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Abstract: This paper provides a perspective on applying the concepts of information thermodynam-
ics, developed recently in non-equilibrium statistical physics, to problems in theoretical neuroscience.
Historically, information and energy in neuroscience have been treated separately, in contrast to
physics approaches, where the relationship of entropy production with heat is a central idea. It is
argued here that also in neural systems, information and energy can be considered within the same
theoretical framework. Starting from basic ideas of thermodynamics and information theory on
a classic Brownian particle, it is shown how noisy neural networks can infer its probabilistic motion.
The decoding of the particle motion by neurons is performed with some accuracy, and it has some
energy cost, and both can be determined using information thermodynamics. In a similar fashion,
we also discuss how neural networks in the brain can learn the particle velocity and maintain that
information in the weights of plastic synapses from a physical point of view. Generally, it is shown
how the framework of stochastic and information thermodynamics can be used practically to study
neural inference, learning, and information storing.

Keywords: information; non-equilibrium stochastic thermodynamics; computational neuroscience;
learning; inference; neurons and synapses; plasticity

“Earth, air, fire, and water in the end are all made of energy, but the different forms they
take are determined by information. To do anything requires energy. To specify what is
done requires information.”— Seth Lloyd (2006) [1]

1. Introduction: Information Is Physical, So Is the Brain

Brain computations require a certain amount of energy [2–7], and the brain is one of
the most metabolically expensive organs in the body [8]. Moreover, the brain energy cost
(oxygen and glucose metabolic rates) scales linearly with the number of neurons [9] and
sub-linearly with brain size [10]. Every transition in neural circuits, either on a microscopic
or macroscopic scale, is associated with some energy dissipation [11–18]. Despite all this,
a huge majority of neuronal models used in computational (or theoretical) neuroscience
neglect completely the energetic aspect of brain functioning, as if neural information
processing were for free and performed in some abstract “mathematical” hyperspace
(e.g., [19–23]). One can argue that brain information processing is relatively cheap (only
about 10–20 Watts for human brain [6,8]) in comparison to computations executed by
artificial neural networks on semiconductor hardware (the supercomputer involved in the
Blue Brain Project uses about 4 · 105 Watts for a “realistic” simulation [24,25]). However,
this relative brain energetic efficiency cannot be a justification for dismissing the metabolic
constraints. In fact, handling information in real neural circuits is energetically demanding,
as transmitting 1 bit of information through a chemical synapse requires about ∼105 kBT of
energy [4], and acquiring 1 bit by a synapse during synaptic learning needs a similar amount
of ∼5 · 106 kBT [18], where kB is the Boltzmann constant, and T is the brain temperature.
Importantly, both these energy figures are much larger than the minimum set by the
Landauer limit (kBT ln 2; [26]). Most of the energy consumption in the mammalian brain
goes for fast electric signaling, i.e., the generation of action potentials (neural activation)
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and synaptic transmission (each of them roughly 2 · 108 kBT/min, for neuronal firing
rates ∼5 Hz) [5–7], and for fast communication (spatial traveling of action potentials
along axons) [27]. In contrast, slow chemical signaling associated with synaptic plasticity
(related to learning and memory) requires much less energy, about 4–11% of the energy
cost expanded on the synaptic transmission for low firing rates [13]. These substantial
costs are likely the reason for observing sparse coding in brain networks, where only
a small fraction of neurons and synapses are active at any instant of time [28,29]. All
this suggests that energy is a strong constraint on neural information processing and
storing, and consequently, not all sorts of computations, even theoretically possible, can be
implemented by neural networks in the brain.

The first meaningful connection between physics and neuroscience was made a long
time ago, in 1871, by James Maxwell in his book about heat [30]. In that book, he considered
an “intelligent being” or “demon” that supposedly breaks the second law of thermody-
namics by decreasing the entropy of the physical system. This thought experiment was a
paradox that triggered a confusion regarding fundamental issues of thermodynamics and
led to a huge amount of literature on this subject (for reviews, see [31,32]). The resolution
of this paradox came with the realization that the concept of information also has to be
included in the thermodynamic considerations, i.e., information has to be treated on equal
footing with physical entropy and work [32].

This realization followed from a seminal observation made by Rolf Landauer that
erasing information always leads to heat dissipation (erasure of 1 bit causes at least kBT ln 2
of energy released into the environment [26]). In other words, information is physical, since
its storing and processing requires physical hardware, and it has to comply with the laws
of physics [33–36].

It seems that one of the main goals of neural networks of any brain is to accurately
estimate the outside signals [21,37–40], which are relevant for the brain, using as little
energy as possible [41–43]. Based on these estimates, the brain tries to predict the future
dynamics of these signals and to plan action. The outside signals, or inputs coming to brain
circuits, are mostly of a stochastic nature, and therefore, their estimation and prediction is
additionally complicated and demanding. Given this, it is perhaps not surprising that the
brain has to possess some internal, stable, representation of the outside world, which can be
modified by learning. It is fair to say that despite many conceptual developments, we have
only rudimentary knowledge (or feeling) of how this representation is created and works.

We can quantify the degree of correlation between outside dynamics and internal brain
dynamics by mutual information, which is known from the Claude Shannon mathematical
theory of communication [44]. This concept was brought to neuroscience by Horace
Barlow [45] in the late 1950s. Much later, it was used by many neuroscientists, starting
from Laughlin [46], Atick [37], and most notably by Bialek and colleagues [21,47,48]. These
approaches aimed at the maximization of mutual information, initially ignoring energetic
aspects. Levy and Baxter were likely the first to consider energetics of information encoding
in neural networks [2,3]. However, even in these attempts, information and energy were
treated as separate concepts that were not directly related to one another.

In contrast, stochastic thermodynamics provides a framework where information
and energy are mutually related and can be considered and computed within a single
formalism [36,49,50]. This is because on a micro-level, which includes molecular fluctua-
tions, all relevant degrees of freedom have to be considered simultaneously. This work
provides a perspective on a mutual connection between stochastic and information thermo-
dynamics considered in physics and neural systems, which are intrinsically stochastic due
to their small sizes and strong interactions with a fluctuating environment. This intrinsic
stochasticity is a key ingredient of neurons and synapses that causes energy dissipation
and influences information processing.

The paper is organized as follows. We start, in Section 2, with reviewing the funda-
mentals of stochastic dynamics and their relation to stochastic thermodynamics, with a
simple pedagogic example of a Brownian particle moving in a gravitational field. This
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example is a basis and leitmotif for the next considerations, which link this stochastic
mechanical system with the thermodynamics of information processing in neural networks.
In Section 3, we introduce the relationship between entropy, information, and energy in
general and in particular for the Brownian particle from Section 2. Next, in Section 4,
we discuss information flow between two coupled subsystems, as a clear example where
entropy production is directly related to information flow, and its relevance to the Maxwell
demon. A neural network inferring the velocity of a Brownian particle (or a more general
stochastic particle) is presented in Section 5 together with an associated energy cost. Synap-
tic plasticity and learning are discussed in Section 6 in the context of information gain and
loss, using a stochastic version of the BCM model [51] together with its energy cost. It is
shown here how the information loss after learning is related to the entropy production
rate in synapses. Most of the calculations in Sections 5 and 6 are novel; i.e., standard neural
and synaptic models are analyzed in a new light. Finally, in Section 7, we briefly discuss
a more general large-scale model of interacting plastic synapses during learning, using
Glauber dynamics [52], in terms of information processing. We conclude with some general
remarks about the relevance of information thermodynamics to neuroscience.

2. Stochastic Dynamics and Thermodynamics
2.1. Stochastic Dynamics

Small physical systems have internal degrees of freedom that are subject to fluctuations
due to thermal noise (i.e., interactions with the environment or “heat bath”). These internal
degrees of freedom can be described either by discrete or continuous time-dependent
variables, such as position, velocity, activity, composition, etc. Let the index z denote an
internal variable (or all relevant internal variables), describing the state of the system,
and let p(z, t) denote the probability that the system is in this particular state at time t.
Assuming that z follows a Markov process, one can describe the dynamics of the probability
p(z, t) by a master equation [53,54]:

ṗ(z) = ∑
z′

(
wzz′ p(z

′)− wz′z p(z)
)
, (1)

where ṗ(z) denotes the temporal derivative of p(z), and wzz′ is the transition rate for
jump from state z′ to state z. Here, the variable z can be either discrete or continuous.
In the latter case, one can expand Equation (1) to obtain the so-called Fokker–Planck
equation (see below).

In the case with a single continuous internal variable z(t), we can write its stochastic
dynamics as the so-called Langevin equation [53,54]:

1
µ

ż = F(z, t) + ση(t), (2)

where F(z, t) is the deterministic generalized force acting on the system, which can depend
on z and on time t, and µ is some parameter which is inversely proportional to the time
scale of the dynamics. The parameter η(t) is the thermal noise acting on the variable
z and thus can be described by a delta-correlated Gaussian random variable, such that
⟨η(t)⟩ = 0, and ⟨η(t)η(t′)⟩ = δ(t − t′). The parameter σ characterizes the magnitude of the
thermal noise. If z is velocity, then the two parameters, µ and σ, are not independent. In
fact, they are mutually coupled by the temperature of the system T through the relation:
σ2 = 2kBT/µ [53,54]. This relation is known as a fluctuation–dissipation theorem, which
essentially means that in the presence of a heat bath (characterized by the temperature
T), there is some balance between the level of fluctuations in the system (∼σ) and the
time for which that system approaches equilibrium (∼µ−1). It should be noted that for
neural systems, the thermal noise is not the most important source of noise, at least on
the level of the whole neuron, and thus the temperature does not play a major part in the
considerations of neural activation (see also below).
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The dynamics of variable z can be described equivalently by the dynamics of probabil-
ity density of the state variable z in terms of the Fokker–Planck equation as [53,54].

