

Standard Model Tests at the LHC A. Salzburger, CERN on behalf of the ATLAS and CMS collaborations

LHC Run-1 and Run-2

LHC - The main experiments

A Toroidal LHC ApparatuS + ALFA

length ~40 m, height ~22 m, weight ~7000 tons Inner Tracker embedded in 2 T solenoid, sampling EM calorimeter, MS tracker/spectrometer within a toroidal magnetic system

Compact Muon Solenoid

length ~ 22 m, height ~ 12.5 m, weight ~12500 tons Full Silicon Inner Tracker embedded 5 T solenoid, crystal EM calorimeter

A Large Ion Collider Experiment dedicated for Pb-Pb collisions, high particle identification capability

LHCb dedicated for studying properties of the B-mesons, movable precision silicon pixel detector very close to the interaction region

TOTEM roman pot detectors located 150/220 m from the CMS interaction point

Foundation - detector performance

- presented results rely on a very deep understanding and precise modelling of the experimental setups
 - impressive results from the performance/physics objects groups
 - in general, exceptional Monte Carlo detector modelling of the data

Detector performance & data taking efficiency

- Presented results would not have been possible without
 - excellent performance of the LHC
 - very high data taking efficiency and stable detector operation of the LHC experiments
- gives a lot of confidence for Run-2

ATLAS Run-1 Detector Status (from Oct. 2012)

Subdetector	Number of Channels	Approximate Operational Fraction
Pixels	80 M	95.0%
SCT Silicon Strips	6.3 M	99.3%
TRT Transition Radiation Tracker	350 k	97.5%
LAr EM Calorimeter	170 k	99.9%
Tile calorimeter	9800	98.3%
Hadronic endcap LAr calorimeter	5600	99.6%
Forward LAr calorimeter	3500	99.8%
LVL1 Calo trigger	7160	100%
LVL1 Muon RPC trigger	370 k	100%
LVL1 Muon TGC trigger	320 k	100%
MDT Muon Drift Tubes	350 k	99.7%
CSC Cathode Strip Chambers	31 k	96.0%
RPC Barrel Muon Chambers	370 k	97.1%
TGC Endcap Muon Chambers	320 k	98.2%

Very similar numbers for all experiments

Standard Model Production Cross Section Measurements Status: March 2015

All spot-on - all done ?

- Run-1data has still a lot of interesting physics
 - QCD become more and more precision measurements
 - Soft QCD: minimum bias, underlying event measurements necessary in pp conditions
 - Hard QCD: test of high order pertubative QCD (inclusive, multiple-jet production cross-sections V+jets production)
 - precision measurement of fundamental parameters α_s
 - constraining the parton density functions (PDFs)
 - EWK observables and processes
 - ► ZA_{fb}
 - VBF/VBS results (observation and evidence)
 - precision measurements to come, such as m_W
- ▶ Run-2: 13 TeV measurements are on the way
 - back to the start, do it again and confirm (or not)
 - will show some hot-of-the-press results, many more to follow in the next months

Standard Model Measurements at the LHC - Matter to the Deepest, Ustron, 2015 A. Salzburgei

are essential

55

 very precise measurements for 7 TeV and 8 TeV

60

- supplemented by TOTEM measurement
- first 13 TeV result from ATLAS
 - using Minimum Bias
 Scintillator detectors and extrapolated to total cross section
 - ratio measurement single sided counter/ inclusive counters

 73.1 ± 0.9 (exp.) ± 6.6 (lum.) ± 3.8 (extr.) mb.

65

Soft QCD - Minimum bias measurements

- Why measuring the charged particle multiplicities ?
 - pertubative QCD describes only hard-scatter partons, rest described by phenomenological models

- ND component
 - QCD motivated models with many parameters
 - these parameters have impact when extrapolated to high Q (e.g. color reconnection)
- SD & DD component not well constraint and little data available
- Measure primary charged particle distribution to constrain models
 - model independent (e.g. no SD/DD/ND splitting), corrected to particle level

 dN_{ev}/dn_{ch} , <pT> vs. n_{ch} , $dN_{ch}/d\eta$, $d^2N_{ch}/d\eta dp_T$

Minimum bias measurement - CMS/TOTEN

- charged particle measurement
 - track counting measurement with corrections
 track reconstruction efficiency (dominant)
 fake/ghost tracks (not an issue in µ=0)
 trigger, vertex, selection efficiency
 contamination of pile-up events
 - unfolding to particle level usually done using a Bayesian unfolding
- CMS combined with TOTEM
 - test model dependence up to |eta| ~ 6.5
 - good modelling with QGSJetII-04 up to large pseudo-rapidity

- Matter to the Deepest, Ustron, 2015 A. Salzburger - Standard Model Measurements at the LHC

