The influence of the symmetry energy on the structure of hyperon stars.

I. Bednarek (Katowice) Matter To The Deepest Recent Developments In Physics Of Fundamental Interactions XXXIX International Conference of Theoretical Physics

Ustron 2015

イロト 不得 とうき とうとう

1/24

Motivation:

- better understanding of the physics of neutron stars
- examining the possibility of the existence of strange baryons in the very inner part of a neutron star

Modelling neutron star structure and composition

P. Haensel et al. 2007

Outer core - n, p, e, μ matter under β equilibrium

$$\varepsilon = \varepsilon_{\rm N}(n_{\rm n}, n_{\rm p}) + \varepsilon_{\rm l}(e, \mu)$$

Equilibrium conditions:

•
$$\mu_{n} = \mu_{p} + \mu_{e}$$

• $\mu_{\mu} = \mu_{e}$

Schematic structure of a neutron star

- atmosphere
- outer crust lattice of neutron-rich heavy nuclei, degenerate, relativistic electrons - correction to radius ~ 10 percent
- inner crust as above plus degenerate non-relativistic neutrons
- outer core homogeneous nucleonic matter
- inner core may contain exotic forms of matter

Threshold chemical potentials of hyperons

P. Haensel et al. 2007 Apppearance of hyperons - at $2 - 3n_0$ Equilibrium conditions - contribution of hyperons to β equilibrium.

1
$$\mu_{\Xi^-} = \mu_{\Sigma^-} = \mu_{n} + \mu_{e}$$

$$\mathbf{D} \ \mu_{\mathbf{\Xi}^0} = \mu_{\mathbf{\Sigma}^0} = \mu_{\mathbf{\Lambda}} = \mu_{\mathbf{n}}$$

3
$$\mu_{\Sigma^+} = \mu_{\rm p} = \mu_{\rm n} - \mu_{\rm e}$$

hyperon onset points - hyperon threshold densities n_Y

$$\lim_{\mathbf{n}_{\mathrm{Y}}\to\mathbf{0}} = \frac{\partial\varepsilon}{\partial\mathbf{n}_{\mathrm{b}}}\mid_{\mathrm{eq}} = \mu_{\mathrm{Y}}^{0}$$

For $n_b > n_Y^{th}$ hyperon Y become stable in dense matter.

Modelling neutron star structure and composition -Tolman-Oppenheimer-Volkoff equation

$$\frac{\mathrm{d}\mathcal{P}}{\mathrm{d}r} = -\frac{\mathrm{G}}{\mathrm{c}^4} \frac{\left(\mathcal{E} + \mathcal{P}\right) \left(\mathrm{mc}^2 + 4\pi r^3 \mathcal{P}\right)}{\mathrm{r} \left(\mathrm{r} - 2\mathrm{Gm/c^2}\right)}$$

$$\frac{\mathrm{d}\mathrm{m}}{\mathrm{d}r} = 4\pi r^2 \frac{\mathcal{E}}{\mathrm{c}^2}$$

- M R relations
- details about the internal structure of a neutron star
- provides data on the impact of a given model on the internal structure of a

Solution of the TOV equations needs supplementation by the equation of state (EoS) of the matter of a neutron star $\mathcal{P}(\mathcal{E}(n_B))$

Lattimer et al. 2013

Measured neutron star masses.

There are no precise simultaneous measurements of neutron star mass and radius. Constraints on the mass-radius relation

- radius not strong enough
- mass
 - PSR J1614-2230, NS-WD binary system, M_{NS} = 1.97 ± 0.4M_☉, M_{WD} = 0.5M_☉ P.Demorest et al. 2010

 PSR J0348+0432, NS-WD binary system, M_{NS} = 2.01 ± 0.4M_☉, M_{WD} = 0.172M_☉
 - Antoniadis et al. 2013

Hyperon puzzle.

 $M_{max} \ge M_{measured} \Rightarrow M_{max} \ge 2M_{\odot}$ Massive neutron stars - strong constraint on the equation of state - requires stiff equation of state Hyperons soften the equation of state significantly.

Equation of state of isospin asymmetric nuclear matter - two component system of N nucleons

The energy differences of the states with different composition of protons and neutrons are encoded in the symmetry energy.

$$\begin{split} \mathrm{E}_{\mathrm{sym}}(\mathrm{N}_{\mathrm{p}},\mathrm{N}_{\mathrm{n}}) &\equiv \mathrm{E}(\mathrm{N}_{\mathrm{p}},\mathrm{N}_{\mathrm{n}}) - \mathrm{E}(\mathrm{N}_{\mathrm{p}} = \mathrm{N}/2,\mathrm{N}_{\mathrm{n}} = \mathrm{N}/2) \\ \delta_{\mathrm{a}} &= \frac{\mathrm{N}_{\mathrm{n}} - \mathrm{N}_{\mathrm{p}}}{\mathrm{N}_{\mathrm{B}}} = 1 - 2\mathrm{Y}_{\mathrm{p}} \\ \mathrm{E}_{\mathrm{sym}}(\mathrm{N},\delta_{\mathrm{a}}) &\equiv \mathrm{E}(\mathrm{N},\delta_{\mathrm{a}}) - \mathrm{E}(\mathrm{N},\delta_{\mathrm{a}} = 0) \end{split}$$