∂P(z, t)
∂t

= −∂J(z, t)
∂z

, (3)

with the probability current (or flux) J(z, t) given by

J(z, t) = µF(z, t)P(z, t)− 1
2
(µσ)2 ∂P(z, t)

∂z
, (4)

where P(z, t) is the probability density for the variable z.
In many circumstances, in physical systems, one thinks about z as a generalized posi-

tion or velocity. In biological systems, z can be either some structural variable, concentration
of some ions or molecules, or system activity. These are the most common “state variables”,
although it should be noted that there are no restrictions about what physical observable
a Langevin equation may or may not describe.

For concreteness, we take a specific example of Equation (2): a small particle of mass
m moving in a gravitational field with some modulating time-dependent force F0(t) in the
fluctuating environment with z(t) being the particle velocity v(t). This example will be
our leitmotif for most of this paper, which is devoted to neural information processing and
thermodynamics (Sections 5 and 6). The Langevin equation of motion takes a familiar form:

mv̇ = −kv + F(t) +
√

2mkσvη (5)

where kv is the deterministic part of the resistance force of the environment with k being
the parameter corresponding to the strength of the resistance and proportional to the size of
the particle. The force F(t) is F(t) = mg + F0(t), with g being the gravitational acceleration,
and σv being the standard deviation (its steady-state value) of the particle velocity due
to the thermal noise η acting on it (random hitting of air particles). When F0(t) = 0, the
particle is falling freely with velocity-dependent friction and stochastic environmental
fluctuations. In this case, at the steady state (t 7→ ∞), we obtain the fluctuation–dissipation
relation for our moving particle in the form σ2

v = kBT/m. This relation indicates that
the fluctuations in the kinetic energy of the particle correspond to one degree of freedom
associated with kBT/2 (in 1D). It is instructive to have a sense of the magnitude of these
fluctuations for real particles. For a particle with the size 0.1 mm and the mass of 1 µg
(assuming the density 1 g/cm3), we obtain σv = 2 µm/s, which is small and cannot be
detected by a naked eye, but it can be observed with a microscope. For a comparison, for a
hundred times greater particle with the size 1 cm and mass 1 g, we obtain σv = 0.002 µm/s,
which is extremely small.

We can write the Fokker–Planck equation for Equation (5), and easily solve it, yielding
a Gaussian distribution Pv for particle velocity [53]

Pv(v, t) =
exp

(
− [v − ⟨v(t)⟩]2/2σ2

v (t)
)

√
2πσ2

v (t)
, (6)

where ⟨v(t)⟩ is the average velocity, ⟨v(t)⟩ = [v(0) +
∫ t

0 dt′eγt′ F(t′)/m]e−γt, with γ = k/m,
and the time-dependent variance of velocity is σ2

v (t) = σ2
v
(
1 − e−2γt) = ⟨v(t)2⟩ − ⟨v(t)⟩2.

In the limit when the particle mass is very small, m 7→ 0, we can neglect the term
on the left in Equation (5) and use the fact that v = −dx/dt, with x being the height
of the particle (velocity increases as height decreases). This corresponds to a standard
overdamped approximation [55], and then Equation (5) transforms to

ẋ = − F(t)
k

−
√

2γσxη. (7)
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This approximation is equivalent to saying that the particle velocity is in a quasi-stationary
state, since its dynamic is governed by a fast time constant ∼ m. In Equation (7), we used
the rescaling σx = σv/γ, where σx refers to the standard deviation of particle position x.
We can also write the Fokker–Planck equation for the temporal evolution of the distribution
of particle position Px(x, t) and easily solve it, obtaining

Px(x, t) =
exp

(
− [x−⟨x(t)⟩]2

4σ2
x γt

)
√

4πσ2
x γt

, (8)

where the average position ⟨x(t)⟩ = x(0) − 1
k

∫ t
0 dt′F(t′). Additionally, the variance of

particle position is ⟨x(t)2⟩ − ⟨x(t)⟩2 = 2σ2
x γt, which indicates that it is growing propor-

tionally with time, which is a characteristic of unrestricted Brownian motion. Also, in this
limit, equivalent to the case γ ≫ 1, we have a simple expression for the mean of particle
velocity (as can be easily seen from Equation (7)), ⟨v⟩ ≈ F(t)/k. Note that in contrast to
the distribution for particle velocity (Equation (6)), which has a stationary solution, the
distribution for particle position (Equation (8)) never assumes a stationary form.

2.2. Stochastic Thermodynamics

The first law of thermodynamics is essentially the rule for energy conservation. It turns
out that Equation (2) can be used to derive the first law, as was realized by Sekimoto [56,57].
The idea is to treat the state variable in Equation (2) as generalized velocity and introduce an
additional state variable u representing the generalized position, on which the generalized
force also depends, i.e., F(z, u, t), with z = du/dt. Next, we decompose the force F(z, u, t)
as F(z, u, t) = −∂V(u, t)/∂u+ fnc(z), where V(u, t) is the generalized potential (dependent
on u and t), and fnc(z) is the generalized nonconservative force (dependent on velocity z).
After the multiplication of both sides of Equation (2) by z and rearrangement, we obtain
the conservation of generalized “mechanical energy” in the following form:

d
dt

(1
2

µ−1z2 + V(u, t)
)
=

∂V(u, t)
∂t

+ z fnc(z) + σzη(t), (9)

where we used the differentiation rule dV(u, t)/dt = ∂V(u,t)
∂t + ∂V(u,t)

∂u u̇. Note that the
left-hand side of Equation (9) is the temporal rate of mechanical energy, represented
by 1

2 µ−1z2 + V(u, t), which is the sum of “kinetic energy” (with µ−1 representing the
generalized mass) and generalized potential V(u, t). Equation (9) implies that mechanical
energy is lost (or gained) in three different ways: by temporal changes in the external
potential V, by the action of nonconservative force fnc, and by the noise (∼ η). The last
two factors constitute the heat dissipated to the environment.

In the case of our Brownian particle in the gravitational field, we find the law of energy
conservation as

dEmech
dt

= −kv2 + vF0(t) +
√

2kmσvvη, (10)

where Emech is the mechanical energy of the particle, Emech = 1
2 mv2 + mgx. Averaging this

equation over the distribution of velocities, Equation (6), yields the mean balance of energy
loss and gain:

d⟨Emech⟩
dt

= −k⟨v2⟩+ ⟨v⟩F0(t) + kσ2
v , (11)

where we used the Novikov theorem [58] for determining the average ⟨vη⟩ = σv
√

k/(2m).
According to our expectations, the mean mechanical energy is lost due to friction (the term
−k⟨v2⟩), and ⟨Emech⟩ can be either decreased or increased by the driving force depending
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on its sign. But interestingly, ⟨Emech⟩ is always increased by the presence of thermal
fluctuations (the term kσ2

v ).
Equation (11) in the limit m 7→ 0, equivalent to γ ≫ 1, and corresponding to the

unrestricted Brownian motion [Equations (7) and (8)], takes a simple form

d⟨Emech⟩
dt

≈ −k⟨v⟩2 + F0(t)⟨v⟩

≈ −mg
k
[mg + F0(t)]. (12)

Thus, the rate of mean mechanical energy is negative unless the driving force is negative
(breaking from outside) and sufficiently strong. This means that opposing the gravitational
force can save the mean mechanical energy or even increase it. We will come back also to
the mechanical energy later in the context of entropy production and flux.

3. Entropy, Information, and the Second Law of Thermodynamics
3.1. Entropy, Kullback–Leibler Divergence, and Information

For the system with probability p(z, t) described by Equation (1) one can define
Shannon entropy Sz(t) as [44,59]

Sz(t) = −∑
z

p(z, t) ln p(z, t), (13)

which is the measure of an average uncertainty about the state of the system or the value of
the stochastic variable z. The larger the entropy, the less is known about the actual state of
the system. The concept of entropy is central in thermodynamics [31,32,49], in information
theory [59], and in the science of complexity [60].

It is worth noting that Shannon entropy is not the only way to define entropy. There
are other definitions of entropy, such as Renyi entropy [61,62] and Tsallis entropy [63],
which are also used in statistical physics and information theory [64–66]. Shannon entropy
in Equation (13) is a special case of these more general entropies.

For two different probability distributions describing the same physical system,
i.e., p(z) and q(z), one can define a statistical distance between them (in fact, it is a pseudo-
distance in probability space) called Kullback–Leibler (KL) divergence [59,67]

DKL(p||q) = ∑
z

p(z) ln
p(z)
q(z)

. (14)

KL divergence is also called the relative entropy, and it is always non-negative and quanti-
fies the difference between the distributions p(z) and q(z). Therefore, DKL(p||q) can be also
thought as an information gain by observing the p(z) distribution in relation to the baseline
distribution q(z). The larger the KL divergence, the more distinct the two distributions are.
DKL has many applications in statistical physics and information theory [59,68]. We will
use it in the following sections for synaptic information gain and loss.

As for the entropy, one can define also other statistical divergences, such as Renyi
and Tsallis divergences [61,63]. DKL is a special case of these more general divergences.
There exist numerous inequalities relating various types of statistical divergences [62,69]
and inequalities relating the rates of these divergences to stochastic thermodynamics [70].

In the case of two coupled systems described by variables x and y, one can write
z = (x, y) and define the joint probability pxy as well as marginal probability distributions
px and py for each subsystem separately. This allows us to introduce the measure of mutual
dependency between the two subsystems, ln pxy

px py
, which is zero if x and y are independent

and nonzero otherwise. The average of this quantity over all realizations of x, y is called
the mutual information Ixy between x and y [59]
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Ixy = ∑
x,y

pxy ln
pxy

px py

≡ DKL(pxy||px py). (15)

Thus, the mutual information is the KL divergence between the joint probability pxy and
the product of marginal probabilities px, py. The definition in Equation (15) ensures that
mutual information is always non-negative, and the stronger the dependence between x
and y, the larger Ixy. This is in contrast to entropy, which can be negative for continuous
probability distributions (when summation is replaced by integration).

