Magnetic moment $(g - 2)_{\mu}$, EWSM and SUSY

Dominik Stöckinger

Ustron conference "Matter at the Deepest", September 2015

Muon g - 2 at Brookhaven \longrightarrow Fermilab

$$egin{aligned} & a_{\mu}^{ ext{exp}} = (11\,659\,208.9 \ (6.3)_{ ext{tot}}) imes 10^{-10} \ a_{\mu}^{ ext{FNAL}} = (???????? \ (1.6)_{ ext{tot}}) imes 10^{-10} \end{aligned}$$

3–4 σ deviation from $a_{\mu}^{\rm SM}$

10

イロト イヨト イヨト イ

3

Muon (g-2) in SM

 $a_{\mu} = rac{lpha(0)}{2\pi} + \dots$

《口》《聞》《臣》《臣》

[in units 10^{-10}]

11 658 471.8 (0.0)

682.5 (4.2)

 \rightarrow D. Nomura

Weak:

10.5 (2.6)

15.36 (0.10)

 \rightarrow next section

→ Ξ →

< A

æ

[in units 10^{-10}]

11 658 471.8 (0.0)

682.5 (4.2) → D. Nomura

Weak:

10.5 (2.6)

15.36 (0.10)

 \rightarrow next section

 $\begin{array}{l} \text{SM prediction too low by} \\ \approx (30\pm8)\times10^{-10}! \end{array}$

4/21

B> B

< 글 >

Outline

SM weak contributions

• "Final" result for weak contributions (1, 2, 3-loop)

2 SUSY

- SUSY: Structure of result
- SUSY: Precision prediction
- Large a_{μ}^{SUSY} with TeV-scale masses

3 Conclusions

Outline

• "Final" result for weak contributions (1, 2, 3-loop)

6/21

< 17 ▶

3

Re-evaluation of $a_{\mu}(\text{weak})$ [Gnendiger, DS, Stöckinger-Kim '13]

$$egin{aligned} &a^{ ext{EW}(1)}_{\mu} = rac{G_F}{\sqrt{2}} rac{m^2_{\mu}}{8\pi^2} \left[rac{5}{3} + rac{1}{3}(1-4s^2_W)^2
ight] \ &= (19.480 \pm 0.001_{M_W}) imes 10^{-10} \end{aligned}$$

Decide parametrization: G_F instead of $\alpha(0)/M_W^2$

 M_W predicted by SM: M_W = 80.363 \pm 0.013 GeV (don't use M_W^{exp} = 80.385 \pm 0.015 GeV)

Parametrization at *n*-loops: $G_F \alpha^{(n-1)}(0) \rightsquigarrow \text{consistent with [Czarnecki, Marciano, Vainshtein '03]}$

2-loop bosonic contributions

large M_H-limit: [Czarnecki, Krause, Marciano '95];

full: [Heinemeyer, DS, Weiglein '04] but G_F^2 -parametrization

Recalculation with $G_F \alpha(0)$ parametrization:

$$a_{\mu; ext{bos}}^{ ext{EW}(2)} = (-1.997 \pm 0.003) imes 10^{-10}$$

Error: essentially from M_H

Re-evaluation of $a_{\mu}(\text{weak})$ [Gnendiger, DS, Stöckinger-Kim '13]

- exact evaluation of M_H -dependent parts
- consistent parametrization of 1-, 2-, 3-loop \propto $G_F lpha^{n-1}$
- 3-loop logs $G_F lpha^2 \log^2(M_W/m_\mu)$ from [Czarnecki, Marciano, Vainshtein '03]
- final result: (15.36 \pm 0.10) \times 10 $^{-10}$

Outline

2 SUSY

- SUSY: Structure of result
- SUSY: Precision prediction
- Large a_{μ}^{SUSY} with TeV-scale masses

→ < Ξ →</p>

э

11/21

э.

æ

Main parameter dependence of $a_{\mu}^{\rm SUSY}$

Two Higgs(ino) sector parameters:

$$\tan \beta = \frac{v_u}{v_d}, \quad \mu = H_u - H_d$$
 transition

Diagram contains:

 $\begin{array}{c}
\overset{\times V_{u}}{\overset{+}{\mu_{u}}} \\
\overset{H_{u}^{+}}{\overset{+}{\mu_{u}}} \\
\overset{H_{u}^{+}}{\overset{+}{\mu_{u}}} \\
\overset{\tilde{H}_{d}^{+}}{\overset{\tilde{\mu}_{u}^{+}}{\overset{\tilde{\mu}_{u}^{+}}{\mu_{u}}}} \\
\overset{\tilde{H}_{d}^{+}}{\overset{\tilde{\mu}_{u}^{+}}{\overset{\tilde{\mu}_{u}^{+}}{\mu_{u}}}} \\
\overset{\tilde{H}_{u}^{+}}{\overset{\tilde{\mu}_{u}^{+}}{\overset{\tilde{\mu}_{u}^{+}}{\mu_{u}}}} \\
\overset{\tilde{H}_{u}^{+}}{\overset{\tilde{\mu}_{u}^{+}}{\overset{\tilde{\mu}_{u}^{+}}{\mu_{u}}}} \\
\overset{\tilde{\mu}_{u}^{+}}{\overset{\tilde{\mu}_{u}^{+}}{\mu_{u}}} \\
\overset{\tilde{\mu}_{u}^{+}}{\overset{\tilde{\mu}_{u}^{+}}{\mu_{u}}}$

 \propto y $_{\mu}$ v $_{u}$ μ

Likewise for the muon mass!

Main parameter dependence of a_{μ}^{SUSY}

Two Higgs(ino) sector parameters:

 $\tan \beta = \frac{v_u}{v_d}, \quad \mu = H_u - H_d$ transition

Diagram contains:

 \propto y $_{\mu}$ v $_{u}$ μ

Likewise for the muon mass!

Further diagrams also \propto y $_{\mu}$ v $_{u}$ μ but different additional parameters

12/21

The general structure

$$a_{\mu}^{\text{SUSY}} = \frac{y_{\mu}v_{u} \ a_{\mu}^{\text{red}}}{m_{\mu}^{\text{pole}}} + \dots$$
$$m_{\mu}^{\text{pole}} = y_{\mu}v_{d} + \underbrace{y_{\mu}v_{u}\Delta_{\mu}^{\text{red}}}{y_{\mu}v_{u}\Delta_{\mu}^{\text{red}}} + \dots$$

often neglected

rod

∃ ► < ∃ ►</p>

The general structure

Insert Yukawa, neglecting higher orders:

$$\begin{split} a_{\mu}^{\rm SUSY} &\approx \tan\beta \ a_{\mu}^{\rm red} \\ &\approx 12 \times 10^{-10} \ \tan\beta \ {\rm sign}(\mu) \left(\frac{100 {\rm GeV}}{M_{\rm SUSY, \ universal}}\right)^2 \end{split}$$

Status of SUSY prediction: uncertainty 3×10^{-10} [DS '06]1-Loop2-Loop (SUSY 1L) $\propto \tan \beta$ e.g. $\propto \log \frac{M_{SUSY}}{m_{\mu}}$ e.g. $\propto \tan \beta \mu m_t$

[Fayet '80],... [Kosower et al '83],[Yuan et al '84],... [Lopez et al '94],[Moroi '96]

(remaining: 65000 diagrams computed,

1 class of counterterms missing)

complete

[Chen,Geng'01][Arhib,Baek '02] [Heinemeyer,DS,Weiglein '03] [Heinemeyer,DS,Weiglein '04]

____ 14/21

New: contributions with $f\tilde{f}$ loops [Fargnoli, Gnendiger, Passehr, DS, Stöckinger-Kim '13]

Motivation:

- maximum complexity: 5 heavy + 2 light scales
- remaining class with dependence on squarks
- contains large logs, $\Delta \rho$

New: contributions with $f\tilde{f}$ loops [Fargnoli, Gnendiger, Passehr, DS, Stöckinger-Kim '13]

Motivation:

- maximum complexity: 5 heavy + 2 light scales
- remaining class with dependence on squarks
- ullet contains large logs, $\Delta
 ho$

non-decoupling, $\mathcal{O}(10\%...30\%)$

$$\begin{array}{c} M_{U3}, D3 \cdot Q3 \cdot E3 \cdot L3 \\ M_{U}, D, Q \\ M_{Q3}; M_{U3} = 1 \ TeV \\ -- \\ -- \\ (tan \ \beta)^2 \\ photonic \\ \cdots \\ 2L(a) \end{array}$$

 μ = 350, M_{2} = 2 M_{1} = 300, $\mathit{m}_{\tilde{\mu}_{R,L}}$ = 400 GeV, tan β = 40

Dominik Stöckinger

15/21

Contributions involving Δho

One-loop ambiguity

Fixed by full $2Lf\tilde{f}$ calculation

$$\left. \begin{array}{ll} a_{\mu}^{1L} &= \alpha(0) \dots &= 29.4 \\ a_{\mu}^{1L} &= \alpha(M_Z) \dots &= 31.6 \\ a_{\mu}^{1L} &= \alpha(G_F) \dots &= 30.5 \end{array} \right\}$$

differ by $\Delta \alpha$, $\Delta \rho$: $2Lf\tilde{f}$ -terms

(for SPS1a, unit: 10^{-10})

