

Higgs (and top) physics from the theory perspective

Marius Wiesemann

University of Zürich

Matter To The Deepest, Ustroń (Poland) 13-18 September, 2015

<u>Outline</u>

- I. Higgs production and decay at the LHC
- 2. Backgrounds
- 3. Top physics
- 4. Inclusive cross section (ggF)
- 5. Distributions (ggF)
- 6. State-of-the-art Monte Carlo predictions
- 7. Other production modes (VBF, VH, ttH, bbH)

M. Wiesemann (University of Zürich)

3

Higgs physics overview (theory perspective)

M. Wiesemann (University of Zürich)

Universität Zürich^{UZH}

See talk by Z.Troscanyi...

See talk by Z.Troscanyi...

Backgounds (only slide)

Automatic NLO tools:

- MG5_aMC@NLO [Alwall et al. '14]
- Sherpa [Krauss et al.]
- POWHEG-BOX [Alioli et al. '10]
- HELAC-NLO [Czakon et al.]
- $^{\otimes}$ NNLO revolution for 2 \rightarrow 2 processes:
 - [®] γγ [Catani, Cieri, de Florian, Ferrera, Grazzini 'I I]
 - [®] W/Zγ [Grazzini, Kallweit, Rathlev, Torre '13], [Grazzini, Kallweit, Rathlev '15]
 - ZZ [Cascioli et al. '14], [Grazzini, Kallweit, Rathlev '15]
 - WW [Gehrmann et al. '14]
 - It [Bernreuther, Czakon, Mitov '12], [Czakon, Mitov '13], [Czakon, Fiedler, Mitov '13]

● NEW: NNLO+NNLL pT resummation:

- [®] γγ [Cieri, Coradeschi, de Florian '15]
- ZZ/WW [Grazzini, Kallweit, Rathlev, MW '15]

Top-physics from the theory perspective

M. Wiesemann (University of Zürich)

Top-physics from a Higgs physicist perspective

Top-physics from a Higgs physicist perspective

top-quark decay (almost to 100%)

top very unstable (decays before it can form hadrons)

Import background from top-pair and Wt production to Higgs physics:
 obvious: ttH

 $^{\otimes}$ also: H \rightarrow WW

ttbar and Wt at NLO

OpenLoops+Sherpa

F.Cascioli, S.Kallweit, S.Pozzorini,P.Maierhofer (2013); see also R.Frederix (2013)

Fig. 1 Representative $t\bar{t}$ -like (left) and Wt-like (right) tree diagrams.

Fig. 2 Representative tree topologies without top resonances and with two (left) or only one (right) resonant W-boson.

It allows a consistent study of the 0 and 1 jet bin relevant as a background to Higgs production

Finite width effects in the o-jet bin grow to up to 40% at low p_T threshold

The separation of the ttbar and Wt processes is quite subtle

Use of 4F and massive b-quarks allows a unified description of the two processes

from talk by Massimiliano Grazzini in Warsaw 2014

inclusive cross section at NNLO(+NNLL)
[Bernreuther, Czakon, Mitov '12], [Czakon, Mitov '13], [Czakon, Fiedler, Mitov '13]

New method: Sector Improved Residue Subtraction Scheme (STRIPPER) [Czakon '10 '11]

NEW: fully-differential cross section at NNLO

- STRIPPER [Czakon, Fiedler, Mitov '14]
- Antenna Subtraction (only qq) [Abelof, Gehrmann-De Ridder, Majer '15]
- © colorful q_T subtraction (only gq) [Catani, Grazzini, Torre, Sargsyan '15]

Itransverse momentum resummation for top pair system

- (N)NLL [Zhu, Li, Li, Shao, Yang '13]
- Image: method including azimuthal correlations [Catani, Grazzini, Torre '14]

Total inclusive cross section at NNLO (+NNLL)

[Czakon, Fiedler, Mitov; 2013]