From Equation (15), it follows that the mutual information can be also represented in
terms of entropies [59]:

Ixy = Sx − Sx|y = Sy − Sy|x, (16)

where Sx|y is the conditional entropy defined as Sx|y = −∑x,y pxy ln p(x|y), with p(x|y)
denoting the conditional probability, p(x|y) = pxy/py, and similarly for for reverse condi-
tional entropy Sy|x and conditional probability p(y|x).

In recent years, information theory in general, and mutual information in particular,
were applied to stochastic processes in different settings. For example, information theory
was used to derive thermodynamic uncertainty relations [71]. Mutual information can
be helpful in mapping the input trajectory to the output trajectory, which is relevant for
biochemical networks [72]. Additionally, mutual information can be used to discriminate
between internal information in the system and the information coming from external
sources [73], which may have some relevance in neuroscience. In the latter context, mutual
information was shown to be maximized for critical brain states with power law distri-
butions of neural activity [74,75]. In a broader biological context, it has been argued that
evolution acts to optimize the gathering and representation of information across many
spatial scales [48].

3.2. Entropy Production and Flow, and the Second Law

The temporal derivative of the entropy from Equation (13) can be decomposed into
two contributions [76–78]:

dS
dt

= Ṡpr − Ṡ f l , (17)

where Ṡpr is the entropy production rate given by

Ṡpr =
1
2 ∑

z,z′
(wzz′ pz′ − wz′z pz) ln

wzz′ pz′

wz′z pz
, (18)

and Ṡ f l is the entropy flow rate given by

Ṡ f l =
1
2 ∑

z,z′
(wzz′ pz′ − wz′z pz) ln

wzz′

wz′z
. (19)

The thermodynamic interpretation of Ṡ f l is that it is proportional to the heat ∆Q exchanged
with the surrounding medium, i.e., ∆Q = kBTṠ f l∆t, in the short time interval ∆t. Moreover,
the entropy flow can be of either sign, which reflects the fact that the system can either gain
energy from the environment (Ṡ f l < 0) or dissipate energy into the environment (Ṡ f l > 0).

The entropy production rate, on the other hand, is always non-negative, which follows
from the fact that the two factors on the right in Equation (18) have the same signs, which
are either both positive or negative. Alternatively, the non-negativity of Ṡpr and its lower



Entropy 2024, 26, 779 8 of 29

bound can be determined from a well-known inequality, ln(1 + x) ≥ x
1+x , which is valid

for all x > −1. Applying this to Equation (18) leads to

Ṡpr ≥
1
2 ∑

z,z′

(wzz′ pz′ − wz′z pz)2

wzz′ pz′
≥ 0. (20)

The fact that Ṡpr ≥ 0 has a tremendous consequence on the behavior of stochastic objects in the
form of the second law of thermodynamics. In a nutshell, the second law says that the entropy
of the isolated physical system (for which Ṡ f l = 0) never decreases, i.e., dS/dt = Ṡpr ≥ 0,
which means that disorder of the isolated system tends to increase over time.

Equations (18) and (19) apply to the general case described by the master Equation (1);
however, it is also possible to define Ṡpr and Ṡ f l for continuous stochastic variables de-
scribed by the Fokker–Planck Equations (3) and (4). In the latter case, we have [79]

Ṡpr =
2

(µσ)2

∫
dz

J(z, t)2

P(z, t)
≥ 0, (21)

and

Ṡ f l =
2

µσ2

∫
dz J(z, t)F(z, t). (22)

For the system at steady state, i.e., for ṗ(z, t) = 0, its entropy is constant with
dS/dt = 0, which implies Ṡpr = Ṡ f l . This equality can happen in two cases. In the first,
the probability flux J(z, t) = 0 for continuous variables, and wzz′ pz′ − wz′z pz = 0 for
discrete variables. This situation describes the so-called detailed balance (where all local
probability fluxes balance each other), which corresponds to the thermodynamic equilib-
rium with the environment. In the second case, one can have nonzero probability flux,
J(z, t) ̸= 0, and broken detailed balance wzz′ pz′ − wz′z pz ̸= 0. This situation takes place
in the so-called driven systems by outside factors that provide energy and materials for
maintaining the steady state out of equilibrium with the environment. Such a steady state
is called a non-equilibrium steady state (NESS) [49,50]. All biological systems are out of
equilibrium [11,33,80], and many biological processes operate in a non-equilibrium steady
state [39,49], including neural systems [13,14].

Since at steady state Ṡpr = Ṡ f l , one can say roughly that for any conditions, the entropy
production rate is proportional to the amount of dissipated energy to the environment.
Thus, it is useful to think about Ṡpr as a measure of the energy cost of performing a
non-trivial function that requires non-equilibrium conditions.

3.3. Entropy Production and Flow for the Brownian Particle

Our Brownian particle falling in the gravitational field represented by Equations (5)–(8)
has entropy (Equation (13)) corresponding to its position distribution Px(x, t) given by [59]

Sx(t) =
1
2

ln(4πeσ2
x γt), (23)

which grows logarithmically with time. This means that the uncertainty about the particle
position increases weakly with time. However, the entropy rate, dSx/dt, decreases with
time as

dSx

dt
=

1
2t

. (24)

The entropy production rate for particle position (the main “state variable”) can be found
from Equation (21). For this, we need the probability current J(x, t) (Equation (4)) for our
particle position, which is
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J(x, t) =
(
− F(t)

k
+

[x − ⟨x⟩]
2t

)
Px(x, t). (25)

This allows us to find the entropy production rate Ṡpr,x in the form

Ṡpr,x =
1
2t

+
[mg + F0(t)]2

γk2σ2
x

. (26)

Note that when there is no driving force (F0 = 0), the entropy production rate decreases all
the time to its asymptotic value (mg)2/(γk2σ2

x) = m3g2/(k3σ2
x).

The entropy flux rate can be quickly found from Equations (24) and (26), using the
definition (17). The result is

Ṡ f l,x =
[mg + F0(t)]2

γk2σ2
x

≈ k⟨v⟩2

kBT
, (27)

where the second approximate equality comes from using the fluctuation–dissipation
theorem and the approximate equality for the average particle velocity ⟨v⟩ ≈ [mg+ F0(t)]/k
(see Equation (7)). Thus, in this case, the entropy flux is always positive, suggesting energy
dissipation to the environment.

The relationship between the mechanical energy loss and the entropy flux is (from
Equations (12) and (27))

d⟨Emech⟩
dt

≈ −kBTṠ f l,x + F0(t)⟨v⟩. (28)

This equation is the manifestation of the first law of thermodynamics or equivalently the
law of energy conservation. It implies that our (mechanical) system changes its energy
Emech by dissipating heat to the environment (kBTṠ f l,x) and by mechanical work performed
on the particle by the external force F0. Equation (28) also suggests that the rate of the
mean mechanical energy of the Brownian particle is related to the entropy flux rate for
its position, but they are not the same. The energy lost d⟨Emech⟩/dt and Ṡ f l,x are directly
proportional only if F0 = 0. To conclude, the entropy flux rate is a measure of dissipated
energy (heat), but it does not account for all the lost or gained energy of the system.

4. Information Flow between Two Subsystems and the Maxwell Demon

In this section, we follow closely the main ideas presented in Ref. [81]. Consider
two coupled subsystems X and Y with dynamics of the joint probability pxy described by
the following master equation

ṗxy = ∑
x′

(
wy

xx′ px′y − wy
x′x pxy

)
+∑

y′

(
wx

yy′ pxy′ − wx
y′y pxy

)
, (29)

where wy
xx′ is the transition rate in the subsystem X from state x′ to state x, which depends

on the actual state y of the second subsystem Y (and similarly for wx
yy′ ). The form of the

master equation in Equation (29) has a bipartite structure, in which simultaneous jumps in
the two subsystems are neglected as much less likely than single jumps.

For this system, we can define the rate of mutual information dIxy/dt as [81,82]

dIxy

dt
= İx + İy, (30)
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where İx =
[
Ixt+dt ,yt − Ixt ,yt

]
/dt, and İy =

[
Ixt ,yt+dt − Ixt ,yt

]
/dt, with dt 7→ 0. The explicit

expressions for İx and İy are given by [81]

İx = ∑
x>x′ ,y

(
wy

xx′ px′y − wy
x′x pxy

)
ln

p(y|x)
p(y|x′) , (31)

and

İy = ∑
y>y′ ,x

(
wx

yy′ pxy′ − wx
y′y pxy

)
ln

p(x|y)
p(x|y′) . (32)

The essence of the decomposition in Equation (30) is that it splits the total rate of mutual
information into two flows of information. The first flow, İx, relates to the change in mutual
information between the two subsystems that is only due to the dynamics of X. The second
flow, İy, is analogous and relates to Y. When İx > 0, then information is created in the
subsystem X as it monitors the Y subsystem.