Contributions involving $\Delta \rho$

One-loop ambiguity

Fixed by full $2Lf\tilde{f}$ calculation

$$\left. \begin{array}{ll} a_{\mu}^{1\mathrm{L}} &= \alpha(0) \dots &= 29.4 \\ a_{\mu}^{1\mathrm{L}} &= \alpha(M_Z) \dots &= 31.6 \\ a_{\mu}^{1\mathrm{L}} &= \alpha(G_F) \dots &= 30.5 \end{array} \right\}$$

differ by $\Delta \alpha$, $\Delta \rho$: $2Lf\tilde{f}$ -terms

(for SPS1a, unit: 10^{-10})

Contributions involving $\Delta \rho$

$$\begin{array}{ccc} & & = a_{\mu}^{1L} \times \left(\ldots + \frac{\delta\left(e^{2}/s_{W}^{2}\right)}{e^{2}/s_{W}^{2}} \right) \\ & & & \\ \mu & &$$

One-loop ambiguity

Fixed by full $2Lf\tilde{f}$ calculation

$$\begin{array}{l} a_{\mu}^{1L} &= \alpha(0) \dots &= 29.4 \\ a_{\mu}^{1L} &= \alpha(M_Z) \dots &= 31.6 \\ a_{\mu}^{1L} &= \alpha(G_F) \dots &= 30.5 \end{array} \right\}$$

$$a_{\mu}^{1L+2Lf\tilde{f}}$$
 = 32.2

differ by $\Delta \alpha$, $\Delta \rho$: $2Lf\tilde{f}$ -terms

(for SPS1a, unit: 10^{-10})

Now take $v_d \to 0, \, \tan\beta \to \infty \quad \mbox{(no divergence of physical quantities)}$

◆ロ > ◆母 > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Now take $v_d \to 0$, $\tan \beta \to \infty$ (no divergence of physical quantities)

Muon and all down-type masses arise from loops! Yukawas large but not too large (see later)

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

Now take $v_d \to 0, \, \tan\beta \to \infty \quad \mbox{(no divergence of physical quantities)}$

$$a_{\mu}^{
m SUSY}
ightarrow rac{a_{\mu}^{
m red}}{\Delta_{\mu}^{
m red}}$$

17/21

◆ロ > ◆母 > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Now take $v_d \to 0, \ \tan\beta \to \infty$ (no divergence of physical quantities)

$$a_{\mu}^{\rm SUSY} \approx \frac{12 \times 10^{-10} \text{ sign}(\mu) \left(\frac{100 \text{GeV}}{M_{\rm SUSY, universal}}\right)^2}{-0.0018 \text{ sign}(\mu)}$$

sign wrong! But note: all masses were set equal!

◆ロ > ◆母 > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Large a_{μ} in MSSM for tan $\beta \rightarrow \infty$, different masses

[Bach, Park, DS, Stöckinger-Kim, '15]

Generally:
$$a_{\mu}^{\text{SUSY}} \rightarrow \frac{a_{\mu}^{\text{red}}}{\Delta_{\mu}^{\text{red}}}$$

coloured: a_{μ} positive

Sample TeV-scale masses:

μ	M_1	M_2	mL	m_R	$a_\mu/10^{-9}$
15	1	-1	1	1	3.01
1.3	1.3	-1.3	26	1.3	2.90

Experimental constraints ok: B-physics,

Higgs-physics [Dobrescu,Fox;

Altmannshofer, Straub '11], vacuum stability

[Bach, Park, DS, Stöckinger-Kim, '15]

The "largest" possible SUSY masses (:= a_{μ} explained for $\tan \beta \rightarrow \infty$)

≣ 19/21

Dominik Stöckinger

20/21

æ

< ロ > < 回 > < 回 > < 回 > < 回 >

Summary: a_{μ} as a probe of the SM and beyond

• Recent progress on all aspects of $a_{\mu}^{\rm SM}$

•
$$a_{\mu}^{\mathrm{Exp}} - a_{\mu}^{\mathrm{SM}} pprox (30 \pm 8) imes 10^{-10}$$

ken (µ/m

• $a_{\mu}^{ m N.P.,SUSY}$ very model-dependent, typically $\mathcal{O}(\pm 1\dots 50) imes 10^{-10}$

- TeV-scale SUSY for $\tan \beta \to \infty$ can explain a_{μ}
- many scenarios with light sparticles, too
- but e.g. CMSSM, MRSSM cannot any more!

• SUSY precision predictions available

- large logs, reduce α -ambiguity
- still, theory error too large

New measurements within next 5 years \Rightarrow Promising!!

21/21