Where we are

3

from talk by David Heymes at SM@LHC 2014

Summary of combinations of total cross section measurements

- Combining measurements from CDF and DØ gives a Tevatron cross section at 1.96 TeV c-o-m of $7.60 \pm 0.41(5.4\%)$ pb, to be compared with the theoretical calculation (NNLO+NNLL) $7.24^{+0.23}_{-0.27}(3.4\%)$ pb (Czakon et. al).
- Combining measurements from ATLAS and CMS gives a LHC cross section at 7 TeV c-o-m of $173 \pm 10(5.8\%)$ pb, to be compared to the theoretical calculation (NNLO+NNLL) of $172.0^{+6.4}_{-7.5}(4.1\%)$ pb.
- The most precise measurements at 8 TeV are from the ATLAS and CMS dilepton channel: $238 \pm 11(4.6\%)$ pb and $227 \pm 15(6.6\%)$ pb.

The NNLO+NNLL SM prediction is $245.8^{+8.8}_{-10.6}(4.0\%)$ pb.

S. Protopopescu, TOP 2013, 15th September 2013

from talk by Michal Czakon at SFB/TR9 Meeting 2014

MC, Fiedler, Mitov, preliminary

from talk by Michal Czakon at Radcor/Loopfest 2015

M. Wiesemann (University of Zürich)

M. Wiesemann (University of Zürich)

Higgs physics overview (theory perspective)

September 14, 2015

Forward-Backward Asymmetry

How much more is the top in direction of the Proton than the anti-top?

differential asymmetry (bin wise)

Forward-Backward Asymmetry

How much more is the top in direction of the Proton than the anti-top?

inclusive asymmetry: D0 compatible with NNLO CDF ~1.5σ above NNLO

differential asymmetry (bin wise)

Single-top production

s-channel

Wt-associated

data in good agreement with Monte Carlos

t-channel: cross section at NNLO [Brucherseifer, Caola, Melnikov '14]

Single-top production

 $\frac{2}{2}$ corrections to *t*-channel single top quark production cross sections at 8 TeV LHC with a cut on the transverse s [TeV] the top ${}^{60}_{\text{quark }} p_{\perp}$. Cross sections are shown of loading, next-to-leading and next-to-next-to-leading order in renormalization scale $\mu_{NNEO}^{NLO} m_t$ (central value), $\mu = 2m_t$ (upper value) and $\mu = m_t/2$ (lower NNLO (relative to the NLO) are showed ifferentiater **Cross**_t. Section: the factor tions at NI 50 $m_t/2 < \mu < 2 m_t$ cut

nasespace parametrization relevant for the $\rightarrow dtg \text{ and } ub \rightarrow dtgg \text{ sub-processes as well}$ n of an appropriate choices of elextraction of singularities can be found in e. Using the language of that paper, we only der "initial-state" sectors since there are poularities2associated with final state particles ct that top quarks are massive. All calculad for initial-state sectors are documented in pt that here we need soft and collinear lim-M. Wiesemann (University of Zürich) Higgs physics overview (theory perspective) September 14, 2015 γ_{r} and automatically enforces

45

NNLO corrections still small

to be anti Brucheseifer; Carola, Meloikov 10ffhanded polarization of the *b*-quark and removes the issue of $\frac{1}{7}_5$ alto but r.K. factor in ot completely flat eak $b \rightarrow t$ transition is facilitated by the vector current but we select the b-quark with left-handed polarization only, we will obtain the same result as when the calculation is $\frac{1}{70}$ performed with the anti-commuting γ_5 . Since the cancellation of infra-red and collinear divergences occurs for each polarization of the incoming *b*-quark separately, this approach completely eliminates the need to specify the

Back to Higgs physics...