In the same manner, we can split the rate of entropy of the joint system (X,Y),
i.e., dSxy/dt, as well as the joint entropy production rate Ṡpr,xy and the joint entropy
flux rate Ṡ f l,xy. We have

dSxy

dt
= Ṡx + Ṡy, (33)

where Sxy = −∑x,y pxy ln pxy, and the rates of entropy in each subsystem Ṡx and Ṡy are
given by

Ṡx = −∑
y

∑
x>x′

(
wy

xx′ px′y − wy
x′x pxy

)
ln pxy, (34)

and

Ṡy = −∑
x

∑
y>y′

(
wx

yy′ pxy′ − wx
y′y pxy

)
ln pxy. (35)

Note that in the particular case of two independent subsystems, we have wy
xx′ 7→ wxx′

(wx
yy′ 7→ wyy′ ), and the subsystems entropy rates Ṡx and Ṡy reduce to Ṡx = −∑x ṗx ln px

and Ṡy = −∑y ṗy ln py, i.e., in agreement with the expectations.
Similarly, the joint entropy production Ṡpr,xy and entropy flux Ṡ f l,xy can be decomposed as

Ṡpr,xy = Ṡpr,x + Ṡpr,y, (36)

where

Ṡpr,x = ∑
x>x′ ,y

(
wy

xx′ px′y − wy
x′x pxy

)
ln

wy
xx′ px′y

wy
x′x pxy

,

Ṡpr,y = ∑
y>y′ ,x

(
wx

yy′ pxy′ − wx
y′y pxy

)
ln

wx
yy′ pxy′

wx
y′y pxy

, (37)

and for the entropy flux

Ṡ f l,xy = Ṡ f l,x + Ṡ f l,y, (38)

where
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Ṡ f l,x = ∑
x>x′ ,y

(
wy

xx′ px′y − wy
x′x pxy

)
ln

wy
xx′

wy
x′x

,

Ṡ f l,y = ∑
y>y′ ,x

(
wx

yy′ pxy′ − wx
y′y pxy

)
ln

wx
yy′

wx
y′y

. (39)

The terms Ṡpr,x, Ṡpr,y can be interpreted as local entropy production rates, while Ṡ f l,x, Ṡ f l,y

are local entropy fluxes. As before, Ṡpr,x and Ṡpr,y are both non-negative, which means that
the second law is valid also in each of the subsystems.

The interesting thing coming from all these equations is that local entropy productions
Ṡpr,x, Ṡpr,y are related to information flows İx and İy as [81]

Ṡpr,x = Ṡx + Ṡ f l,x − İx,

Ṡpr,y = Ṡy + Ṡ f l,y − İy. (40)

These equations imply that local entropy balance involves both energy dissipation (Ṡ f l,x, Ṡ f l,y)
and the flow of information (İx, İy). Consequently, energy and information are mutually
coupled, and one influences the other. Equation (40) provides an important link between
information processing and its energy cost.

How do the results represented by Equation (40) relate to the Maxwell demon? Al-
though the quantity Ṡpr,x always satisfies Ṡpr,x ≥ 0, the sum Ṡx + Ṡ f l,x can be negative
if the information flow İx < 0. Thus, from a local point of view of the subsystem X,
its visible “entropy production” (i.e., Ṡx + Ṡ f l,x) can be negative if the presence of the Y
subsystem is neglected. This seems like a violation of the second law (requiring positive en-
tropy production rate), and it is closely related to the Maxwell demon thought experiment.
Obviously, the inclusion of the information flow term İx in the local entropy production
solves the paradox.

5. Neural Inference

In this section, we consider a simple model of how neurons estimate an external signal.
We will discuss this model in terms of information processing as well as thermodynamics.

Neurons in the visual cortex selectively respond to different velocities of a moving
stimulus [21,83]. Generally, each neuron has a preferred velocity to which it responds in the
form of an elevated firing rate (it is called a tuning curve, see, e.g., [19,21]). Thus, a single
neuron is unable to estimate (decode) the velocity of the moving stimulus, because it reacts
only to a very small range of velocities. However, a large population of neurons can do it,
although with only some accuracy. Below, we consider how such a decoding can take place.
In the example below, which is mostly a “thought experiment”, the moving stimulus should
be a particle with a substantial size and velocity to be detectable by visual neurons. Typical
Brownian particles are too small and too slow to be directly observable by the mammalian
visual system. To make them observable, a magnifying instrument such as a microscope is
needed. Thus, one can think about the moving stimulus below as a magnified Brownian
particle from Section 2, or alternatively, as a macroscopic object moving stochastically,
e.g., due to strong stochastic force F0 not related to thermal fluctuations of the environment.
The analysis below is independent of either choice.

The model we use is a stochastic version of the deterministic model called a linear
recurrent network for interacting neurons (see Equation (7.17) in [19]). In this model, the
activity or firing rate ri (number of action potentials or spikes per time unit) of a single
neuron labeled as i in the visual cortex can be represented as

ṙi = − (ri − ci(v))
τn0

+
1
N ∑

j
wijrj +

√
2σ2

r0
τn0

ηi(t), (41)
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where wij is the synaptic weight (or strength) characterizing the magnitude of synaptic
transmission coming from neuron j, and i = 1, 2, . . . , N, with N number of neurons in the
network (here, wij are in units of inverse of time). Since the majority of synapses in the
cortex of mammals is excitatory (about 80–90%; [84,85]), the weights wij are assumed to
be positive, which implies that the steady-state average values of ri are all positive. The
parameter τn0 is the time constant of the single neuron dynamics related to changes in its
firing rate, and σr0 represents the standard deviations of the Gaussian noise ηi related to
firing rate fluctuations. The function ci(v) is the sensory input coming to neuron i, which is
discussed below. The activity of the neuron i is a compromise between this sensory input
and the synaptic contributions coming from other neurons in the network. It should be
also clearly stated that the noise term in Equation (41) is not of thermal origin. Microscopic
thermal fluctuations present in synapses and different ion channels have only a marginal
influence on neural activity, since their numbers for a typical cortical neuron are very
large (small variance), although there are some exceptions (see [86]). More important
are the fluctuations caused by an unreliable sensory signal and unpredictable synaptic
transmission (probabilistic neurotransmitter release), the latter being caused by the low
numbers of signaling molecules involved [87].

Before we go further, let us talk about the range of validity of Equation (41). First, both
the linear term associated with synaptic interactions and the additive noise can occasionally
make the firing rate ri negative, which is obviously wrong (even if all synaptic weights
are positive). However, this can happen only transiently, especially in the limit of weak
noise. Moreover, the steady-state average values of firing rates are always positive, since
on average, the term ∑j wijrj is positive. This means that the linear approximation is a
“reasonable” approximation, and we use it primarily because such a linear model can be
analytically analyzed, revealing some generic features. Second, the time constant τn0 in
Equation (41) cannot be too small. It must be significantly larger than a time constant related
to synaptic transmission (5 ms and 120 ms, related to AMPA and NMDA synaptic receptors),
such that synaptic currents assume quasi-stationary values [19]. In what follows, i.e., the
analysis of the dynamics and information aspects of this model, is a novel calculation.

The sensory input ci(v) received by neuron i is in these particular settings also called the
tuning curve for neuron i. It can be approximated by a Gaussian as (see Equation (3.28) in [19])

ci(v) = rm exp
[
− (v − ui)

2

2ϵ2

]
, (42)

where rm is the maximal firing rate in response to the visual stimulus (the same for all
neurons in the network), ui is the preferred velocity for the neuron i, and ϵ characterizes
the maximal deviation from the preferred velocity for which neurons are still (weakly)
activated. We take ϵ to be small, i.e., typically ϵ/ui ≪ 1. Note that for v = ui, we have
ci(v) = rm, while for v = ui ± 2ϵ, we have ci(v) = 0.14rm. Equation (41) indicates that
the neuron adjusts dynamically to the changes in the stimulus (in its sensitivity range
represented by ci(v)) and in the synaptic input coming from other neurons.

Since the decoding of stimulus velocity is a collective process, we define a population
average of all neural activities, denoted as r̄, and defined as r̄ = (1/N)∑N

i=1 ri. Consequently,
the dynamic of the population average neural activity r̄ can be represented as

˙̄r = − [r̄ − κ(w̄)c̄(v)]
τn

+

√
2σ2

r
Nτn

η̄(t), (43)

where we made a mean-field type approximation (1/N2)∑i,j wijrj ≈ w̄r̄, where w̄ is the
population average synaptic weight, i.e., w̄ = (1/N2)∑i ∑j wij. We assume that w̄ > 0,
which follows from the fact that the majority of synapses are excitatory [84,85]. The term



Entropy 2024, 26, 779 13 of 29

c̄(v) is the population average tuning curve, c̄(v) = (1/N)∑N
i=1 ci(v), which is given by (see

Appendix A)

c̄(v) ≈ rmϵ

α
exp

(
− v2

2α2

)
≈ rmϵ

α

[
1 − v2

2α2 + O(α−4)
]
, (44)

where α is the velocity range to which neurons respond. The approximate equality in
Equation (44) follows from the fact that α is generally large, i.e., α ≫ 1, and we will use that
approximation in the calculations below. The parameter κ(w̄) is the network enhancement
factor given by

κ(w̄) =
1

(1 − w̄τn0)
, (45)

since for w̄ 7→ τ−1
n0 , the parameter κ(w̄) 7→ ∞ (obviously, we must assume that

w̄ < τ−1
n0 ). The parameter τn is the effective time constant of the neural population dynamics

τn = κ(w̄)τn0, and η̄ is the population-averaged noise, i.e., η̄ = (1/
√

N)∑N
i=1 ηi with zero

mean and unit variance, with σr being the effective standard deviation of the noise in
the network, i.e., σr =

√
κ(w̄)σr0. Note that the main effect of the network interactions

on population dynamics, as compared to the single neuron dynamics, is to significantly
enhance the tuning curve, the time constant, and the standard deviation.

Equation (43) corresponds to the time-dependent distribution of mean neural activity
conditioned on stimulus velocity v, ρ(r̄|v, t), which is in the form [53]

ρ(r̄|v, t) =
exp

(
− N[r̄ − ⟨r̄(v, t)⟩ρ(r̄|v)]

2/2σ2
r (t)

)
√

2πσ2
r (t)/N

, (46)

where σ2
r (t) = σ2

r (1 − e−2t/τn), and ⟨r̄(v, t)⟩ρ(r̄|v) is the stochastic average of the population
mean of neural activity over the conditional distribution ρ(r̄|v, t), i.e., ⟨r̄(v, t)⟩ρ(r̄|v) =∫

dr̄ρ(r̄|v, t)r̄. The latter can be found quickly by averaging Equation (43) over noise and
then by finding its time-dependent solution. The result is

⟨r̄(v, t)⟩ρ(r̄|v) = r̄(0)e−t/τn +
ϵκrm

α
(1 − e−t/τn)

− ϵκrm

2τnα3 e−t/τn

∫ t

0
dt′ et′/τn v2(t′) + O(α−5), (47)

where r̄(0) is the initial mean neural activity. This equation indicates that the outside
stimulus modulates the collective neural activity only weakly (in the order of ∼ α−3). In
addition, neurons respond to the stimulus with some delay governed by the effective
time constant τn.

