so-called synaptic clustering hypothe-
sis, which was proposed as a mechanism for producing synaptic memory
(Govindarajan et al., 2006) and enhancing its capacity (Poirazi & Mel, 2001;
Kastellakis & Poirazi, 2019). Third, there exists an optimal fraction of stimu-
lated synapses during LTP for which energy efficiency of both memory life-
time and information gains exhibit maxima (see Figure 9). This means that
sparse representations of learning and memory are much better in terms
of energy efficiency, and thus might be preferable by actual synapses. This
is also true for the structural efficiency of information gain (see Figure 9).
Fourth, energy and structural efficiencies of memory lifetime and informa-
tion gain after degradation of LTP, both drop dramatically with increasing
the number of spines (see Figure 14). For example, storing 1 bit after LTP
is over costs “only” about 107 kT for 10 spines and at least two orders of
magnitude more: ∼4.6 · 109 kT for ∼104 spines. In terms of the cost per one
spine, these numbers are comparable to the energy cost of transmitting 1
bit through a chemical synapse (Laughlin et al., 1998).

Our model is based on the assumption that a dendritic spine can be
treated as the system with discrete states, which is compatible with some
morphological observations (Bourne & Harris, 2008; Montgomery & Madi-
son, 2004; Bokota et al., 2016; Urban et al., 2020). In this respect, it is similar
in architecture to some previous discrete models of synapses or dendritic
spines (Fusi et al., 2005; Leibold & Kempter, 2008; Barrett et al., 2009; Benna
& Fusi, 2016). However, these models treat synaptic states quite arbitrar-
ily and abstractly, and consider mostly unidirectional transitions between
the states, which makes these models thermodynamically inconsistent (e.g.,
entropy production rate, equivalent to plasticity energy rate, is ill defined
and yields infinities for unidirectional transitions). In contrast, our model
takes as a basis well-defined morphological synaptic states, with bidirec-
tional transitions between them that are estimated based on empirical data
(Bokota et al., 2016; Basu et al., 2018; Urban et al., 2020). The latter fea-
ture, bidirectional transitions, makes our model thermodynamically con-
sistent (with finite entropy production), as explained in a previous model
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of metabolic molecular activity in a single spine within the framework of
cascade models of learning and memory (Karbowski, 2019).

In this letter, we consider two types of costs. The first is energy cost
(related to entropy production) associated with stochastic “plastic” tran-
sitions between different synaptic states. The second is structural cost,
defined here as proportional to average spine size and related to the bio-
chemical cost of building a synapse. This structural cost is also proportional
to the rate of electric energy of synaptic transmission (Attwell & Laughlin,
2001; Karbowski, 2009, 2012), as spine size is proportional to synaptic elec-
tric conductance or, more commonly, synaptic weight (Kasai et al., 2003).
For standard cortical conditions (i.e. for low firing rates ∼1 Hz), the en-
ergy cost of synaptic transmission is much larger than the energy cost re-
lated to plasticity processes inside the spine (Karbowski, 2019). However,
these two costs can become comparable for very large firing rates of about
∼100 Hz (Karbowski, 2021). There is some confusion in the literature about
these two types of energy costs, and some researchers associate the struc-
tural cost related to synapse size or weight with “plasticity energy cost,”
by assuming that the larger synaptic weight leads the higher plastic energy
cost (Li & van Rossum, 2020). However, this does not have to be so, and we
should make a distinction between the two energy costs. Bigger synapses
do not necessarily require larger amounts of plasticity-related energy than
smaller synapses because the transitions in bigger synapses could be gen-
erally much slower than in smaller synapses (as is in fact reported in some
experiments; Kasai et al., 2003). Thus, what mostly matters for the plasticity
energy rate are the rates of transition between internal synaptic states. On
the other hand, synaptic size or weight is always a good indicator of electric
energy rate related to fast synaptic transmission (Attwell & Laughlin, 2001;
Karbowski, 2009, 2012).

The model can be extended in several ways, for example, by introduc-
ing heterogeneity in spine interactions, that is, by allowing random signs
of the cooperativity parameter γ . However, we suspect that such modifica-
tions would not alter the general qualitative conclusions. Finally, our model
considers only the early phase of LTP, the so-called e-LTP, which generally
lasts up to a few hours and does not involve protein synthesis inside spines.
Inclusion of protein synthesis, associated with the process of memory con-
solidation and thus the late phase of LTP (so-called l-LTP), would require
some modifications in our model, the most important of which is inclusion
of additional variables in the probabilities characterizing spine states, which
are related to internal degrees of freedom (e.g., proteins, actin). This clearly
would make the model much more complex, and thus it remains a major
challenge at this time. However, we hope that our approach of stochastic
thermodynamics provides some insight into attempting to model the inter-
play of information and energy during the late phase of LTP and memory
consolidation for interacting spines.
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Appendix A: Stochastic Model of Morphological States in Dendritic
Spines

Our data on dendritic spines come from cultures of rat hippocampus
(Bokota et al., 2016; Basu et al., 2018). We assume that each dendritic spine
can be in four different morphological states: nonexistent (lack of spine),
stubby, filopodia, and mushroom. These four states constitute the minimal
number of states that can be classified and quantified on a mesoscopic level
(Bokota et al., 2016; Basu et al., 2018; Urban et al., 2020). Each state has a typ-
ical size, which can be characterized by several geometric parameters. We
focus on one particular parameter, spine head surface area, as an indicator
of both spine structure and function. Spine head surface area is proportional
to synaptic weight (as measured by the number of AMPA receptors; Kasai
et al., 2003), which relates to spine neurophysiological function (synaptic
transmission and information storage in molecular structure). Spine area is
also a measure of its structural and metabolic (synaptic transmission) costs
(a larger area means larger both costs). To estimate spine areas in each of
the three states (for the nonexistent state, the size is 0), we used the data on
minimal and maximal spine head diameters from Bokota et al. (2016) and
Urban et al. (2020), which gave us the following numbers: d(0) = 0 for
nonexistent, d(1) = 0.496 μm2 for stubby, d(2) = 0.786 μm2 for filopo-
dia/thin, and d(3) = 1.045 μm2 for mushroom. Values of the intrinsic tran-
sition matrix are given in Table 1. The values of global parameters are
presented in Table 2.