Universität Zürich^{uzH}

September 14, 2015

Higgs physics overview (theory perspective)

M. Wiesemann (University of Zürich)

soft term (function of $\delta(1-z), [\log^n(1-z)/(1-z)]_+$)

M. Wiesemann (University of Zürich)

M. Wiesemann (University of Zürich)

Higgs physics overview (theory perspective)

September 14, 2015

$$\frac{\hat{\sigma}(z)}{z} = \hat{\sigma}^{-1}(z) + \sum_{N=0,1}^{\infty} \sigma^{(N)}(z) (1-z)^N$$

$$\frac{\hat{\sigma}(z)}{z} = \hat{\sigma}^{-1}(z) + \sum_{N=0,1,\dots,37}^{\infty} \sigma^{(N)}(z) (1-z)^N$$

Universität

from talk by Bernhard Mistlberger at Loopfest/Radcor 2015

$$\frac{\hat{\sigma}(z)}{z} = \hat{\sigma}^{-1}(z) + \sum_{N=0,1,\dots,37}^{\infty} \sigma^{(N)}(z) (1-z)^N$$

Universität

Zürich

[Anastasiou, Duhr, Dulat, Mistlberger '15]

M. Wiesemann

(University of Zürich)

Higgs physics overview (theory perspective)

24

20000 ----

- Conclusion: Radiative corrections in htl under control ~ 2-3% uncertainties
- Other uncertainties?
 - top-mass effects
 - bottom-mass effects
 - EW effects
 - PDFs

Inclusive cross section

- Conclusion: Radiative corrections in htl under control ~ 2-3% uncertainties
- Other uncertainties?
 - top-mass effects
 - bottom-mass effects
 - EW effects
 - PDFs

Let's concentrate on mass effects...

Gluon Fusion

Inclusive cross section

Universität Zürich^{UZH}

top-mass effects by I/m_{top} expansion:

|--|

Gluon Fusion

Inclusive cross section

 ∞

 $\sigma =$

 $\frac{1}{m_{\rm top}^{2k}} \, \sigma^{(k)}$

top-mass effects by I/m_{top} expansion:

Monday, November 10, 2014
Inclusive cross section

 ∞

 $\sigma =$

 $\frac{1}{m_{\rm top}^{2k}} \, \sigma^{(k)}$

top-mass effects by I/m_{top} expansion:

Inclusive cross section

 ∞

 $\sigma =$

 $\frac{1}{m_{\rm top}^{2k}} \, \sigma^{(k)}$

top-mass effects by I/m_{top} expansion:

Inclusive cross section

 ∞

 $\sigma =$

 $\frac{1}{m_{\rm top}^{2k}} \, \sigma^{(k)}$

Universität Zürich^{UZH}

top-mass effects by I/m_{top} expansion:

 ∞

 $\sigma =$

 $\frac{1}{m_{\rm top}^{2k}} \, \sigma^{(k)}$

top-mass effects by I/m_{top} expansion:

Inclusive cross section

[Harlander, Mantler, Marzani, Ozeren '10]

top-mass effects by I/m_{top} expansion:

Monday, November 10, 2014

 $\begin{array}{c} & \sigma_{gg}(M_{t}^{n}) / \sigma_{exact} \\ 1.1 & NLO, pp @ 14 TeV \\ 1.075 & n=0,2,4,6,8,10 \\ 1.025 & 1 \\ 0.975 & 0.95 \\ 0.925 & 0.9 \\ 100 120 140 160 180 200 220 240 260 280 300 \\ \end{array}$ $\begin{array}{c} & Harlander, Mantler, Marzani, Ozeren '10] M_{H} / GeV \end{array}$

Monday, November 10, 2014

 ∞

k=0

 $\sigma =$

 $\sigma^{(k)}$

 $m_{
m top}^{-}$

Monday, November 10, 2014

Monday, November 10, 2014 Monday, November 10, 2014

differential cross sections

top-mass effects on NLO corrections at large p_T

 $\sigma = \sum_{k=0}^{\infty} \frac{1}{m_{\rm top}^{2k}} \, \sigma^{(k)}$

[Harlander, Neumann, MW '12]

differential cross sections

top-mass effects on NLO corrections at large p_T

top-mass effects on H+jet cross section at LO

M. Wiesemann (University of Zürich) 30

top-mass effects on H+jet cross section at LO

M. Wiesemann (University of Zürich) 30

differential cross sections

top-mass effects on H+jet cross section at LO

$$\sigma_{\geq 1 \text{jet}} = \int_{p_{\text{T,min}}} \mathrm{d}p_{\text{T}} \, \frac{\mathrm{d}\sigma}{\mathrm{d}p_{\text{T}}}$$

top-mass effects on H+jet cross section at LO

M. Wiesemann (University of Zürich)

31

differential cross sections

top-mass effects on H+jet cross section at NLO

$$\sigma_{\geq 1 \text{jet}} = \int_{p_{\text{T,min}}} \mathrm{d}p_{\text{T}} \, \frac{\mathrm{d}\sigma}{\mathrm{d}p_{\text{T}}}$$

matched cross section: reliable NLO prediction

differential cross sections

Small Transverse Momenta:

[®] divergent \rightarrow requires resummation of log(p_T/m_H)

state-of-the-art still NNLO+NNLL:

In the second second

In the second second

Universität Zürich^{UZH}

- Small Transverse Momenta:
- top-mass effects small
- bottom-mass effects:
 - three scale problem!
 - рт, m_H, m_{bottom} (only two for top loop: p_T, m_H~m_{top})
 - → difficult choice of hard scale (matching/resummation scale)

Higgs physics overview (theory perspective)

Higgs physics overview (theory perspective)

differential cross sections

In bottom-mass effects at small pT: three scale problem! (no complete solution yet)

→ two approaches to choose matching/resummation scale:

[Harlander, Mantler, MW '14]	[Bagnaschi,Vicini '15]
separate scales for top, bottom and top-bottom interference term	
hadron level	parton level
resummation scales as large as possible, while requiring high-p⊤ matching	matching scale choosen where collinear approximation fails (by >10%)

differential cross sections

In bottom-mass effects at small pT: three scale problem! (no complete solution yet)

→ two approaches to choose matching/resummation scale:

[Bagnaschi, Harlander, Mantler, Vicini, MW]

[Bagnaschi, Harlander, Mantler, Vicini, MW]

Gluon Fusion differential cross sections

NEW: state-of-the-art shower Monte Carlo predictions (highest perturbative information, quark-mass effects)

multi-jet merging:

NNLO+PS

differential cross sections

NEW: state-of-the-art shower Monte Carlo predictions (highest perturbative information, quark-mass effects)

- multi-jet merging:
 - MG5_aMC@NLO [Frederix, Frixione, Vryonidou, MW]
 - H+0/1/2-jets @ NLO (FxFx)
 - m_{top} in H+0-jet & I-loop (borns, reals); H+ \geq I-jet virtuals (2-loop) reweighted by full (m_{top}) born
 - EFT not valid for $m_{bottom} \rightarrow full m_{bottom}$ dependence in H+0-jet @ NLO with aMCSusHi [Mantler, MW '15]
 - Sherpa

[Krauss et al.]

- H+0/1/2-jets @ NLO (MEPS)
- m_{top}, m_{bottom} included via reweighting of NLO EFT with LO
- NNLO+PS

differential cross sections

NEW: state-of-the-art shower Monte Carlo predictions (highest perturbative information, quark-mass effects)

- multi-jet merging:
 - MG5_aMC@NLO [Frederix, Frixione, Vryonidou, MW]
 - H+0/1/2-jets @ NLO (FxFx)
 - m_{top} in H+0-jet & I-loop (borns, reals); H+ \geq I-jet virtuals (2-loop) reweighted by full (m_{top}) born
 - EFT not valid for $m_{bottom} \rightarrow full m_{bottom}$ dependence in H+0-jet @ NLO with aMCSusHi [Mantler, MW '15]
 - Sherpa

[Krauss et al.]

- H+0/1/2-jets @ NLO (MEPS)
- m_{top}, m_{bottom} included via reweighting of NLO EFT with LO
- NNLO+PS

•

- NNLOPS [Hamilton, Nason, Zanderighi '14 '15]
 - H+0/1-jets @ NLO (POWHEG-MINLO) + NNLO normalization by reweighting in Higgs-y

 - NLO H+I-jet in EFT reweighted with LO m_{top}, optional: same for m_{bottom} or only at LO H+I-jet
- UN²LOPS [Hoeche, Li, Prestel '14]
 - H+0/1-jets @NLO (S-MC@NLO+UNLOPS) + qT-slicing with NNLO information below pT-cut
 - no mass effects yet(?)