5.1. Mutual Information between Neural Activities and the Stimulus

The degree of correlations between the neural collective activity and the stimulus
velocity is quantified by mutual information I(r̄, v) as

I(r̄, v) = ⟨ln ρ(r̄|v)⟩P(r̄,v) − ⟨ln ρ(r̄)⟩ρ(r̄), (48)

where ρ(r̄) is the distribution of neural activities, and averaging in the first term is per-
formed over the joint probability density P(r̄, v) of collective neural activity r̄ and stimulus
velocity v, with P(r̄, v) = ρ(r̄|v)P(v). The distribution ρ(r̄) is found by marginalizing the
joint distribution P(r̄, v) over velocities v. The result of this procedure is (up to order α−3)
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ρ(r̄, t) ≈
exp

(
− N

2σ2
r (t)

[
r̄ − r0 +

r1
α3

∫ t
0 dt′et′/τn⟨v2(t′)⟩P(v)

]2
)

√
2πσ2

r (t)/N
, (49)

where r0 and r1 are the stimulus-independent and the stimulus-dependent collective
neural activities

r0 = r̄(0)e−t/τn +
ϵκrm

α
(1 − e−t/τn),

r1 =
ϵκrm

2τn
e−t/τn . (50)

Since both distributions ρ(r̄) and ρ(r̄|v) are Gaussian, the mutual information I(r̄, v) can be
calculated easily as

I(r̄, v) ≈ N(ϵκrm)2

8α6σ2
r (t)

e−2t/τn

∫ t

0
dt1

∫ t

0
dt2e(t1+t2)/τn

×
[
⟨v2(t1)v2(t2)⟩P(v) − ⟨v2(t1)⟩P(v)⟨v2(t2)⟩P(v)

]
+ O(α−8). (51)

This equation shows that the mutual information between neural collective activity and the
stimulus velocity is proportional to the averaged temporal auto-correlations of the velocity
square. Moreover, the larger the number of neurons N decoding the stimulus and the
larger the network enhancement factor κ, the higher the mutual information. This clearly
indicates that the effect of the network is a key ingredient for the accurate decoding of
information from the outside world.

It is also interesting to see the effect of the time scale associated with variability in the
stimulus velocity on the mutual information I(r̄, v) in Equation (51). Assuming that the
temporal auto-correlations of the stimulus velocity square are characterized by time con-
stant τc, i.e., that they decay exponentially as ⟨v2(t1)v2(t2)⟩P(v) − ⟨v2(t1)⟩P(v)⟨v2(t2)⟩P(v) =

C0e−|t1−t2|/τc , where C0 is some constant, we find that (see Appendix B)

I(r̄, v)t 7→∞ ≈ N(ϵκrm)2

8α6σ2
r

C0τ2
n τc

(τn + τc)
+ O(α−8). (52)

This implies that for very fast variability in the stimulus velocity (τc 7→ 0), the mutual
information between the stimulus and the neural activity is close to 0. Consequently,
neurons in this limit cannot track the particle velocity at all. However, as the stimulus
variability slows down (τc grows), the mutual information increases and saturates at
τc ≫ τn. This means that in this limit, neurons can decode the stimulus optimally. In
general, this result shows that time scale separation is important for the quality of neural
inference, with a preference for slower stimuli, which agrees with the general results
obtained in [88].

5.2. Energy Cost of Decoding the Stimulus

Guessing the actual value of the stimulus by neural network is not free of cost. In fact,
it requires some amount of energy that neurons have to use to perform that function well.
The energy used by neurons can be estimated by calculating the entropy production rate,
with the help of Equation (21), with the probability density represented by a conditional
distribution for collective neural activity given by Equation (46). We find the conditional
entropy production rate Ṡρ(r̄|v) (conditioned on the stimulus velocity v) of neural activity as

Ṡρ(r̄|v) =
1
τn

( e−2t/τn

(e2t/τn − 1)
+

N[⟨r̄(t)⟩ρ(r̄|v) − κc̄(v)]2

σ2
r

)
. (53)
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This formula indicates that the higher the discrepancy between the population-averaged
tuning curve and the averaged neural activity, the larger the entropy production rate of
neurons. In other words, neurons make an energetic effort to keep track of the actual
particle velocity.

More explicit formula for the entropy production for longer times (t ≫ tn), after
transients are gone, is

Ṡρ(r̄|v) ≈
N(ϵκrm)2

4α6σ2
r τn

(
v2(t)− e−t/τn

τn

∫ t

0
dt′et′/τn⟨v2(t′)⟩P(v)

)2
, (54)

which implies that Ṡρ(r̄|v) is proportional to fluctuations of the square of velocity around
its delayed average. Thus, for stationary stimulus velocity, its tracking by neurons is
essentially energetically costless (neurons, however, use energy for other biophysical
processes [5–7,13]). Note also that the prefactor in Equation (54) is the same as that in
Equation (51) for the mutual information between neural activities and the stimulus velocity.
This means that gaining information about the outside signals requires a proportionally
large supply of energy; i.e., better prediction needs proportionally more energy.

6. Stochastic Dynamics of Synaptic Plasticity: Learning and Memory Storage

Synaptic weights are not fixed but change in the neural network although much
slower than neural electric activities. Synaptic plasticity is the mechanism with which
synaptic weights change, and it is responsible for learning and memory formation in
neural systems [19,89–92]. The model analyzed in this section is a novel extension and
modification of the model analyzed in [14].

6.1. Dynamics of Synaptic Weights

One of the most influential and important models of synaptic plasticity is the so-called
BCM model [51], which was used for understanding the development of the mammalian
visual cortex. It is an extension of the Hebb idea that connections between simultaneously
activated presynaptic and postsynaptic neurons become stronger, but the model is con-
structed in such a way that the synaptic weights stabilize at some level without catastrophic
run-away as it takes place for a classic Hebb’s rule [19]. The BCM plasticity rule, which
was originally a deterministic rule, was extended to a stochastic rule by the author in [14],
because synaptic plasticity is stochastic in nature [93,94]. In the case of a given postsynaptic
neuron with activity r, which receives Ns synaptic inputs from neurons with activities fi
(i = 1, . . . , Ns), the stochastic BCM rule takes the following form [14]

dwi
dt

= λ fir(r − θ)− wi
τw

+

√
2σw√
τw

ξi (55)

τθ
dθ

dt
= −θ + βr2, (56)

where wi is the synaptic weight (proportional to the number of receptors on a synaptic
membrane) related to the electric conductance of signals coming from presynaptic neu-
ron i, λ is the amplitude of synaptic plasticity controlling the rate of change of synaptic
weight, τw is the synaptic time constant controlling the weight decay duration, θ is the
homeostatic variable, the so-called sliding threshold (adaptation for plasticity) related to
an interplay of LTP and LTD (respectively, long-term potentiation and long-term depres-
sion [19]) with the time constant τθ , and β is the coupling intensity of θ to the postsynaptic
firing rate r. The parameter σw is the standard deviation of weights due to stochastic intrin-
sic fluctuations in synapses, which are represented as Gaussian white noise ξi with zero
mean and Delta function correlations, i.e., ⟨ξi(t)⟩η = 0 and ⟨ξi(t)ξ j(t′)⟩η = δijδ(t − t′) [53].
Equations (55) and (56) correspond to plastic synapses located on a single neuron. We
consider this example, because it is easier to analyze than the whole network of neurons.
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It is often assumed that τθ/τw ≪ 1, and then the homeostatic variable achieves
a steady state on the time scale for changes in synaptic weights, i.e., dθ/dt ≈ 0. This means
that for long times, we have approximately θ ≈ βr2, and consequently, the BCM rule takes
a simple (one equation) form

dwi
dt

= λ fir2(1 − βr)− wi
τw

+

√
2σw√
τw

ξi. (57)

As we saw in the previous section, the neural network function is determined primarily
by the collective dynamics of neurons and synapses. For that reason, it makes sense to
consider also the dynamics of the population-averaged synaptic weight. In this case, it
is not the population average of all synapses in the network but rather the population
average of synapses on a single neuron, i.e., w̄ = (1/Ns)∑i wi. Summing both sides of
Equation (57) with the rescaling factor Ns, we obtain the population averaged dynamics
of w̄

dw̄
dt

= λ f̄ r2(1 − βr)− w̄
τw

+

√
2σw√

Nsτw
ξ̄, (58)

where f̄ = (1/Ns)∑i fi, and ξ̄ = (1/
√

Ns)∑i ξi. Moreover, the neural activity is much
faster than the synaptic dynamics (seconds vs. minutes), i.e., τn0/τw ≪ 1. Hence, the
neural dynamics also reach a quasi-stationary state on the time scales ∼ τw, and it can be
approximated by (from Equation (41))

r ≈ c(v) + τn0 f̄ w̄, (59)

where we used a mean-field expression (1/Ns)∑i wi fi ≈ w̄ f̄ , and c(v) is given by Equation (42).
In the following, we treat f̄ as the time-independent fixed parameter characterizing the level of
activity in the local network.

Inserting Equation (59) into Equation (58), we obtain an effective equation for the
dynamics of population mean synaptic weight w̄

dw̄
dt

= λ f̄
[
c(v) + τn0 f̄ w̄

]2(1 − β[c(v) + τn0 f̄ w̄]
)
− w̄

τw
+

√
2σw√

Nsτw
ξ̄, (60)

which has a general form of the Langevin equation as in Equation (2) with the generalized
force acting on synapses

Fw(w̄) = λ f̄
[
c(v) + τn0 f̄ w̄

]2(1 − β[c(v) + τn0 f̄ w̄]
)
− w̄

τw
. (61)

That force depends nonlinearly on w̄, which is one of the reasons for complex dynamics
of synaptic plasticity, which are additionally influenced by synaptic noise (∼σw). Note,
however, that the noise for the mean synaptic weight is much weaker than the noise in
individual synapses due to the rescaling factor 1/

√
Ns.

