

S. Sarkar, A. Orthey, RA, arXiv:2312.04405

S. Sarkar, C. Datta, S. Halder, RA, PRL 2025

Bell nonlocality and its applications in certification of quantum states and measurements

Remigiusz Augusiak

Center for Theoretical Physics, Polish Academy of Sciences

Quantum technologies

▶ New quantum technologies

Quantum computers

Quantum key distribution

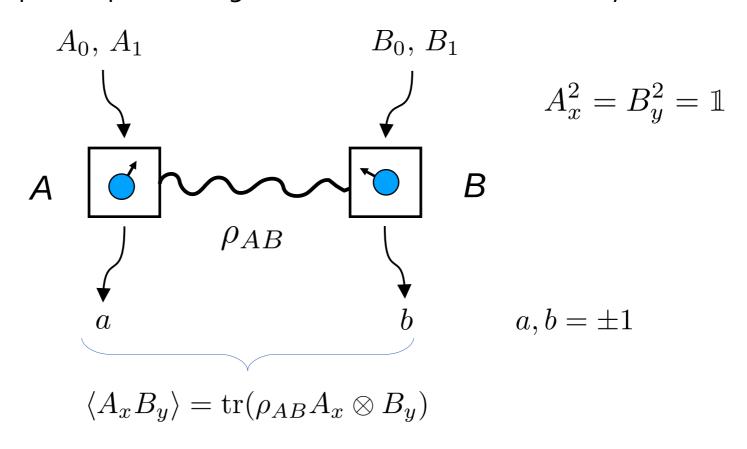
Quantum random number generators

▶ **Question:** How to certify that these devices work according to their specification and operate on a given state/perform given measurements

Device-indendenent certification (self-testing)

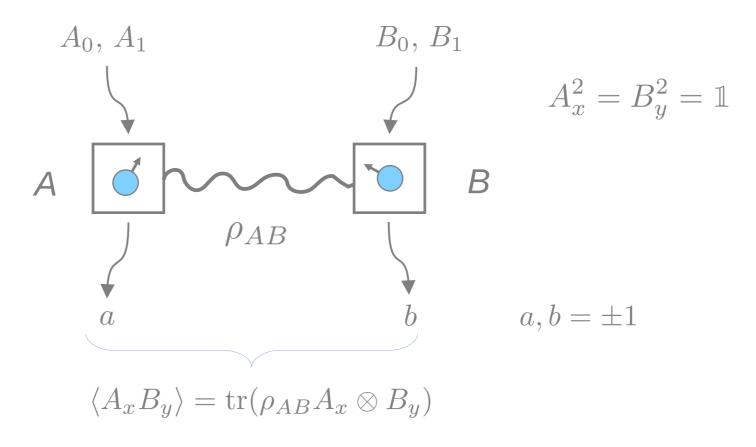
Bell nonlocality

▶ Bell scenario: two parties performing measurements on their local systems



Bell nonlocality

▶ Bell scenario: two parties performing measurements on their local systems



▶ Bell inequalities:

$$I_{\text{CHSH}} := \langle A_0 B_0 \rangle + \langle A_0 B_1 \rangle + \langle A_1 B_0 \rangle - \langle A_1 B_1 \rangle \leq 2 \quad \text{classical correlations}$$

 $I_{\text{CHSH}} > 2$

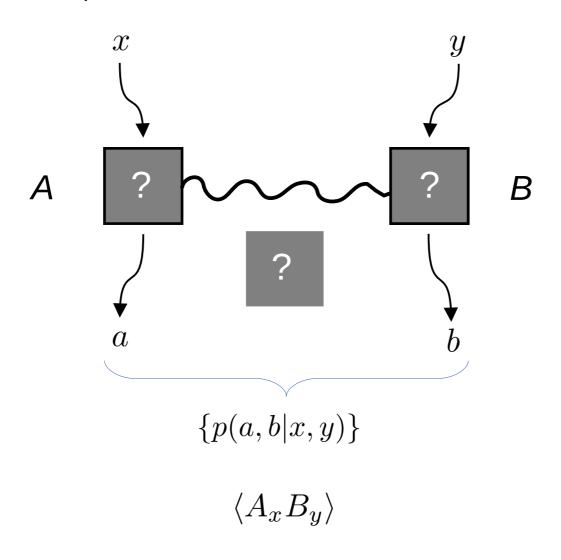
Bell nonlocality

Bell nonlocality

- ▶ Non-locality is a resource for device-independent certification
 - Security of quantum key distribution [Ekert, PRL (1991); A. Acín et al., PRL (2007)]
 - Certification of true randomness [Pironio et αl., Nature (2010); Colbeck, Renner, Nat. Phys. (2012)]
 - Device-independent entanglement certification [J.-D. Bancal et αl., PRL (2011)]
 - Certification of system's dimension [N. Brunner et al., PRL (2008)]
 - Self-testing [Mayers, Yao, QIC (2004)]