from talk by Giovanni Petrucciani at 10th Workshop of the LHCHXSWG

16/07/15

0.6

 N_{iet}

Sherpa

MG5 aMC

Comparisons of $r(n_{\mathsf{jet}} \ge N_{\mathsf{jet}}) \; [\mathsf{pb}]$ 10^{1} different MC's: many distributions, received (all very 10^{-1} recently), didn't have 10^{-2} time to set up a full 1.4 1.2 comparison for today. 1 0.8

nuRFvar muOvar Qcutvar

Universität

Zürich

20

- one of the (if not the) best studied processes at hadron colliders
- In high precision prediction (first N3LO)
- careful assessment of uncertainties (mass effects, resummation, ...)
- New Monte Carlo prediction under way
- ongoing studies in all directions...

- NLO corrections ~10% [Han, Willenbrock '91], [Figy, Oleari, Zeppenfeld '03], [Campbell, Ellis '03]
- NLO QCD+EW in HAWK (tend to compensate each other) [Ciccolini, Denner, Dittmaier '07]
- NLO+PS VBF-Hjj and VBF-Hjjj in POWHEG [Nason, Oleari '10], [Jäger, Schissler, Zeppenfeld '14]

and MG5_aMC@NLO [Frixione, Torrielli, Zaro '13], [Alwall et al. '14]

- Interference effects with gluon fusion negligible [Andersen, Binoth, Heinrich, Smillie '07] [Andersen, Smillie '08] [Bredenstein, Hagiwara, Jäger '08]
- I gluon-induced NNLO contributions [Harlander, Vollinga, Weber '08] (well below 1%)
- NNLO with structure function approach (assumption no cross talk):
 - inclusive, NNLO corrections: ~1% [Bolzoni, Maltoni, Moch, Zaro '10]
 - NEW: differential, NNLO corrections with VBF cuts: ~5% [Cacciari, Dreyer, Karlberg, Salam, Zanderighi '15]

Higgsstrahlung

- NNLO [Brein, Harlander, Djouadi '03] mostly by Drell-Yan QCD corrections ~5-10% [Hamberg, Matsuura, Van Neerven '91]
- Iluon-induced contributions at NNLO ~10% [Brein, Djouadi, Harlander '03]
- top-quark mediated NNLO contributions ~I-3% [Brein, Harlander, Zirke, MW 'II]

all included in VH@NNLO [Brein, Harlander, Zirke '12]

- Inclusive cross section at NLO [Beenakker, Dittmaier, Krämer, Plumper, Spira, Zerwas '01], [Dawson, Reina '02]
- NLO+PS:
 - MG5_aMC@NLO [Frederix, Frixione, Hirschi, Maltoni, Pittau, Torrielli '11]
 - POWHEG-BOX [Hartanto, Jäger, Reina, Wackeroth '15]
 - Sherpa
- NEW: EW effects ~10% at large pT [Frixione, Hirschi, Pagani, Shao, Zaro '14 '15]
- → first important step towards automation of EW effects see also: Sherpa+OpenLoops [Cascioli, Lindert, Maierhöfer, Pozzorini]

five-flavor scheme (5FS)

Universität Zürich^{UZH}

four-flavor scheme (4FS)

inclusive NLO

[Dittmaier, Krämer, Spira '04] [Dawson, Jackson, Reina, Wackeroth '04]

exclusive NLO(+PS)

[MW, Frederix, Frixione, Hirschi, Maltoni, Torrielli '14]

P \overline{b} H \overline{b} \overline{b}

• inclusive NNLO

[Harlander, Kilgore '03]

towards N3LO

[Ahmed, Rana, Ravindran '14], [Ahmed, Mandal, Rana, Ravindran '14], [Gehrmann, Kara '14]

exclusive H+0/1/2-jet at NNLO/NLO/LO

[Campbell, Ellis, Maltoni, Willenbrock '03], [Harlander, Ozeren, MW '10], [Harlander, MW '11]