How do synaptic weights react to the sensory input represented by the tuning curve
c(v) (see Equation (42))? Since we consider here a single postsynaptic neuron, and it has
a preferred velocity of the stimulus that is mostly different than the actual velocity of
the stimulus, the value of c(v) is most of the time close to zero. The stimulus c(v) jumps
between 0 and its maximal value rm only transiently at precisely those times when the
velocity of the outside particle matches the preferred velocity of the neuron. This is the
basic setup we consider here: input coming to synapses is transient, which however can be
enough to increase significantly their mean population weight w̄ in some circumstances.
This process of changing w̄ is essentially the “learning” information about the particle
velocity, which can be stored in the mean weight w̄ for some time (“memory”). Below, we
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describe in more detail how these two processes, learning and memory, take place within
this model.

Given the transient nature of c(v), we consider it as a perturbation to the collective
synaptic dynamics in Equation (60). The deterministic version of Equation (60), i.e., with
σw = 0, for c(v) = 0, can have either one fixed point at w̄ = 0, or three fixed points, of
which two are stable, corresponding to bistability (the fixed points are the solutions of the
equation Fw = 0). The change from monostability to bistability in the dynamics takes place
if the following condition is satisfied:

λτwτno f̄ 2 > 4β, (62)

which happens for sufficiently large plasticity amplitude λ and/or presynaptic firing rate
f̄ . In the bistable regime, the two stable fixed points are denoted as w̄d (“down” state) and
w̄u (“up” state), and they have the following values:

w̄d = 0,

w̄u =
1 +

√
1 − β f

2βτn0 f̄
, (63)

where β f = 4β/(λτwτn0 f̄ 2). The unstable fixed point denoted as w̄m (middle state) is

w̄m =
1 −

√
1 − β f

2βτn0 f̄
. (64)

Note that w̄u and w̄m are pushed toward zero for very large presynaptic firing rates f̄ ,
which suggests that bistability is lost for very large presynaptic firing f̄ .

Now, consider the stochastic version of Equation (60), i.e., with inclusion of the
noise (σw ̸= 0). In this case, the brief input c(v) can cause a dynamic transition from
the down state (w̄d) to the up state (w̄u) in the collective behavior of synapses but only
if two conditions are met (Figure 1). The first is the bistability condition represented by
Equation (62). The second condition is such that the input c(v) cannot be too brief, which
translates to the requirement that the stimulus velocity cannot change too quickly. The
latter simply means that slow synapses are unable to react to too-fast inputs (Figure 1),
which is a similar situation to the case of poor neural inference of too-fast stimuli (see, the
previous Section). The successful transition to the up state w̄u is a form of brief learning,
and maintaining the acquired information about the stimulus c for a long time represents
the memory trace. Keeping the information in the synaptic weights for a prolonged time is
possible even for very strong intrinsic noise (σw ∼ w̄u), because collective synaptic noise is
suppressed by the number of synapses Ns (compare Equations (57) and (60)). Ultimately,
the memory will be lost, i.e., w̄ will decay from w̄u to w̄d, and this can happen in several
ways. The most likely are a very strong downward noise fluctuation or a significant drop
in the presynaptic activity f̄ below some level.

Instead of speaking about forces acting on synapses, we can alternatively say that
the population mean of synaptic weight moves in an effective potential V(w̄, c), given
by V(w̄, c) = −

∫ w̄
0 dxFw(x, c). It can be determined explicitly, and it is composed

of two contributions

V(w̄, c) = V0(w̄) + ∆V(w̄, c), (65)

where V0(w̄) is the “core” potential

V0(w̄) =
w̄2

2τw
− 1

3
λ f̄ 3τ2

n0w̄3 +
1
4

λ f̄ 4τ3
n0βw̄4, (66)
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and ∆V(w̄, c) is the perturbation to the core potential due to the transient stimulus

∆V(w̄, c) = −λ f̄ c2(1 − βc)w̄ − 1
2

λ f̄ 2τn0c(2 − 3βc)w̄2 + λ f̄ 3τ2
n0βcw̄3. (67)

The core potential V0(w̄) can have either one minimum (monostability) or two minima
(bistability) depending on the strength of synaptic plasticity λ and/or the level of presynap-
tic neural activity f̄ (Figure 2A). The “phase transition” from monostability to bistability
occurs if the condition in Equation (62) is satisfied, which is the same as the condition for
the appearance of the three fixed points. Thus, one can think about the plasticity amplitude
λ or the presynaptic firing rate f̄ as tuning parameters for the phase transition in this
model. More interesting for information storing is the bistable regime with two minima,
as is the case with storing information in electronic hardware [26,33], and we focus on
this case below. The minima of V0 are situated exactly at the two stable fixed points w̄d
and w̄u determined before (Equation (63)). The maximum of V0 appears at the middle
(unstable) fixed point w̄m. However, note that for the realistic synaptic and neural parame-
ters, the minimum at w̄d is very shallow (Figure 2A), and this is due to the large synaptic
time constant τw.
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=1.3

=0.5

f=0.9

f=0.3

Figure 1. Stimulus-induced transition from weak to strong synapses. Transient input c(v) to the
neuron can induce a transition in the collective weight of synapses w̄ (upper panel). Transitions
from weak (w̄ ≈ w̄d) to strong (w̄ ≈ w̄u) synapses take place only when the amplitude of synaptic
plasticity λ or firing rate of presynaptic neurons f̄ are sufficiently large (middle and lower panels).
Note that w̄ can maintain the value w̄u for a very long time, much larger than the synaptic time
constant τw = 200 s (synaptic memory trace about c), because collective stochastic fluctuations are
rescaled by the number of synapses 1/

√
Ns. The middle and lower panels look almost identical

despite different parameters, because the noise term in Equation (60) dominates for most of the time
in this regime. The nominal parameters used are λ = 1.3, β = 1.2, f̄ = 0.9 Hz, τn = 0.3 s, τw = 200 s,
σw = 5.0, Ns = 1000, rm = 10 Hz, u = 10 mm/s, ϵ = 0.1 mm/s. In this example, the stimulus moves
with the linearly increasing velocity v = 0.02t + 7 (mm/s) with a small accelaration of 0.02 mm/s 2.
Too large accelaration prohibits the synaptic transition to the state with w̄u.

In the potential-like picture, the effective mean synaptic weight wanders around
the two minima of the potential V0(w̄) with occasional large jumps over the potential
barrier (i.e., the maximum) triggered either by turning on the input c(v), or by noise, or
both (Figure 2B). However, the transitions from w̄d to w̄u are more easier and frequent than
the reverse transitions due to the shallowness of the potential V0 at w̄d. This means that not
only sensory input can trigger the learning and subsequent “memory” of that input but
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also the noise can induce sporadically “learning and memory”. The latter can be thought
as false memories, which are also present in real brains.
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Figure 2. Effective potential V(w̄, c) for the collective synaptic weights and bistability. (A) The
core potential V0(w̄) has either one minimum, for sufficiently weak plasticity amplitude λ, or two
minima for stronger λ. The latter corresponds to bistability in the collective behavior of synapses.
Note that the miniumum at w̄ = 0 is very shallow (inset). (B) The bistability regime. The presence of
even a weak stimulus c(v) lowers the potential barrier in V(w̄, c) between the shallow and the deep
minima, which can facilitate a transition from weak to strong synapses (w̄ can change from w̄d to w̄u).
The parameters used are the same as in Figure 1.
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The dwelling times of the collective weight w̄ close to the minima at w̄d and w̄u can be
found from the well-known Kramers’ formula [53]. In our case, they are given by

Td =
2π√

V(2)
d |V(2)

m |
exp

(Nsτw

σ2
w

[(V0,m − V0,d) + (∆Vm − ∆Vd)]
)

,

Tu =
2π√

V(2)
u |V(2)

m |
exp

(Nsτw

σ2
w

[(V0,m − V0,u) + (∆Vm − ∆Vu)]
)

, (68)

where V0,m = V0(w̄m), V0,d = V0(w̄d), and V0,u = V0(w̄u), and analogically for ∆V. (Note
that V0,d = ∆Vd = 0.) The quantity in the exponent of Td (Tu) is proportional to the
potential barrier between the minimum at w̄d (w̄u) and the maximum at w̄m. The symbols
V(2)

d , V(2)
u , V(2)

m denote the second derivatives of V(w̄, c) with respect to w̄ at points w̄d,
w̄u, and w̄m, respectively. The formulas in Equation (68) indicate that switching on the
input c causes the deformation of the potential barrier (Figure 2B). In particular, in our case
∆Vm − ∆Vd < 0 for c > 0, meaning that the barrier from the down to up state decreases,
which can facilitate the transition to the up state if synapses were initially in the lower state.
Moreover, while the fluctuations around the minima are much slower than neural activity
(τn0), they are more frequent (∼ τw) than the jumps over the potential barrier, which happen
rarely (∼ Td, Tu ≫ τw).

The existence of bistability in the collective behavior of synapses implies that we can
effectively represent the continuous stochastic dynamics of synaptic weights as the jumping
dynamics of a two-state system. In this discrete effective system, we can define probability
pd that the collective state of all Ns synapses has the weight w̄d and another probability pu
corresponding to the higher population weight w̄u. The transition rates between the down
and up states can be determined from the dwelling times as their inverses. In particular,
the transition rate ωud from the down to up state is ωud = 1/Td, and the opposite transition
the from up to down state is ωdu = 1/Tu. In our case, because of the asymmetric potential,
we have that ωdu ≪ ωud, i.e., the transitions to the up state are more frequent than in the
opposite direction. The master equation associated with this dynamic is

ṗu = ωud(1 − pu)− ωdu pu, (69)

and pd = 1 − pu. From the above, it is clear that the transition rates ωud, ωdu are approxi-
mately the products of two terms: ωud = ωud,0Γud(c) and ωdu = ωdu,0Γdu(c), one of which
is independent of the input c (ωud,0 and ωdu,0) and the second is dependent on it via ∆V
(the terms Γud(c) and Γdu(c)). Thus, turning on the input can modify the distribution
of the probabilities pd, pu, and it can also induce transitions. The existence of bistability
for the population of synapses can be also useful in terms of information storing, which
we address next.