 $\label{eq:symmetric nuclear matter (SNM)} \begin{array}{l} \delta_{a}=0 \Rightarrow N_{n}=N_{p} \\ \mbox{@ pure neutron matter (PNM)} \end{array} \\ \end{tabular} \delta_{a}=1 \Rightarrow N_{p}=0 \end{array}$

$$\begin{split} \mathrm{E}_{\mathrm{sym}}(\mathrm{n}_{\mathrm{B}}) &= \mathrm{E}(\mathrm{n}_{\mathrm{B}}, \delta_{\mathrm{a}} = 1) - \mathrm{E}(\mathrm{n}_{\mathrm{B}}, \delta_{\mathrm{a}} = 0) \\ \mathrm{E}(\mathrm{n}_{0}, \delta_{\mathrm{a}} = 1) &= \mathrm{E}_{\mathrm{sym}}(\mathrm{n}_{0}) + \mathrm{E}(\mathrm{n}_{\mathrm{B}}, \delta_{\mathrm{a}} = 0) \end{split}$$

8/24

Using the expansion

$$\begin{split} E(n_B, y_p) &= E(n_B, y_p = 1/2) + (1 - 2y_p)^2 S_2(n_B) + \dots \\ S_2(n_B) &= S_v + \frac{L}{3} \frac{n_B - n_0}{n_0} + \dots \\ S_v &\simeq 31 \ {\rm MeV}, \quad L \simeq 50 \ {\rm MeV} \end{split}$$

Symmetry energy- connections to neutron star parameters

• Proton fraction

$$\mu_{\rm p} - \mu_{\rm n} = \frac{\partial E_{\rm Tot}}{\partial Y_{\rm p}} = 4E_{\rm sym}(n_{\rm B})(1 - 2Y_{\rm p})$$

 $E_{Tot} = E + E_e$ at saturation $n_B = n_0$

$$Y_{p} \approx \frac{1}{3\pi^{2}n_{0}} \left(\frac{4S_{v}}{\hbar c}\right)^{3} \approx 0.04$$

• Pressure at saturation density

$$p_{\beta}(n_0) = \simeq \frac{L}{3} n_0 \left(1 - \left(\frac{4S_v}{\hbar c}\right)^3 \frac{4 - 3S_v/L}{3\pi^2 n_0} + \dots \right)$$

Symmetry energy- connections to neutron star parameters

Pressure- radius correlations

$$m R = C(n_B, M)(p_{eta}/MeV fm^{-3})^{1/4}$$

Coefficients $C(n_B, 1.4M_{\odot})$

M_*/M_{\odot}	n ₀	$1.5n_0$	$2n_0$
1.3	$9.30{\pm}0.58$	$6.99 {\pm} 0.30$	5.72 ± 0.25
2.0	$9.52{\pm}0.49$	7.06 ± 0.24	5.68 ± 0.14

Coefficients appropriate for $n_B = n_0 - C(n_0, 1.4 M_{\odot})$

- Crust-core transition density and pressure
- Crust thickness

Theoretical predictions for symmetry energy

Theoretical considerations predict wide range of symmetry energies for densities below and above saturation density $n_0 = 0.16 \text{fm}^{-3}$.

Density dependence of the symmetry energy predicted by various theoretical calculations. (Shetty, 2010)

Nuclear matter with strangeness degrees of freedom - system of nucleons and hyperons

Modification of the symmetry energy by the presence of hyperons.

$$\mathrm{E}_{\mathrm{sym}}^{\mathrm{H}}(\mathrm{n}_{\mathrm{B}},\delta_{\mathrm{a}},\mathrm{y}_{\mathrm{i}})=\mathrm{E}(\mathrm{n}_{\mathrm{B}},\delta_{\mathrm{a}},\mathrm{y}_{\mathrm{i}})-\mathrm{E}(\mathrm{n}_{\mathrm{B}},\delta_{\mathrm{a}}=0,\mathrm{y}_{\mathrm{i}})$$

In this case: $n_B = n_N + y$ and $y = \sum_i y_i$ - total hperon number density Pure neutron matter $\longrightarrow y = 0$

Experimental constraints for symmetry energy parameters.

- Constraint for the centroid energy of the giant dipole resonance for 208 Pb -S₂(0.1) \simeq (24.1 \pm 0.9) MeV
- Consensus agreement of the six experimental constraints 44 MeV < L < 66 MeV
- Results of neutron matter studies - direct estimates of S_v and L consistent with the results determined from nuclear experiments

Measurements of neutron star radii

Estimation of neutron star radii - distant measurement and atmospheric modelling required.