- exclusive NNLO [Buehler, Herzog, Lazopoulos, Mueller '12]
- pT resummation at NNLO+NNLL [Harlander, Tripathi, MW '14]
- exclusive NLO+PS [MW, Frederix, Frixione, Hirschi, Maltoni, Torrielli '14]

Universität Zürich^{UZH}

four-flavor scheme (4FS)

inclusive NLO

[Dittmaier, Krämer, Spira '04]

[Dawson, Jackson, Reina, Wackeroth '04]

• exclusive NLO(+PS) [MW, Frederix, Frixione, Hirschi, Maltoni, Torrielli '14]

NEW: differential comparison of 4FS and 5FS:

five-flavor scheme (5FS) inclusive NNLO

[Harlander, Kilgore '03]

towards N3LO

[Ahmed, Rana, Ravindran '14], [Ahmed, Mandal, Rana, Ravindran '14], [Gehrmann, Kara '14]

• exclusive H+0/1/2-jet at NNLO/NLO/LO

[Campbell, Ellis, Maltoni, Willenbrock '03], [Harlander, Ozeren, MW '10], [Harlander, MW '11]

- exclusive NNLO [Buehler, Herzog, Lazopoulos, Mueller '12]
- pT resummation at NNLO+NNLL [Harlander, Tripathi, MW '14]
- exclusive NLO+PS [MW, Frederix, Frixione, Hirschi, Maltoni, Torrielli '14]

Universität Zürich^{UZH}

four-flavor scheme (4FS)

inclusive NLO

[Dittmaier, Krämer, Spira '04]

[Dawson, Jackson, Reina, Wackeroth '04]

• exclusive NLO(+PS) [MW, Frederix, Frixione, Hirschi, Maltoni, Torrielli '14]

NEW: differential comparison of 4FS and 5FS:

five-flavor scheme (5FS)

• inclusive NNLO [Harlander, Kilgore '03]

towards N3LO

[Ahmed, Rana, Ravindran '14], [Ahmed, Mandal, Rana, Ravindran '14], [Gehrmann, Kara '14]

exclusive H+0/1/2-jet at NNLO/NLO/LO

[Campbell, Ellis, Maltoni, Willenbrock '03], [Harlander, Ozeren, MW '10], [Harlander, MW '11]

- exclusive NNLO [Buehler, Herzog, Lazopoulos, Mueller '12]
- pT resummation at NNLO+NNLL [Harlander, Tripathi, MW '14]
- exclusive NLO+PS [MW, Frederix, Frixione, Hirschi, Maltoni, Torrielli '14]

NEW: approaches to combine inclusive 4FS and 5FS:

[Bonvini, Papanastasiou, Tackmann '15] [Forte, Napoletano, Ubiali '15]

could not talk about...

Universität Zürich^{vz+}

- jet-veto resummation in gluon fusion
- decays
- EW effects
- PDFs

...

- off-shell effects
- Idouble Higgs production
- BSM Higgs physics

...apologies!

Summary

- In the second second
- (personal) selection of recent results for gluon fusion:
 - First N3LO compution at hadron colliders
 - → radiative corrections under control, small residual uncertainty (~1-3%)
 - need to control other uncertainties
 - * top- and bottom-mass small (inclusive cross section)
 - NNLO corrections for H+jet production
 - top-mass effects relevant at large pT
 - bottom-mass effects relevant at small pT
 - → requires sophisticated matching/resummation scale choice
 - New generation of Monte Carlo predictions under study
- summarized some relevant results for VBF, VH, ttH, bbH

Thank You !

Back Up

Concurrent uncertainties:

 Scales
 ~ 3%

 pdf (at 68%cl)
 ~ 2-3%

 α_s (parametric)
 ~ 1.5%

 m_{top} (parametric)
 ~ 3%

Soft gluon resummation makes a difference:

5% ->

3%

from talk by Michal Czakon at SFB/TR9 Meeting 2014

September 14, 2015

0.5h

Universität

Zürich

from talk by Giovanni Petrucciani at 10th Workshop of the LHCHXSWG

250

300

350

150

200

100

50