6.2. Information Gain and Maintenance, and Associated Energy Cost

Learning in our synaptic system can be thought as gaining information about the
stimulus c due to its brief switching on and off. Such a transient change causes changes in
ωdu, ωud, which modifies the probabilities pd, pu. The information gain can be quantified
by calculating the KL divergence between an initial distribution of probabilities after the
brief learning and the final steady-state distribution. Memory in this system can be thought
as maintaining that information for a prolonged time after the stimulus c was brought to 0.

Below, we consider in detail the maintenance of the information, and its associated
energy cost, and this is a novel analysis. Let us assume that at time t = 0, the collective
synaptic system has a probability pu(0) larger than its steady-state value (before learning)
pu,∞ = ωud,0/ω0, where ω0 = ωdu,0 + ωud,0. At t = 0 the stimulus is switched off
and the transition rates suddenly jump to their steady state values (ωud 7→ ωud,0, and
ωdu 7→ ωdu,0). Consequently, the probability pu(t) relaxes to its steady-state value pu,∞
according to pu(t) = [pu(0)− pu,∞]e−ω0t + pu,∞. This relaxation is related to losing the
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acquired information during the learning phase and has a characteristic time scale, which
in this case can be called the memory lifetime Tm = 1/ω0. Thus, the memory lifetime is
equivalent to a temporal retaining of information about the stimulus in the population of
synaptic weights.

The loss of information about the stimulus can be also quantified by the KL divergence
DKL( p⃗(t)|| p⃗∞) between the actual probability distribution p⃗(t) = (pd(t), pu(t)) and the
steady-state distribution p⃗∞ = (pd,∞, pu,∞). We find

DKL( p⃗(t)|| p⃗∞) =
[
pd,∞ − ∆e−ω0t] ln

(
1 − (∆/pd,∞)e−ω0t

)
+
[
pu,∞ + ∆e−ω0t] ln

(
1 + (∆/pu,∞)e−ω0t

)
, (70)

where ∆ characterizes the magnitude of an initial perturbation from the steady state caused
by the transient stimulus, i.e., ∆ = pu(0)− pu,∞, and ∆ > 0.

The rate of Kullback–Leibler divergence, denoted as ḊKL, takes the form

ḊKL( p⃗(t)|| p⃗∞) = −ω0∆e−ω0t ln
(1 + (∆/pu,∞)e−ω0t

1 − (∆/pd,∞)e−ω0t

)
, (71)

from which it is clear that information is lost exponentially with the rate proportional to
the inverse of memory lifetime ω0.

The energy loss during the relaxation to the steady state is proportional to the entropy
production rate Ṡw in the synaptic weights. The latter is found from Equation (18) and yields

Ṡw = −ḊKL( p⃗(t)|| p⃗∞), (72)

which means that the entropy production rate increases precisely in such a way as to
balance the decreasing rate of acquired information, i.e., ḊKL. The inverse relationship
between Ṡw and memory lifetime (Ṡ ∼ ω0) implies that the longer the information is
retained, the smaller the rate of dissipated energy. This, in turn, suggests that the total
entropy produced during the weights relaxation process, i.e., Sw,tot =

∫ ∞
0 dtṠw, should be

independent of memory lifetime. Indeed, we find

Sw,tot = pd(0) ln
( pd(0)

pd,∞

)
+ pu(0) ln

( pu(0)
pu,∞

)
, (73)

which means the total entropy produced is related in a simple way to the KL divergence
between p⃗(0) and p⃗∞, namely

Sw,tot = DKL( p⃗(0)|| p⃗∞). (74)

This equation can be interpreted in the following way: the energy cost associated with
storing information in synapses is proportional to the discrepancy between the distribution
of initially perturbed synaptic weights and their steady-state distribution. In general,
Equations (72) and (74) indicate that the information-like quantity, which is DKL, is closely
related to the energy-like quantity Ṡw. This is in line with the considerations in the previous
sections about stochastic thermodynamics.

7. More General Framework for Synaptic Learning and Memory

The above approach for synaptic plasticity and learning may seem too simplistic. After
all, representing different patterns of synaptic weights by a single collective variable w̄ is
probably too drastic, since by doing that, we throw out a lot of information about different
synaptic states. An alternative approach is possible, and it is briefly described below. The
details can be found in [18].

Here, we consider Ns mutually coupled excitatory synapses on a single neuron (we
assume that the neuron has a single dendrite along which synapses are linearly located).
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Each synapse can be in K discrete states si = 1, . . . , K, where i denotes the synapse number.
These states correspond to the different shapes and sizes of the postsynaptic part of a
synapse called the dendritic spine, which can be regarded as mesoscopic well-defined
morphological synaptic states, where microscopic (molecular) details are neglected [95,96].
It is hypothesized in the neuroscience community that these morphological states have
functional roles, e.g., large synapses (spines) are slow and involved in storing long-term
information (memory), while smaller synapses are fast and take part in acquiring informa-
tion (learning) [90,97]. Moreover, the states with small values of si correspond to weaker
synaptic weights (a smaller number of molecular receptors on the synapse membrane), and
larger values of si correspond to stronger synaptic weights.

Let P(⃗s) be the probability that these synapses are in the global state described by the
vector s⃗ = (s1, s2, . . . , sN). The most general form of the master equation for the stochastic
dynamics of P(⃗s) is

dP(⃗s)
dt

=
Ns

∑
i=1

∑
s′i

[
wsi ,s′i

(si−1, si+1)P(⃗s′i)− ws′i ,si
(si−1, si+1)P(⃗s)

]
, (75)

where s⃗′i = (s1, . . . , si−1, s′i, si+1, . . . , sN), and wsi ,s′i
(si−1, si+1) is the transition rate for the

jumps inside synapse i from state s′i to state si. In agreement with the experimental data,
these jumps also depend on the states of neighboring synapses si−1 and si+1 [97], and such
synaptic cooperativity can be also useful for long-term memory stability [98–100]. The
transition rates wsi ,s′i

(si−1, si+1) can be composed of several different terms, each represent-
ing a different type of synaptic plasticity (e.g., hebbian, homeostatic) [101]. Additionally,
each term can depend in a complicated manner on presynpatic and postsynaptic neural
activities. It is also useful to note that Equation (75) is structurally similar to the Glauber
dynamics for a time-dependent Ising model, which is known from statistical physics [52].

Unfortunately, Equation (75) is practically unsolvable for a large number of synapses
Ns, because we have KNs coupled differential equations to solve. For example, for K = 2 and
Ns = 1000, we have 10100 equations, which is impossible to handle on any existing computer
(more equations than the number of protons in the visible universe!). An useful approxima-
tion to these types of problems is provided by the so-called “pair approximation” [18]. The
essence of this method lies in reducing the effective dimensionality of the synaptic system
by considering only dynamics of single-synapse probabilities P(si) and double-synapse
probabilities P(si, si+1). This means that three-synapse correlations as well as higher-order
correlations are neglected, which is in agreement with an intuition, since the coupling
between synapses takes place between the nearest neighbors. In the pair approximation,
the joint probability P(⃗s) is approximated as [18]

P(⃗s) ≈ P(s1, s2) . . . P(si−1, si) . . . P(sN−1, sN)

P(s2) . . . P(si) . . . P(sN−1)
. (76)

This allows us to write the dynamics of probabilities P(si) and P(si, si+1), which we obtain
by marginalization of the joint probability P(⃗s), in the form

dP(si)

dt
≈ ∑

si−1

∑
si+1

∑
s′i

[
wsi ,s′i

(si−1, si+1)
P(si−1, s′i)P(s′i, si+1)

P(s′i)

−ws′i ,si
(si−1, si+1)

P(si−1, si)P(si, si+1)

P(si)

]
(77)

for i = 2, . . . , Ns − 1, and
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dP(si, si+1)

dt
≈ ∑

si−1

∑
s′i

[
wsi ,s′i

(si−1, si+1)
P(si−1, s′i)P(s′i, si+1)

P(s′i)

−ws′i ,si
(si−1, si+1)

P(si−1, si)P(si, si+1)

P(si)

]
+ ∑

si+2

∑
s′i+1

[
wsi+1,s′i+1

(si, si+2)
P(si, s′i+1)P(s′i+1, si+2)

P(s′i+1)

−ws′i+1,si+1
(si, si+2)

P(si, si+1)P(si+1, si+2)

P(si+1)

]
, (78)

for i = 2, . . . , Ns − 2. Similar expressions can be written for the boundary probabilities with
i = 1 and i = Ns.

Equations (77) and (78) form a closed system of differential equations. Most impor-
tantly, we have now only a K(K + 1)Ns/2 equation to solve instead of KNs . This means
that after applying the pair approximation, the computational complexity of the problem
grows only linearly with the number of synapses Ns, not exponentially. The solution of the
system given by Equations (77) and (78) allows us to determine information gain and its
energy cost during synaptic learning (during the LTP phase).