Minimum bias measurement - ATLAS

- recent 13 TeV measurement of ATLAS
 - challenging due to newly installed innermost pixel detector (IBL) many checks needed to understand the material budget of new detector
 - phase-space: $N_{ch} \geq$ 1, $p_T > 500$ MeV, $\left|\eta\right| < 2.5$
- Good modelling by EPOS (LHC tune) and PYTHIA8 (A2 tune)

Soft QCD - particle production

- Measurement of particle spectra and species give additional input to understand/ constraint the modelling
 - soft parton interactions
 - hadronisation process
- ALICE measurement of production $(\pi^{\pm}, K^{\pm}, p, \bar{p})$ at 7 TeV
 - combination of 5 techniques (sub-detectors) for particle identification
- Shapes of spectra a described by most is
 - no model can simultar ≰[™]
 the different particle type

2015

Ustron,

- Matter to the Deepest,

Standard Model Measurements at the LHC

A. Salzburge

Hard QCD - Jet production cross section

- Jet production cross section is a very good probe of QCD dynamics
 - over many orders of magnitudes, combines test of perturbative QCD with nonpertubative effects, LHC experiments cover 20 GeV to 2 TeV !

ard solive loas, retromulosts mselotions

- accuracy of better than 5% achieved, very good agreement with NLO predictions Hard OCD: Jet Cross-Sections

Hard QCD: jet cr Jet production cross section - ratios

4-jet cross section measurement

differential measurement of 4-jet cross section of ATLAS at 8 TeV

Pertubative QCD - V + jets Perturbative QCD: V(+jets) In general, very good agreement over many orders of magnitudes

High accuracy of measurements allow to access discrepancies to predictions

 V+jets is a very good tool as it allows to test many processes

$\sigma^{\text{fid}}(\gamma + X) [\eta^{\gamma} < 1.37]$	$\sigma = 236.0 \pm 2.0 + 13.0 - 9.0 \text{ pb} (\text{data})$ JETPHOX (theory)	
$-[1.52 < \eta^{\gamma} < 2.37]$	$\sigma = 123.0 \pm 1.0 + 9.0 - 7.0 \text{ pb (data)}$	
$\sigma^{\rm fid}(Z \to ee, \mu\mu)$	$\sigma = 479.0 \pm 3.0 \pm 17.0 \text{ pb (data)}$ FEWZ+HERAPDF1.5 NNLO (theory)	
$-[\mathbf{n}_{jet} \ge 1]$	σ = 68.84 ± 0.13 ± 5.15 pb (data) Blackhat (theory) ATLAS Preliminar	у
$-[n_{jet} \ge 2]$	$\sigma = 15.05 \pm 0.06 \pm 1.51 \text{ pb} \text{ (data)}$ Blackhat (theory) Bla	\mathbf{v}
$-[\mathbf{n}_{jet} \ge 3]$	$\sigma = 3.09 \pm 0.03 \pm 0.4 \text{ pb} \text{ (data)}$ Blackhat (theory)	
$-[\mathbf{n}_{jet} \ge 4]$	$\sigma = 0.65 \pm 0.01 \pm 0.11 \text{ pb} (\text{data})$ Blackhat (theory)	
$-[\mathbf{n}_{\mathbf{b}-\mathbf{jet}} \geq 1]$	σ = 4820.0 ± 60.0 + 360.0 - 380.0 fb (data) MCFM (theory)	
$-[\mathbf{n}_{\mathbf{b}-\mathbf{jet}} \ge 2]$		ſeV
$-\sigma^{ m fid}$ (Zjj еwк)	σ = 54.7 ± 4.6 + 9.9 - 10.5 fb (data) PowhegBox (theory) Theory	
$\sigma^{fid}(Z \to \tau \tau)$	σ = 1690.0 ± 35.0 + 95.0 - 121.0 fb (data) MC@NLO + HERAPDFNLO (theory)	ed
$\sigma^{fid}(Z \rightarrow bb)$	σ = 2.02 ± 0.2 ± 0.26 pb (data) Powheg (theory)	st
$\sigma^{\rm fid}(W \to e\nu, \mu\nu)$	$\sigma = 5.127 \pm 0.011 \pm 0.187 \text{ nb (data)}$ FEWZ+HERAPDF1.5 NNLO (theory)	
$-[\mathbf{n}_{jet} \ge 1]$	$\sigma = 493.8 \pm 0.5 \pm 45.1 \text{ pb (data)}$ Blackhat (theory)	eV
$-[n_{jet} \ge 2]$	σ = 111.7 ± 0.2 ± 12.2 pb (data) Blackhat (theory) Theory	
$-[\mathbf{n}_{jet} \geq 3]$	σ = 21.82 ± 0.1 ± 3.23 pb (data) Blackhat (theory)	'ed
$-[n_{jet} \ge 4]$	$\sigma = 4.241 \pm 0.056 \pm 0.885 \text{ pb (data)}$	st
$-[\mathbf{n}_{jet} \ge 5]$	$\sigma = 0.877 \pm 0.032 \pm 0.301 \text{ pb} (data)$	
$-[n_{jet}=1, n_{b-jet}=1]$	$\sigma = 5.0 \pm 0.5 \pm 1.2 \text{ pb (data)}$ MCFM+D.P.I. (theory)	
$-[n_{jet}=2, n_{b-jet}=1]$	$\sigma = 2.2 \pm 0.2 \pm 0.5 \text{ pb (data)}$ MCFM+D.P.I. (theory)	
$\sigma^{\mathrm{fid}}(W{ ightarrow}\mathrm{e} u,\mu u)/\sigma^{\mathrm{fid}}(Z{ ightarrow}\mathrm{e}\mathrm{e},\mu\mu)$	Ratio = 10.7 ± 0.08 ± 0.11 (data) FEWZ+HERAPDF1.5 NNLO (theory)	
$-[n_{jet} \geq 1]$	Ratio = 8.54 ± 0.02 ± 0.25 (data) Blackhat (theory)	
$-[n_{jet} \geq 2]$	Ratio = 8.64 ± 0.04 ± 0.32 (data) Blackhat (theory)	
$-[n_{jet} \geq 3]$	Ratio = 8.18 ± 0.08 ± 0.51 (data) Blackhat (theory)	
– [n _{jet} ≥ 4]	Ratio = 7.62 ± 0.19 ± 0.94 (data) Blackhat (theory)	
$\sigma^{fid}(W+Z\toqq)$	$\sigma = 8.5 \pm 0.8 \pm 1.5 \text{ pb (data)}$ MCFM (theory)	
		<u> </u>