Photospheric Radius Expansion Bursts

- Accreation from the companion (MS star) overflowing the Roche lobe
- Unstable burning of the accreated material
- Spread of the nuclear burning accros stellar surface sudden increase in X-ray luminosity and temperature
- X-ray bursts

The average neutron star mass and radius implied by these results: $\bar{M} = 1.65 \pm 0.12 M_{\odot}$, $\bar{R} = 10.77 \pm 0.65$.

QLMXBs

- Neutron stars in binary system with intermittently accreated matter from evolving companion star.
- Episodes of accretion separated by long periods of quiescence.
- Low magnetic field
- Compression of matter in the crust induces nuclear reactions
- Sufficient amount of heat is released to warm the star
- Neutron stars cool via neutrino radiation from their interiors and X-ray from their surfaces

The emitted X-ray spectra (for a given composition) depend on: R, $T_{\rm eff}$, $g = GM(1 + z)/R^2$ (observed spectra - D and $N_{\rm H}$) J.Lattimer, 2014

The model

$$\begin{split} \mathcal{L} &= \sum_{B} \mathcal{L}_{\mathcal{B}} + \mathcal{L}_{\mathcal{M}} + \mathcal{L}_{NL} + \mathcal{L}_{L} \\ \mathcal{L}_{\mathcal{B}} &= \bar{\psi}_{B} (\gamma_{\mu} i D^{\mu} - M_{B}^{\star}) \psi_{B} \\ M_{B}^{\star} &= M - g_{B\sigma} \sigma - g_{B\sigma^{\star}} \sigma^{\star} \\ D_{\mu} &= \partial_{\mu} + i g_{B\omega} \omega_{\mu} + i g_{B\phi} \phi_{\mu} + i g_{B\rho} I_{B} \rho_{\mu} \\ \mathcal{L}_{NL} &= -\frac{1}{3} g_{3} \sigma^{3} - \frac{1}{4} g_{4} \sigma^{4} + \sum_{i,j,k} C_{ijk} \omega_{\mu}^{i} \rho_{\mu}^{j} \phi_{\mu}^{k} \end{split}$$

Constituents of the model

- baryons: $\mathcal{B} \in \{n, p, \Lambda, \Sigma^+, \Sigma^0, \Sigma^-, \Xi^0, \Xi^-\}$
- leptons: $L \in \{e^-, \mu^-\}$
- mezons: $\mathcal{M} \in \{\sigma, \omega_{\mu}, \rho_{\mu}^{a}\}$ $\cup \{\sigma^{*}, \varphi_{\mu}\}$

Coupling constants

- vector meson-hyperon -SU(6) symmetry
- scalar meson-hyperon hypernuclear potential in nuclear matter

The Walecka-type models

Very "stiff" form of the symmetry energy. To provide additional freedom in varying the density dependence of the symmetry energy the model is supplemented by the term:

 $\Lambda_{\rm V}({\rm g}_\omega\omega)^2({\rm g}_\rho\rho)^2$

The density dependence of the symmetry energy

$${
m E}_{
m sym}({
m n}_{
m B}) = rac{{
m k}_{
m F}^2}{6\sqrt{({
m k}_{
m F}^2+{
m M}_{
m eff}^2)}} + rac{{
m k}_{
m F}^3}{12({
m m}_
ho^2/{
m g}_
ho^2+2{
m \Lambda}_{
m V}({
m g}_\omega\omega)^2)}$$

for $\Lambda_{\rm V}=0$ the symmetry energy varies linearly with the density.

TM1 nonlinear (isovector sector)							
$\Lambda_{\rm V}$	0	0.014	0.015	0.016	0.0165		
$\mathrm{g}_{ ho}$	9.264	9.872	9.937	10.003	10.037		
L (MeV)	108.58	77.52	75.81	74.16	73.36		

/ 24

Density dependence of symmetry energy

Calculations performed for different values of parameter $\Lambda_{\rm V}$ and compared with the results obtained for the AV14+VII, UV14+VII and UV14+TNI models.(R.B.Wiringa,1988) The inclusion of $\omega - \rho$ coupling softens the symmetry energy.

Modification of the symmetry energy for nuclear matter with hyperons.

Modification of neutron star parameters

Equations of state

Results obtained for non-strange and and strangeness-rich matter for different parameterizations.

Mass-radius relations

Neutron star matter with hyperons - the maximum mass range: $1.86-2.03 M_{\odot}$

Modification of neutron star parameters

Neutron star matter with hyperons - equations of state

Pressure and energy density dependence on strangeness fraction.

Neutron star matter with hyperons

Composition of the maximum mass configurations

□ ▶ < **▷** ▶ < **▷** ▶ < **▷** ▶ **○** ♀ 23 / 24

- Different neutron star observables are sensitive to the density dependence of the symmetry energy some of them depend on symmetry energy at relatively low density
- Hyperons affects the nuclear symmetry energy
- Modifies properties and structure of a neutron star