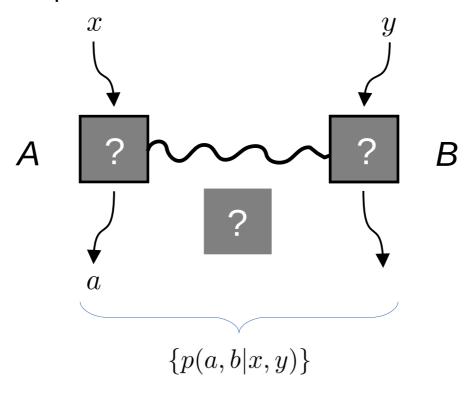
DI independent certification

▶ The idea of device-independent certification



DI independent certification

▶ The idea of device-independent certification



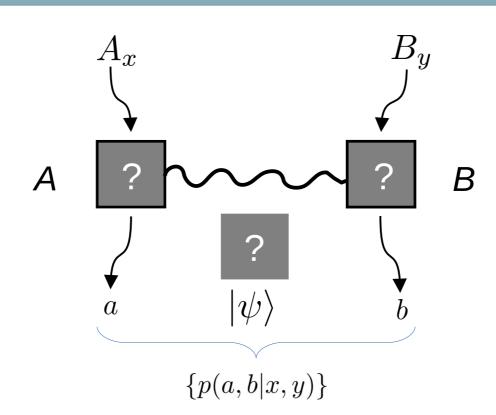
- Given $\{p(a,b|x,y)\}$
- a violation of a Bell inequality

Deduce properties of the state and measurements

$$\sum_{a,b,x,y} \alpha_{a,b,x,y} p(a,b|x,y) = \beta > \beta_C$$

Self-testing

Self-testing



Reference experiment we want to certify

$$\exists U_A, U_B \qquad (U_A \otimes U_B) |\psi\rangle = |\psi'\rangle \otimes |\text{aux}\rangle$$

$$U_A A_x U_A^{\dagger} = A_x' \otimes \mathbb{1}$$

$$U_B B_y U_B^{\dagger} = B_y' \otimes \mathbb{1}$$

$$\{|\psi'\rangle,A_x',B_y'\}$$

$$|\psi
angle \sim |\psi'
angle \quad A_i \sim A_i'$$
 Etc.

Self-testing

▶ **Example**: Self-testing from violation of the CHSH Bell inequality

$$I_{\text{CHSH}} := \langle A_0 B_0 \rangle + \langle A_0 B_1 \rangle + \langle A_1 B_0 \rangle - \langle A_1 B_1 \rangle = 2\sqrt{2}$$

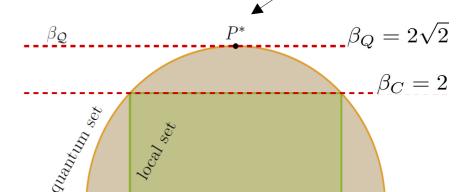
(maximal quantum value)

$$|\psi_{AB}\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle) \otimes |\text{aux}\rangle$$

$$A_0 = X \otimes \mathbb{1}$$
 $B_0 = \frac{1}{\sqrt{2}}(X + Z) \otimes \mathbb{I}$

$$A_0 = X \otimes \mathbb{1}$$
 $B_0 = \frac{1}{\sqrt{2}}(X + Z) \otimes \mathbb{1}$ $A_1 = Z \otimes \mathbb{1}$ $B_1 = \frac{1}{\sqrt{2}}(X - Z) \otimes \mathbb{1}$

(only pure states are self-testable)



$$X = \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right) \quad Z = \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right)$$

Self-testing entangled states

ARTICLE

Received 13 Dec 2016 | Accepted 31 Mar 2017 | Published 26 May 2017

DOI: 10.1038/ncomms15485

PEN

All pure bipartite entangled states can be self-tested

Andrea Coladangelo¹, Koon Tong Goh² & Valerio Scarani^{2,3}

Letter | Published: 13 February 2023

Quantum networks self-test all entangled states

<u>Ivan Šupić</u>, <u>Joseph Bowles</u>, <u>Marc-Olivier Renou</u>, <u>Antonio Acín</u> & <u>Matty J. Hoban</u> □

Nature Physics 19, 670-675 (2023) Cite this article

arXiv:2412.13266 [pdf, other] quant-ph

All pure multipartite entangled states of qubits can be self-tested up to complex conjugation

Authors: Maria Balanzó-Juandó, Andrea Coladangelo, Remigiusz Augusiak, Antonio Acín, Ivan Šupić

How to self-test a mixed state?