We assume that global spine dynamics can be described as a Markov
chain model, in which there are stochastic transitions between spine inter-
nal states. The general model of this kind is given by the following master
equation (Glauber, 1963):

dP(s1, . . . , sN )
dt

=
∑

s′
1,...,s

′
N

W (s1, . . . , sN|s′
1, . . . , s′

N )P(s′
1, . . . , s′

N )

− P(s1, . . . , sN )
∑

s′
1,...,s

′
N

W (s′
1, . . . , s′

N|s1, . . . , sN ), (A.1)

where W (s1, . . . , sN|s′
1, . . . , s′

N ) is the multidimensional transition matrix of
the whole system of N dendritic spines. We assume that transitions between
the states take place in only one of the spines at any given time unit (the
rest of states in other spines do not change in that brief time step). This
means that the multidimensional matrix W (s1, . . . , sN|s′

1, . . . , s′
N ) can be de-

composed as

W (s1, . . . , sN|s′
1, . . . , s′

N ) = ws1,s′
1
(s2)δs2s′

2
. . . δsNs′

N
+ . . .

+wsi,s′
i
(si−1, si+1)δs1s′

1
. . . δsi−1s′

i−1
δsi+1s′

i+1
. . . δsNs′

N
+. . .

+wsN,s′
N

(sN−1)δs1s′
1
. . . δsN−1s′

N−1
, (A.2)
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where wsi,s′
i
(si−1, si+1) are the transition rates at individual spines, which are

dependent on the neighboring spines. After insertion of the form of multi-
dimensional transition matrix W in equation A.1 and performing summa-
tions, we obtain equation 2.1 in the main text.

By using the above pattern of transition probabilities, we assume that at
a sufficiently short time step, only one transition can take place; simultane-
ous transitions in different spines are much less likely, and thus can be ne-
glected. Indeed, since the local basic transitions between mesoscopic states
in individual spines are of the order of several minutes (Urban et al., 2020;
see Table 1), the likelihood that two or more such transitions in two or more
spines take place simultaneously in a short period of time (much smaller
than a minute) is small. This type of locality of explicit synaptic interac-
tions allows us to analyze the dynamics of global system of N interacting
spines.

Appendix B: Validity of the Pair Approximation for Analytically
Solvable Model

In this section, we provide conditions that must be satisfied for applying
the pair approximation in a case that can be treated analytically, which is a
simplified Ising model in thermal equilibrium. We consider three interact-
ing units (i = 1, 2, 3) forming a linear ordered chain, similar as in Figure 1,
but each unit having only two states, si = −1 or si = 1. Additionally, in this
model, nearest neighbors interact strongly with the coupling J, whereas re-
mote units (1 and 3) interact weakly with the coupling κ , which is much
smaller than J. Our goal is to check how accurate the pair approximation is
as we increase the strength of remote coupling κ in relation to J.

The equilibrium probability of finding a given configuration of units
s1, s2, s3 has the form (Feynman, 1972)

P(s1, s2, s3) = Z−1e−J(s1s2+s2s3 )−κs1s3 , (B.1)

where Z−1 is the normalization factor. The two-point marginal probabilities
are given by

P(s1, s2) = 2Z−1e−Js1s2 cosh(Js2 + κs1), (B.2)

P(s2, s3) = 2Z−1e−Js2s3 cosh(Js2 + κs3). (B.3)

The one-point marginal probability for the middle unit is

P(s2) = 2Z−1[eJs2 cosh(Js2 − κ ) + e−Js2 cosh(Js2 + κ )
]
. (B.4)

These four probabilities are all we need to quantify the accuracy of
the pair approximation, which in our case is represented by P(s1, s2, s3) ≈
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P(s1, s2)P(s2, s3)/P(s2). The numerical accuracy of this approximation can be
assessed by defining the ratio R3 as

R3 ≡ P(s1, s2)P(s2, s3)
P(s2)P(s1, s2, s3)

, (B.5)

and looking at how much R3 deviates from unity. Since R3 depends on con-
figurations s1, s2, s3, it is good to determine the mean value of R3, averaged
over all these states: 〈R3〉 = 1

23

∑
s1,s2,s3

R3.
After some straightforward algebra, we can find 〈R3〉 as

〈R3〉 = eκ
[
1 + 1

4 (e−4κ − 1)
] + e−κ

[
1 + 1

4 (e4κ − 1)
]

cosh(2J)
eκ + e−κ cosh(2J)

. (B.6)

From this formula, it is clear that for κ 	→ 0, we get 〈R3〉 	→ 1, regardless of
the value of J. For large coupling J (J 
 1), we obtain 〈R3〉 ≈ 1 + 1

4 (e4κ − 1),
which means that 〈R3〉 is essentially close to 1 for small κ . For example,
for κ = 0.1, we get 〈R3〉 = 1.12; for κ = 0.3, we get 〈R3〉 = 1.58; and higher
values of κ increase 〈R3〉 even further, which breaks the pair approximation.
For intermediate values of J (e.g., J = 1), the ratio 〈R3〉 achieves value 1.55
for κ = 0.4, which is a slightly larger value than for the strong coupling case.

Supplementary Information

The code for performed computations is provided in the supplementary
material.
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