Information Gain and Loss, and Associated Energy Cost

Let us assume that before learning, synapses have a steady-state distribution Pss (⃗s).
Learning causes modifications in synaptic structures, which are associated with modified
transition rates and non-equilibrium jumps between different states. As before, KL diver-
gence can be used to quantify information gain during the learning phase (Equation (14)),
which in our case takes the form

DKL(P(⃗s)||Pss (⃗s)) = ∑
s⃗

P(⃗s) ln
P(⃗s)

Pss (⃗s)
. (79)

The temporal rate of gaining information during LTP can be found with the help of the
above pair approximation as

ḊKL(P(⃗s)||Pss (⃗s)) ≈ ∑
s1,s′1

∑
s2

[
ws1,s′1

(s2)P(s′1, s2)− ws′1,s1
(s2)P(s1, s2)

]
ln

P(s1, s2)

Pss(s1, s2)

+ ∑
sNs ,s′Ns

∑
sNs−1

[
wsNs ,s′Ns

(sNs−1)P(sNs−1, s′Ns
)− ws′Ns ,sNs

(sNs−1)P(sNs−1, sNs)
]

ln
P(sNs−1, sNs)

Pss(sNs−1, sNs)

+
Ns−1

∑
i=2

∑
si ,s′i

∑
si−1,si+1

[
wsi ,s′i

(si−1, si+1)
P(si−1, s′i)P(s′i, si+1)

P(s′i)

−ws′i ,si
(si−1, si+1)

P(si−1, si)P(si, si+1)

P(si)

]
ln

P(si−1, si)P(si, si+1)Pss(si)

Pss(si−1, si)Pss(si, si+1)P(si)
(80)

Thus, ḊKL depends on the transition rates between synaptic states, which is similar to the
entropy production rate related to the energy cost of synaptic plasticity.

The entropy production rate of synaptic transitions in this approximation is

Ṡpr (⃗s) =
Ns

∑
i=1

Ṡpr,i (81)

where Ṡpr,i is the individual entropy production in synapse i, which is
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Ṡpr,i ≈
1
2 ∑

si−1,si+1

∑
si ,s′i

[
wsi ,s′i

(si−1, si+1)
P(si−1, s′i)P(s′i, si+1)

P(s′i)

−ws′i ,si
(si−1, si+1)

P(si−1, si)P(si, si+1)

P(si)

]
× ln

wsi ,s′i
(si−1, si+1)P(si−1, s′i)P(s′i, si+1)P(si)

ws′i ,si
(si−1, si+1)P(si−1, si)P(si, si+1)P(s′i)

. (82)

The physical energy cost of synaptic plasticity is ∼ E0Ṡpr (⃗s), where E0 is the energy scale
associated with plasticity processes in a single synapse (for details, see [14,18]). In general,
E0 ∼ 105kBT, since a synapse, although small, is a composite object consisting of many
different molecular degrees of freedom [14].

As can be seen, both Equations (80) and (82) have a similar structure, suggesting
that the information gain rate and its energy requirement depend similarly on time, and
they are generally proportional to one another. This means acquiring larger information
during learning incurs higher energy costs, which is mainly because of the prefactor E0.
Again, information is physical and costly. Moreover, the cooperativity between neighboring
synapses (reflected in the transition rates wsi ,s′i

(si−1, si+1)) can have a positive effect on
energy efficiency of information gain if synapses are positively correlated [18].

8. Concluding Remarks

Basic components of the brain, i.e., neurons and synapses, exhibit probabilistic behav-
ior because they are affected by noisy internal and external signals [87]. In this paper, the
goal was to show that the concepts of information thermodynamics can be useful in neuro-
science problems, in which there is inherent stochasticity. Such problems involve neural
inference as well as synaptic learning and memory. In all these neurobiological examples,
neurons and synapses handle information, and since information is physical, the brain has
to use some amount of energy while executing its computations [4,5,13,14,18]. If we assume
that the brain uses information economically (e.g., [29]), then not all of these computations
are equally likely. Consequently, knowing the probability of a given neural or synaptic
activity (for a given task) should be a crucial element in deciphering the rules governing
brain computations. Thus, taking the economical point of view for cerebral information
processing might inspire theorists in efforts to construct more thermodynamically realis-
tic models of neural and synaptic computations. These models would embrace relevant
physics, rather than ignoring it, as advocated by William Bialek in a more general context of
“biological physics” [102]. One such proposition, of a broad nature and generality, could be
the principle of entropy maximization, which can be used to explain many types of data not
only in neural systems but also in molecular biology [43,48,103]. However, its weakness is
that it is based on equilibrium statistical mechanics, where time does not explicitly appear.
Therefore, it is difficult to imagine (at least for the author) how this principle could be
conceptually justified when applied to driven systems with stochastic dynamics, such as
neurons and synapses in the non-stationary regime.

The examples described here were relatively simple, and they neglected some detailed
features of real neurons and synapses. They were chosen because they can be treated
analytically in a pedagogic way with explicit relationships between different quantities.
Even for more complex models of neurons and synapses, the basic relationships between
information and energy still hold, as described above; however, to reveal them requires
heavy numerical calculations.

In the examples related to neural inference and synaptic plasticity, we used the idea of
time-scale separation to derive analytical formulas. The dynamics of neurons and synapses
can be quite complicated even for the relatively simple models we used because of the
several time scales involved: from the neural firing rates time constants τn0, τn of the order of
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1 s [19] to the synaptic plasticity time constants τθ (∼10–20 s) and τw (∼100–600 s) [93,104].
Real brains have obviously much more intrinsic time scales, from milliseconds for some
molecular processes (channels and receptors) [19], to seconds for neuromodulators, to hours
or days for homeostatic processes [101], to months or years for developmental processes.
This diversity of time scales is one of the main reasons for brain complexity, as many
processes overlap and interact with one another [105–107]. In both of our examples, we
observed that the stimulus variability, i.e., the external time scale, should be sufficiently slow
to have any noticeable influence on neural and synaptic dynamics and on their information
processing capability. Indeed, it seems that the slowness of the external stimulus can
be a very important requirement for efficient computation not only in neural systems
but generally in all biological systems with many interacting layers [88]. This is also the
case for the efficiency of information propagation in the so-called critical regime of brain
dynamics [108,109]. In this context, brain dynamics can be close to the critical point with
long neural avalanches exhibiting power laws but only if the stimulus variability is slower
than the duration of an avalanche [110].

In this perspective, the focus was on activities and information processing in indi-
vidual neurons and synapses in small networks. Such an approach is similar in spirit to
the physical approaches employed by others [12,17], where the authors analyzed energy
constraints on the amount of learnt information. In these cases, the concepts of information
and entropy production have a clear physical interpretation. However, in recent years, there
are also other more global approaches, where the whole brain dynamics are analyzed from
a thermodynamic point of view [15,111]. In such attempts, it is often difficult to interpret
entropic quantities in terms of physical observables, because so many degrees of freedom,
of different natures, are involved. In these global approaches, the goal seems to be different
from the “physicality” of neurons and synapses. The authors rather focus on quantifying
the irreversibility of global brain dynamics as described by the extent of a broken detailed
balance on a level of whole macroscopic brain networks [15,16].

Despite many successes of computational and theoretical neuroscience (partly and
briefly described in [112]), many traditional neurobiologists still neither understand it nor
appreciate it. Even theoretical neuroscientists use models that often are not well grounded
in neuronal reality, neglecting many physical aspects, e.g., energy, as irrelevant [19,20,23].
Theoretical neuroscience still needs a consistent and general theory to put diverse models
and different theoretical pieces together in a unified way. I do hope that information
thermodynamics, as developed in recent years by physicists, is a step in this ambitious
direction. In this respect, the most promising approaches, in my opinion, would be the
ones explicitly exploring simultaneously information and energy within stochastic thermo-
dynamics by identifying the most important mechanisms on the micro- and mesoscopic
levels, mainly in synapses, as they are important for learning and memory storing. Such
approaches were initiated in [13,14,18]. However, to construct a general and powerful
theory capable of making quantitative predictions requires much more, and it is not easy.
The good starting point is the idea that the presence of nonpredictive information leads to
energetic inefficiency [42]. Only retaining predicting (relevant) information in the memory
makes sense from a thermodynamic point of view [113]. Making these ideas more concrete
for “realistic” synapses could enhance our mechanistic understanding of synaptic plasticity
in the context of acquiring and storing information.
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Appendix A

In this Appendix, we derive the population-averaged tuning curve in Equation (44). The
summation in the expression c̄(v) = (1/N)∑N

i=1 ci(v) can be substituted by integration, i.e.,

c̄(v) ≈
∫ ∞

−∞
ρ(u)c(v, u), (A1)

where c(v, u) is the tuning curve for a given neuron as in Equation (42), i.e.,
c(v, u) = rm exp

[
− (v − u)2/(2ϵ2)

]
, and ρ(u) is the distribution of neuronal preferences.

We take ρ(u) in the form of the Gaussian such that

ρ(u) =
exp

(
− u2

2α2

)
√

2πα2
, (A2)

where α corresponds to the most likely range of stimulus velocities to which neurons
respond. A straightforward calculation yields

c̄(v) =
ϵrm√

α2 + ϵ2
exp

[
− v2

2(α2 + ϵ2)

]
. (A3)

This equation can be further approximated by noting that the most likely range of velocities
α is much greater than the “window of selectivity” of a typical neuron ϵ, i.e., α/ϵ ≫ 1.
After this, we find Equation (44) in the main text.

Appendix B

In this Appendix, we briefly show how to derive the steady-state mutual information
I(r̄, v)t 7→∞ in Equation (52).

The mutual information in Equation (51), with exponentially decaying correlation for
velocity of the stimulus, is proportional to the following integral I:

I =
∫ t

0
dt1

∫ t

0
dt2 e(t1+t2)/τn e−|t1−t2|/τc . (A4)

We decompose the integral I into two integrals I1 and I2, such that I = I1 + I2, where

I1 =
∫ t

0
dt1

∫ t1

0
dt2 e(t1+t2)/τn e−(t1−t2)/τc , (A5)

and

I2 =
∫ t

0
dt1

∫ t

t1

dt2 e(t1+t2)/τn e−(t2−t1)/τc . (A6)

A straightforward integration of I1 and I2 yields

I =
τ2

n τc

(τn + τc)
e2t/τn +

2τ2
n τ2

c
(τ2

n − τ2
c )

et( 1
τn −

1
τc ) +

τ2
n τc

(τc − τn)
, (A7)

after which we obtain Equation (52) in the main text.
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