Self-testing quantum measurements

▶ Some particular classes of measurements in various scenarios

Article Open access | Published: 01 August 2024

All real projective measurements can be self-tested

Ranyiliu Chen , Laura Mančinska & Jurij Volčič

Nature Physics 20, 1642–1647 (2024) Cite this article

4526 Accesses 3 Citations 3 Altmetric Metrics

PHYSICAL REVIEW LETTERS 121, 250507 (2018)

Self-Testing Entangled Measurements in Quantum Networks

Marc Olivier Renou,1,* Jędrzej Kaniewski,2,3 and Nicolas Brunner1

<u>Self-Testing in Prepare-and-Measure Scenarios and a Robust Version of Wigner's Theorem</u>

Miguel Navascués, Károly F. Pál, Tamás Vértesi, and Mateus Araújo

Phys. Rev. Lett. 131, 250802 (2023) - Published 21 December, 2023

How to self-test a arbitrary measurements?

Certification of measurements and states in quantum networks

S. Sarkar, A. C. Orthey, R.A. arXiv:2312.04405

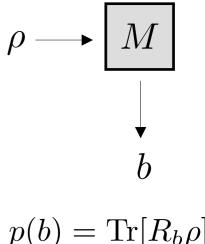
S. Sarkar, C. Datta, S. Halder, R.A. Phys. Rev. Lett. (2025)

Quantum measurements

▶ Quantum measurements

$$M = \{R_b\}_b$$
 s.t. $R_b \in \mathcal{B}(\mathcal{H})$ $R_b \geq 0$ $\sum_b R_b = \mathbb{1}$

- projective measurements
 POVM's (generalized)



$$p(b) = \text{Tr}[R_b \rho]$$

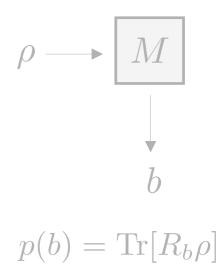
Quantum measurements

Quantum measurements

$$M = \{R_b\}_b$$
 s.t. $R_b \in \mathcal{B}(\mathcal{H})$

$$R_b \ge 0$$

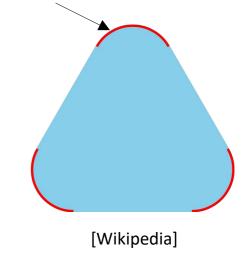
$$\sum_b R_b = 1$$



- ► Extremal quantum measurements
 - Quantum measurements form a convex set

•
$$R_b \neq pM_b^1 + (1-p)M_b^2$$

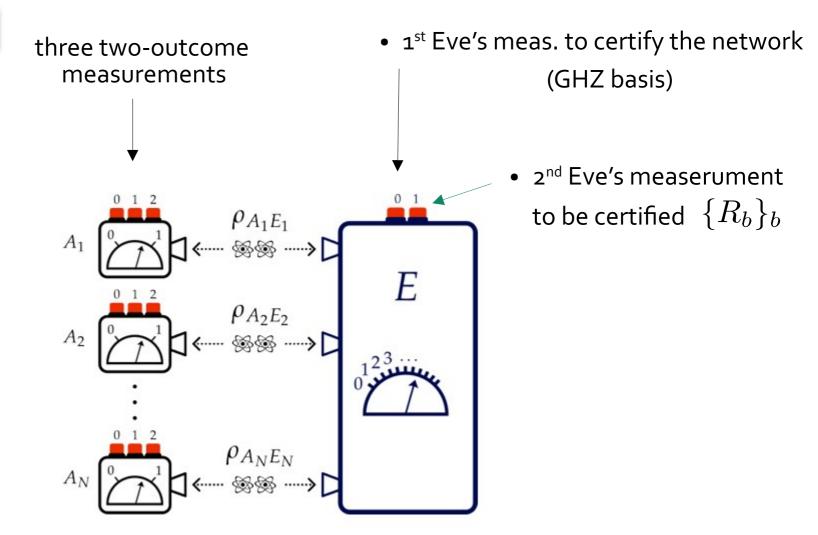
- projective measurement
- extremal POVM's