$V+{ m jets}$

- New results coming in with 13 TeV good agreement with MC
 - using integrated luminosity of 85 pb⁻¹
 - MC: O and NLO matrix elements supplemented by parton showers

Strong obling - as measurementing const

- α_s is fundamental QCD parameter, many measurements sensitive to it
 - measured via inclusive jet cross section, ratio 3-jet to 2-jet events (R₃₂), tt cross section, event shapes, etc.
 - CMS results demonstrate consistency of different processes

Good agreement with 2-loop solution of RGE as function of the scale Q up to TeV

Strong coupling - α_s measurement New measurement from ATLAS using event shapes

EWK - Electroweak production of $W\!/\!Z$: VBF Z

- Very complex and detailed analyses from ATLAS and CMS
 - First result from ATLAS, significance above 50: observation of VBF production
 - Excellent agreement data/MC demonstrated will be "VBF reference analysis".
- Z+2-jet final state, separate EWK (t-channel exchange of W/Z) and non-EWK contributions. EWK dominantly VBF + Z-bremsstrahlung diagrams:

EWK - \vee BF Z production

- ATLAS analysis based on 5 fiducial regions
 - baseline, high-mass, search, control & high- p_T
- cut-based analysis, MC templates & control region to extract signal
 - SHERPA (LO multi-leg) and POWHEG (NLO) used for signal modelling

The "search" region (plot, m(jj) > 250 GeV): EWK is 5% of total Z+jets signal.

 $\sigma_{\rm EWK}$ = 54.7 ± 4.6(stat) ^{+9.8} _{-10.4} (syst) ± 1 (lumi) fb $\sigma_{\rm Powheg}$ = 46.1 ± 1.0 fb

similar agreement for m(jj) > 1000 GeV region

significance estimated using Toys for search and control regions.

extract aTGC limits (compare to others)

background subtraction

EWK - \lor BF W production

CMS analysis

- MVA based after cutting on BDT discriminat, likelihood fit to the m_{jj} distribution to extract signal
- Madgraph+PYTHIA used for signal modelling
- data/MC agreement for distribution of BDT discriminant values not ideal

-> results in systematic uncertainty

- muon/electron channels very similar in terms of uncertainty & accuracy

Well within prediction

Event category	Measured cross section
μjj	0.43 ± 0.04 (stat.) \pm 0.10 (syst.) \pm 0.01 (lumi.) pb
e <i>jj</i>	0.41 ± 0.04 (stat.) \pm 0.09 (syst.) \pm 0.01 (lumi.) pb
combined $\mu j j$ and $e j j$	0.42 ± 0.04 (stat.) \pm 0.09 (syst.) \pm 0.01 (lumi.) pb

predicted: $\sigma = 0.50 \pm 0.03$ pb

EWK - production of W: VBS ssWW

- First evidence (3σ) of VBS reported by ATLAS in same-sign WW channel
 - QCD and EWK contribution about the same size

- 2-lepton with di-jet + MET final state
 - separate QCD with O($\alpha_s^2 \alpha_{EW}^4$) contribution from EWK with O(α_{EW}^6)
 - ATLAS signal modelling: Sherpa with Powheg for NLO normalisation
- \blacktriangleright Two analyses: inclusive ssWW and the (subset) VBS EWK

Set first limits on anomalous quartic gauge couplings (aQGC) parameters relevant for WWWW couplings: α_4 and α_5

Use WHIZARD and K-matrix regularization and set limits using data in "EWK" analysis region.

