χ_{c_1} and χ_{c_2} production in e^+e^- annihilation

Szymon Tracz

in collaboration with H. Czyż, J.H. Kuhn

September 15, 2015

Szymon Tracz in collaboration with H. Czyż, J.H. Kuhn

Outline

- 3 Fits
- 4 Determination of electronic widths
- Implementation in PHOKHARA MC generator
- 6 Determination of cross section
- Conclusions

Szymon Tracz in collaboration with H. Czyż, J.H. Kuhn

Motivation Model Fits Determination of electronic widths Implementation in PHOKHARA MC generator Determination of cross

Charmonium spectrum ($\chi_{c_{0,1,2}}=|car{c}>)
ightarrow J^{PC}=0^{++},1^{++},2^{++}$

Szymon Tracz in collaboration with H. Czyż, J.H. Kuhn

• Luminosity of electron positron colliders are sufficiently high to make possible direct resonant production of these states at low energies in e^+e^- colliders (BES - III).

• States $\chi_{c_{1,2}}$ with positive charge conjugation can be produced directly only through the neutral current or higher order electromagnetic process.

• We consider electromagnetic interaction of $|c\bar{c}>$ state.

• Measuring cross section for $e^+e^- \rightarrow \chi_{c_{1,2}} \rightarrow \gamma(J/\psi \rightarrow \mu^+\mu^-)$ allows for determiantion of $\Gamma(\chi_{c_{1,2}} \rightarrow e^+e^-)$.

QUARKONIUM MODEL

• fermion and antifermion are treated in the **non relativistic** approximation.

Form Factor $\chi_{c_i} - \gamma \gamma$: $\mathbf{c} \equiv c_i (M_{\chi_{c_i}}, p_1^2, p_2^2, \mathbf{m}_i, \mathbf{a}) = \frac{16\pi \alpha \mathbf{a}}{\sqrt{m_i}} \frac{1}{((p_1^2 + p_2^2)/2 - M_{\chi_{c_i}} - b_i M_{\chi_{c_i}} - b_i^2/2)^2},$ $b_i = 2m_i - M_{\chi_{c_i}}, \ \mathbf{a} = \sqrt{\frac{3}{4\pi}} 3Q_i^2 \phi'(0) \text{ with } Q_i = 2/3$ $J. \ H. \ Kuhn, \ J. \ Kaplan \ and \ E. \ G. \ O. \ Safiani, \ Nucl. \ Phys. \ B \ 157$

Szymon Tracz in collaboration with H. Czyż, J.H. Kuhn

$$F_{\mu\nu} = \epsilon_{\mu}p_{\nu} - \epsilon_{\nu}p_{\mu}$$

$$J = 0$$

$$A_{0} = \frac{1}{6}c\frac{1}{M_{\chi_{c_{0}}}}(I_{1}^{0}(M_{\chi_{c_{0}}}^{2} + p1 \cdot p2) - 2I_{2}^{0}) \quad (1)$$
where $I_{1}^{0} = F_{\mu\nu}^{1}F^{2\mu\nu}$, $I_{2}^{0} = p_{1}^{\nu}F_{\mu\nu}^{1}F^{2\mu\alpha}p_{2\alpha}$.
$$J = 1$$

$$A_{1} = -i\frac{1}{2}c(I_{1}^{1} + I_{2}^{1}) \quad (2)$$
where $I_{1}^{1} = F_{\mu\nu}^{1}\epsilon^{\mu\nu\alpha\beta}F^{2\alpha\gamma}p^{2\gamma}\epsilon_{\beta}$.
$$J = 2$$

$$A_{2} = -c\sqrt{2}M_{\chi_{c_{2}}}I_{2}^{2} \quad (3)$$

where $I_2^2 = \epsilon^{\mu\nu} F_{\mu}^{1\beta} F_{\alpha\beta}^2$

Szymon Tracz in collaboration with H. Czyż, J.H. Kuhn

Extraction of unknown parameters using the data for decay widths:

$$\begin{split} & \mathsf{\Gamma}(\chi_{c_i} \to \gamma \gamma) \quad \mathsf{\Gamma}(\chi_{c_i} \to \gamma J/\psi), \text{ for } i = 0, 1, 2\\ \text{The same Form factor } c \text{ used for } \underline{\chi_{c_i} - \gamma \gamma} \text{ and } \underline{\chi_{c_i} - J/\psi \gamma}.\\ & \text{fit1 - } \chi_{c_0}, \ \chi_{c_1}, \ \chi_{c_2}\\ & \text{fit2 - } \chi_{c_1}, \ \chi_{c_2} \end{split}$$

$$b_i = 2m_i - M_{\chi_{c_i}}$$

	a[GeV] ^{5/2}	$b_0[GeV]$	$b_1[GeV]$	b ₂ [GeV]	χ^2
fit1	0.065(2)	-0.338(7)	-0.577(6)	-0.652(8)	15.6
fit2	0.062(2)	-	-0.584(6)	-0.661(6)	-

for fit1 $\chi^2 = 12.8$ for $\Gamma(\chi_{c_0} \to \gamma \gamma)$.