[D'Ariano, Lo Presti, Perinotti, J. Phys. A (2005)]

Scenario

Star network



Correlations

 $\{p(a_1,\ldots,a_N,l|x_1,\ldots,x_N,z)\}$

Objective: Characterize Eve's second measurement

Certification of the sources

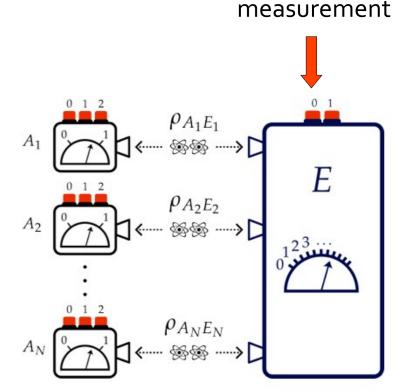
$$p(a_1,\ldots,a_N,l|x_1,\ldots,x_N,0)$$

$$\mathcal{I}_{l} = (-1)^{l_{1}} \left[(N-1) \left\langle \tilde{A}_{1,1} \prod_{i=2}^{N} A_{i,1} \right\rangle + \sum_{i=2}^{N} (-1)^{l_{i}} \left\langle \tilde{A}_{1,0} A_{i,0} \right\rangle - (-1)^{l_{1}} \sum_{i=2}^{N} (-1)^{l_{i}} \left\langle A_{1,2} A_{i,2} \prod_{\substack{j=2 \ j \neq i}}^{N} A_{j,1} \right\rangle \right] \leqslant \beta_{C}$$

Maximal violation for any *l*

$$\forall_i \quad \rho_{A_i E_i} \sim |\phi_+\rangle \langle \phi_+|$$

$$|\phi_{+}\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$



First Eve's

Certification of external parties' measurements

$$A_{i,0} \sim X$$

$$A_{i,1} \sim Z$$

and

$$(i = 1, ..., N)$$

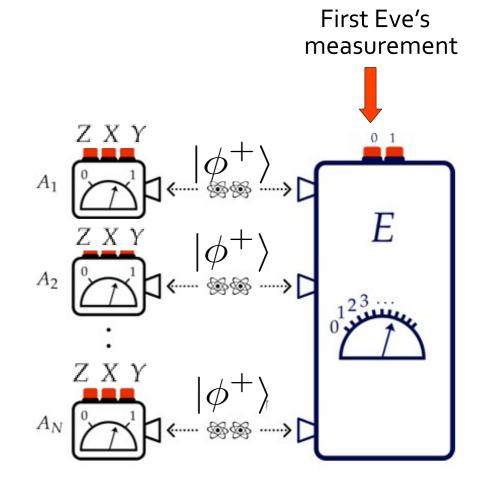
$$A_{i,2} \sim Y$$

$$A_{i,2} \sim -Y$$

Tomographically complete set of measurements

DI tomography of the second Eve's measurement

$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \quad Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$



▶ Certification of the given composite measurement

$$\{R_b\}_b$$

- projective measurements
- extremal POVM's

$$\mathcal{H} = (\mathbb{C}^d)^{\otimes N}$$

▶ We want to show that

$$R_b \sim R_b'$$

$$U_E R_b U_E^{\dagger} = R_b' \otimes \mathbb{1}_{E''}$$

For some given known extremal measurement

$$\{R_b'\}_b$$

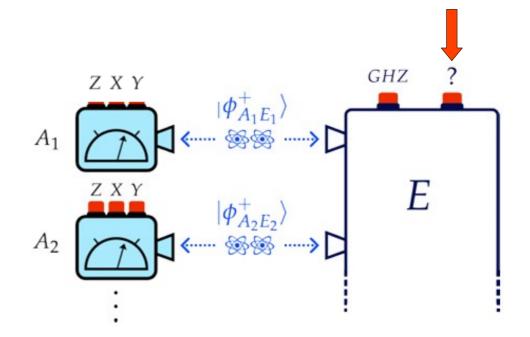
$$\mathcal{H} = (\mathbb{C}^2)^{\otimes N}$$

Swap of the measurement

$${
m Tr}[A_i\otimes R_b|\phi^+\rangle\!\langle\phi^+|]={
m Tr}\left[A_iR_b^T
ight]$$
 Second Eve's measurement