 $σ(EWK) = 1.3 \pm 0.4 \text{ (stat)} \pm 0.2 \text{ (syst) fb}$ $σ(pred) = 0.95 \pm 0.06 \text{ fb}$

- ▶ Remove H→WW contribution (~8% effect)
- Evaluate limits for anomalous trilinear gauge couplings (aTGC)
- In this analysis only CP-conserving operators for aTGCs tested

Coupling constant	This result	Its 95% CL interval	World average	
	(TeV^{-2})	$({\rm TeV}^{-2})$	(TeV^{-2})	
$c_{\rm WWW}/\Lambda^2$	$0.1^{+3.2}_{-3.2}$	[-5.7, 5.9]	-5.5 ± 4.8	(from λ_{γ})
$c_{\rm W}/\Lambda^2$	$-3.6^{+5.0}_{-4.5}$	[-11.4, 5.4]	$-3.9^{+3.9}_{-4.8}$	(from g_1^Z)
$c_{\rm B}/\Lambda^2$	$-3.2^{+15.0}_{-14.5}$	[-29.2, 23.9]	$-1.7^{+13.6}_{-13.9}$	(from κ_{γ} and g_1^Z)

 $\sigma(fid) = 60.1 \pm 0.9 \text{ (stat) } \pm 3.2 \text{ (exp)} \pm 3.1 \text{ (theo)} \pm 1.6 \text{ (lumi) pb}$ $\sigma(\text{NNLO}) = 59.8 \pm 1.2 \text{ pb}$

CERN-PH-EP-2015-122

-60∟ -15

-5

0

-10

5

 c_{WWW}/Λ^2 (TeV⁻²)

10

15

Forward-backward asymmetry $Z\,\mathsf{A}_{\text{fb}}$

- ATLAS result from 7 TeV most precise of LHC
 - use 3 categories: $\mu\mu$, ee with central-forward (CF), ee with central-central (CC)
 - convert to $\sin^2\theta_{eff}^{lept}$ EWK mixing parameter use PYTHIA (LO) to extract EWK contribution, POWHEG as a crosscheck reasonable good modelling of A_{fb} distribution

EWK - Forward-backward asymmetry $Z\,\mathsf{A}_{\mathsf{fb}}$

- Overview table for $\sin^2 \theta_{\rm eff}^{\rm lept}$
 - Tevatron is reaching LEP precision
 - LHC not yet competitive (more statistics and more elaborated analyses needed)

- Preliminary CMS results using full 8 TeV dataset
 - excellent modelling with POWHEG

A first look on 13 TeV results

A first look on 13 TeV results

- Many more physics and performance studies in the pipeline
- Exciting times ahead with Run-2
 - SM tests at the new energy frontier

Istron, 2015

CMS Prelir

10'

10

10²

20

Conclusion & Outlook

- Run-1 data campaign was a very successful test of the SM
- This would not have been possible without the excellent modelling and understanding of the detectors
- In general very good agreement of the measurements with predictions
- More detailed Run-1 data analyses are on the way
 - e.g. m_W precision measurements
- Run-2 data taking has started
 - first results are being prepared

BSM tests

Testing the SM is testing beyond the SM

Tuesday, 15 September 2015		
7:30	Breakfast	
9:00	Morning session (until 12:55)	
9:00	Searches of physics/particles beyond the Standar Model at the LHC - Piotr Zalewski (CMS, National Centre for Nuclear Research, Warsaw)	

 \blacktriangleright Combined results of CMS and LHCb on $B^0{}_{s}$ -> $\mu\mu$

$$\mathcal{BR}(B_s \to \mu^+ \mu^-) = (3.2 \pm 0.2) \times 10^{-9}$$
 (Buras et al, JHEP 1009 (2010) 106)

- Branching ratio is sensitive to BSM effects
- Very rare decay
 - challenging analysis

All good - no tension at all ?

Overwhelming majority of measurements are consistent with SM model prediction

10

10

ignificance

Events

- precision of the LHC measurements magnitudes
- QCD measurements start turning in
- Very little tension in SM measurelike the perfect cindarella shoe
- Or is there something we've missed?
 - ATLAS slight excess in high-mass di-boson production

A. Salzburger - Standard Model