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Outline

 Decay in orbit
spectrum:

e central region
* endpoint region

e Summary




-ree muon decay

Well known SM process

Source of New Physics constraints .~
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NNLO corrections are also known Q

NLO corrections calculated in 1950s

Only lepton flavour conserving decay
modes have been observed

Anomalous magnetic moment may
indicate a need for a NP contributions



Off—diagonal dipole
moments

e Similar type of operators may contribute to g-2 and
Charged Lepton Flavour Violation (CLFV)

» CLFV is suppressed in SM
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Three processes with bouna
MUONS

Proces SM rate . Why important?

Observation

Conversion (@ N)—= N+e” Negligible indicates New
Physics

Approximately
N equal to free
i muon decay rate

Background to
CONVErsion

Decay in Orbit (# N) —
DIO N+e +7,

Normalization

Capture (u”N)— N'+v,. DependsonZ factor for
conversion



Muon electron conversion

Muon converts to electron
without emitting neutrinos
Lepton family number not conserved




Muon electron conversion

* Clean experimental signature — mono-energetic
electron

e Current limit on the ratio R of the conversion to the
capture R < 7 x 10"

* Planned experiments expect to improve R by

~4 orders of magnitude, equivalent to probing

New Physics scale up to 10 000 TeV! N
Az

» Conversion can probe larger class of operators ¢ s

than . — ey



Bound muon decay

 Muon DIO: standard muon decay
iINnto an electron and two neutrinos,
with the muon and a nucleus
forming bound state

* For a free muon, energy and
momentum conservation restricts

m
electron spectrum to Fe < =~

e For DIO, momentum can be
exchanged between the nucleus
and both the muon and the electron
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DIO Spectrum



Two
regions

Central
Region

Most important effect:

muon motion in an atom exchange of a hard photon

Corrections:

final state interaction finite size of the nucleus

recoil effects

Radiative corrections!



Also known as
- Michel Region




Central region

my, " Cenbral
e~ 9 Region

Typical momentum transfer between nucleus and
muon is of the order of m,Z«

Requires resummation
Dominant effect — muon motion in the initial state

Similar problems — decays of heavy quarks in
Mesons



QED shape function

 Charged particle in the external field is almost on-shell
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 We are interested only in the leading corrections



QED shape function

e Shape function is defined as an expectation value:
Momentum

S(A) = /d%w*(x)(s()\ —n- W)w(x)/distribution

N

Final state
iInteraction, required
by gauge invariance

 We work In light-cone gauge
n-A=20

. Normalization:/ dAS(A) =1



Power counting
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* Shape function behaves as S()\) ~

o)\N

~m,Za (Muon momentum in an atom)
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* First moment is zero in the leading order
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¢ Second moment/dMQS(A) — g(muZoz)Q



QED shape function
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Spectrum can be calculated using factorization tormula

dFDIO dFFree
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dFE. dFE.




L eading
corrections

and their relation
to the experimental data
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Endpoint region

Ee ~my,

* Typical momentum transter between the
nucleus and the muon Is of the order of the
MuonN Mass

* Both wave functions and propagators can
be expanded In powers of Za

m,, dl 1024 A

5
~ Z — A = Emaa: — Ee
o dB. 5\ @)’ (m)




Enadpoint energy

Emaaj‘ = m,u —+ Eb -+ Erec
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Recoll energy

(kinetic energy of
the nucleus)

E’I"EZC%

Binding energy

Both corrections decrease the endpoint energy



ENndpoint expansion

(>0

X
L < e % e
u _ \. h i
T = e
Nucl
Nucleus

3 3—
/d VAP0 S A — vy —T) . G AT

vy Vo



ENndpoint expansion
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Radiative corrections

1 dl
FFree dEe

55 ~ 10.0, 5H ~ —15.6, 5vp ~ 0.1

A. Czarnecki, R.S.

arXiv:1505.05237



Higher order terms

Expansion parameter is mZ«a;, again very similar to
the calculations of photoelectric effect

Higher order terms were calculated numerically;
they give -21% correction for a point-like nucleus

Finite-size nucleus corrections suppress the higher
order terms

Also higher orders in A may be required for precise
determination of experimental background



summary

e Searches for rare decays require accurate predictions for
the SM background

o« TWIST measurement of the DIO spectrum is sensitive to
radiative corrections

 Muon DIO spectrum:

* \We have radiative corrections in regions relevant for
experiment

e Ultimate goal is a correction to the spectrum in the
whole energy range