Local quantum tomography of the measurement

$$R_b = (R_b')^* \otimes \mathbb{1}$$
 or $R_b = R_b' \otimes \mathbb{1}$ $A_{i,2} \sim Y$



 \blacktriangleright Generalization to any extremal measurement on $\,\mathbb{C}^D\,\,(D\leq 2^N)$

Cartification of arbitrary measurements

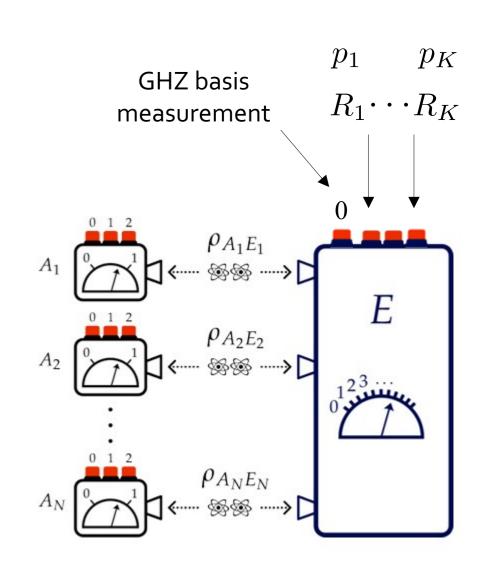
What about arbitrary nonextremal measurement

$$M = \{M_b\}$$
 nonextremal

$$M = \sum_{i=1}^{K} p_i R_i$$

$$R_i = \{R_b^{(i)}\}$$
 extremal

$$M_b = \sum_i p_i R_b^{(i)}$$



Certification of quantum states

- Certified preparation of quantum states states (with post-selection)
 - pure states

$$\{M_b\}$$
 s.t. $M_0=|\psi\rangle\!\langle\psi|$

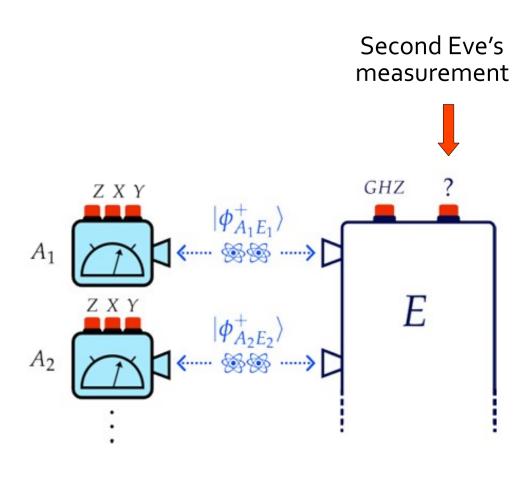
mixed states

$$\rho = \sum_{k} p_k |\psi_k\rangle\!\langle\psi_k| \quad \text{on } \mathbb{C}^d$$

$$\{M_k,N_b\}$$
 s.t. $M_k=p_k|\psi_k\rangle\!\langle\psi_k|$

3d – outcome extremal POVM

Impossible in the standard Bell scenario!



Summary and outlook

- ► A universal scheme for certification of quantum measurements (projective and extremal)
- ▶ The schemes allows for (indirect) certification of mixed states

Explore how robust are the schemes to noises and experimental imperfections

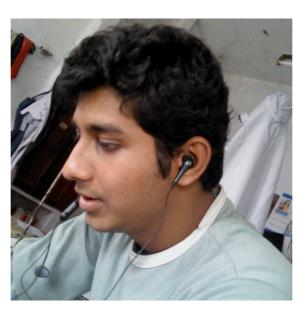
$$I_l \ge \beta_Q - \epsilon \quad (\epsilon > 0) \implies ||\Lambda(R_l) - M_l|| \le f(\epsilon)$$

- Extension to arbitrary quantum maps → certification of q. computations
- Make the schemes more practical (lower number of measurements, outcomes etc.)
- ▶ Relax the assumption that the sources are independent

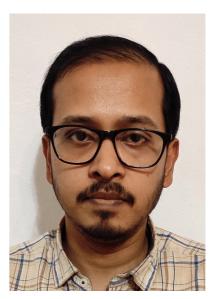
The team

Shubhayan Sarkar

Alexandre Orthey



Chandan Datta



Saronath Halder

Gautam Sharma

Call for Group Leader of the New Quantum Modelling Group

at the Center for Theoretical Physics of the Polish Academy of Sciences in Warsaw

within the ERA Chair project EUCENTRAL financed by the European Union

The call will open in 2026