$$A(e^+e^- \rightarrow \chi_{c_0}) \propto m_e.$$

Szymon Tracz in collaboration with H. Czyż, J.H. Kuhn

widths [MeV]	χ_{c_0}	χ_{c_1}	χ_{c_2}
$\Gamma(\chi o \gamma \gamma)_{exp}$	$2.3(2) \cdot 10^{-3}$	-	$5.3(3) \cdot 10^{-4}$
$\Gamma(\chi o \gamma \gamma)_{th}$	$1.66(1) \cdot 10^{-3}$	-	$5.3(3) \cdot 10^{-4}$
$\Gamma(\chi ightarrow J/\psi \gamma)_{exp}$	$1.33(9) \cdot 10^{-1}$	$2.8(2) \cdot 10^{-1}$	$3.7(3) \cdot 10^{-1}$
$\Gamma(\chi ightarrow J/\psi \gamma)_{th}$	$1.36(2)\cdot 10^{-1}$	$2.8(4) \cdot 10^{-1}$	$3.7(6) \cdot 10^{-1}$

Table: Experimental (exp) and theoretical (th) values of $\Gamma(\chi_{c_{0,1,2}} \rightarrow \gamma\gamma, J/\psi\gamma)$.

 $\chi_{\mathbf{c}_{1}}\not\to\gamma\gamma$ according to Yang's Theorem.

Szymon Tracz in collaboration with H. Czyż, J.H. Kuhn

$$\begin{split} &\Gamma(\chi_{c_1} \to e^+ e^-) &= \quad \frac{|g_1|^2}{12\pi} M_{\chi_{c_1}} \\ &\Gamma(\chi_{c_2} \to e^+ e^-) &= \quad \frac{|g_2|^2}{40\pi} M_{\chi_{c_2}}. \end{split}$$

Szymon Tracz in collaboration with H. Czyż, J.H. Kuhn

$$\begin{split} loop &= g_i \equiv g_i(M_{\chi_{c_i}}, m_i, a, M_{J/\psi}) \\ g_i &= g_{i_{\gamma\gamma}} + e^{i\phi}g_{i_{\gamma J/\psi}}. \end{split}$$

The coupling $J/\psi - \gamma d_1$:

$$\Gamma(J/\psi \to \gamma \to e^+e^-) = \frac{\alpha d_1}{3M_{J/\psi}^3}.$$

Szymon Tracz in collaboration with H. Czyż, J.H. Kuhn

Predictions of electronic widths

widths	fit1	fit2	
$\Gamma(\chi_{c_1} \rightarrow e^+ e^-)_{max}$	0.041 eV	0.037 eV	
$\Gamma(\chi_{c_1} ightarrow e^+ e^-)$	0.040 eV	0.036 eV	
$\Gamma(\chi_{c_1} ightarrow e^+ e^-)_{\gamma\gamma}$	0.040 eV	0.036 eV	
$\Gamma(\chi_{c_2} ightarrow e^+ e^-)_{max}$	0.094 eV	0.087 eV	
$\Gamma(\chi_{c_2} ightarrow e^+ e^-)$	0.093 eV	0.086 eV	
$\Gamma(\chi_{c_2} ightarrow e^+ e^-)_{\gamma\gamma}$	0.022 eV	0.02 eV	

Szymon Tracz in collaboration with H. Czyż, J.H. Kuhn

+ Interferences (2 unknown phases). $J/\psi - \mu^+\mu^-$ coupling: $\sqrt{\frac{3\Gamma_{J/\psi \to e^+e^-}}{\alpha\sqrt{p_2^2}}}$.

Szymon Tracz in collaboration with H. Czyż, J.H. Kuhn

TESTS OF THE CODE

Helicity amplitude method vs Trace method

relative accuracy $pprox 10^{-15}$

Narrow width approximation $(\sqrt{s} = M_{\chi_{c_{1,2}}})$:

$$\sigma_{\chi_{c_1}} = \frac{12\pi}{s} Br(\chi_{c_1} \to e^+ e^-) Br(J/\psi \to \mu^+ \mu^-) Br(\chi_{c_1} \to J/\psi\gamma),$$

$$\sigma_{\chi_{c_2}} = \frac{20\pi}{s} Br(\chi_{c_2} \to e^+ e^-) Br(J/\psi \to \mu^+ \mu^-) Br(\chi_{c_2} \to J/\psi\gamma),$$

$$(0.49 \pm 0.07)\% \text{ for } \chi_{c_1}$$

$$(2.81 \pm 0.02)\% \text{ for } \chi_{c_2}$$

Szymon Tracz in collaboration with H. Czyż, J.H. Kuhn

$$\sigma \equiv \sigma(e^+e^- \rightarrow \chi_{c_1} \rightarrow \gamma(J/\psi \rightarrow \mu^+\mu^-))$$

 ϕ - relative phase signal-background, Q^2 - muons invariant mass.

Szymon Tracz in collaboration with H. Czyż, J.H. Kuhn

Beam spread: $\Delta E = 1 MeV$, $\Gamma_{ee} = 0.04 eV$

Szymon Tracz in collaboration with H. Czyż, J.H. Kuhn

Beam spread: $\Delta E = 1 MeV$, $\Gamma_{ee} = 0.09 eV$

Szymon Tracz in collaboration with H. Czyż, J.H. Kuhn

Final remarks

- \bullet The production of $\chi_{\rm c_{1,2}}$ have been implemented in PHOKHARA MC generator
- Results show that these processes can be measured in existing experiments (BES-III).
- Obtained results depend on relative phase of radiative return and $\chi_{c_{1,2}}$ production amplitudes.

Outlook

• Production of $\chi_{c_{0,1,2}}$ in two photon processes can be also considered to check the corectness of charmonium states models.