

Neutrinos and Collider Physics

Frank Deppisch f.deppisch@ucl.ac.uk

University College London

"Matter to the Deepest" | Ustroń | 13-18/09/2015

Dirac vs Majorana

 $\nu_{R'}$

Two possibilities to define fermion mass

Majorana mass, using only a left-handed neutrino → Lepton Number Violation

Neutrinoless Double Beta Decay

- ▶ Process $(A,Z) \rightarrow (A,Z+2) + 2e^{-}$
- Uncontroversial detection of 0νββ
 of utmost importance
 - Prove lepton number to be broken
 - Prove neutrinos to be Majorana particles (Schechter & Valle '82)

Which mechanism triggers the decay?

General Effective Operator

New Physics Contributions to $0\nu\beta\beta$

Effective Mass and Seesaw

- Effective operator for Majorana neutrino mass
 - Only dimension-5 operator beyond SM

$$\mathcal{L} \supset \frac{1}{2} \frac{h_{ij}}{\Lambda_{LNV}} (\overline{L}_i^c \cdot H) (H^T \cdot L_j) \xrightarrow[\langle H \rangle]{} \frac{1}{2} (m_v)_{ij} \overline{\nu}_i^c \nu_j$$

Seesaw Mechanisms

Three possible mediators at tree level

Effective Mass and Seesaw

- Effective operator for Majorana neutrino mass
 - Only dimension-5 operator beyond SM

$$\mathcal{L} \supset \frac{1}{2} \frac{h_{ij}}{\Lambda_{LNV}} (\overline{L}_i^c \cdot H) (H^T \cdot L_j) \xrightarrow[\langle H \rangle]{} \frac{1}{2} (m_v)_{ij} \overline{v}_i^c v_j$$

Radiative Generation via Loops

6 / 21

• Alternative to Seesaw, e.g. R-Parity Violating SUSY

Heavy Sterile Neutrinos Low Scale Singlet Seesaw Models

- Seesaw I mechanism with TeV scale heavy neutrinos
 - Standard Seesaw with small Yukawa couplings
- $Y_{\nu} \approx 10^{-6} \sqrt{M_N/{\rm TeV}}$
- "Bent" Seesaw I mechanisms (e.g. Inverse Seesaw)
 - Decouple Λ_{LNV} from heavy neutrino mass
 - Example

$$\mathcal{M} = \begin{pmatrix} 0 & Y_{\nu} \langle H \rangle & 0 \\ Y_{\nu} \langle H \rangle & \mu & M \\ 0 & M & \mu \end{pmatrix}$$

- Large Yukawa couplings $\approx 10^{-2}$
- Quasi-Dirac heavy neutrino

Heavy Sterile Neutrinos Low Scale Singlet Seesaw Models

- Standard Seesaw with small Yukawa couplings
- $Y_{\nu} \approx 10^{-6} \sqrt{M_N/\text{TeV}}$

University College Londor

- "Bent" Seesaw I mechanisms (e.g. Inverse Seesaw)
 - Decouple Λ_{LNV} from heavy neutrino mass
 - Example

8 / 21

$$\mathcal{M} = \begin{pmatrix} 0 & Y_{\nu} \langle H \rangle & 0 \\ Y_{\nu} \langle H \rangle & \mu & M \\ 0 & M & \mu \end{pmatrix}$$

• LNV in resonant *N* production suppressed by $\frac{\Delta m_N}{\Gamma_N} \approx \frac{\mu}{\Gamma_N}$

Heavy Sterile Neutrinos Experimental Searches

- Constraints on coupling to leptons |V_{lN}|
- Neutrinoless Double Beta Decay
 - GERDA
 - stringent for pure Majorana N
- Peak Searches in Meson Decays
 - $\pi, K \to e\nu$
 - Belle
- Beam Dump Experiments
 - e.g. PS191, CHARM
 - LBNE
- LNV Meson Decays
 - $K \rightarrow ee\pi$
 - SHiP
- > Z Decays
 - LEP: L3, Delphi
 - FCC-ee
- Electroweak Precision Tests
 - EWPD: Fit of electroweak precision observables, lepton universality observables

Heavy Sterile Neutrinos Experimental Searches

- Constraints on coupling to leptons |V_{lN}|
- ► LEP2, ILC $e^+e^- \rightarrow N\nu, N \rightarrow eW, \nu Z, \nu H$
- LHC (ATLAS, CMS, LHC14)
 Drell-Yan Production

- Majorana N
 - Same-sign dilepton signal
- (Quasi-)Dirac N
 - Trilepton signal
- Modified searches for
 - lighter neutrinos
 - Long-lived neutrinos

Heavy Sterile Neutrinos Experimental Searches

- Constraints on coupling to leptons |V_{lN}|
- ► LEP2, ILC $e^+e^- \rightarrow N\nu, N \rightarrow eW, \nu Z, \nu H$
- LHC (ATLAS, CMS, LHC14)
 Drell-Yan Production

• Majorana N

11 / 21

- Same-sign dilepton signal
- (Quasi-)Dirac N
 - Trilepton signal
- Modified searches for
 - lighter neutrinos
 - Long-lived neutrinos

Extended Gauge Sectors Additional U(1)

- Production at LHC via Z' portal
- Ability to measure small couplings via displaced vertices
- Charged LFV through heavy portal
 - *N* can only decay through heavy-light suppressed coupling $\theta = Y_{\nu} \langle H \rangle / m_N$

13 / 21

Extended Gauge Sectors Left-Right Symmetric Models

Extension of the Standard Model (Mohapatra, Senjanovic '75)

 $SU(3) \times SU(2)_L \times SU(2)_R \times U(1)_{B-L}$

- Production of heavy neutrinos with gauge coupling strengths via right-handed charged current (Keung, Senjanovic '83)
- Complementarity to 0ννβ and charged LFV
- 2.8 σ hint for excess at CMS
 - Not compatible with minimal LR symmetry $g_R = g_L$
 - Only one 1 out of 14 events is LNV
 - Only ee, no $\mu\mu$
 - No clear discrete excess in $m_{lqq}^2 = m_N^2$
- No excess at ATLAS
 - Search only for SS leptons

Extended Gauge Sectors

16 / 21

Frank Deppisch | Neutrinos and Collider Physics | 17/09/2015

17 / 21

Baryon Asymmetry Leptogenesis

Classic Scenario

18 / 21

- Generation via heavy neutrino decays
- Competition with LNV washout processes
- Conversion to baryon asymmetry
 - EW sphaleron processes at $T \approx 100 \text{ GeV}$
 - Observed asymmetry

$$\eta_B \equiv \frac{n_B - n_{\bar{B}}}{n_{\gamma}} = (6.20 \pm 0.15) \times 10^{-10}$$

What if we observe lepton number violating processes at the LHC or in 0ννβ?

Conclusion

Neutrinos much lighter than other fermions

- Dirac or Majorana? Lepton Number Violation?
- Mechanism of neutrino mass generation? At what scale?

Neutrino physics is BSM physics

- Seesaw I Sterile neutrinos
- Seesaw II Scalar triplet
 - $pp \rightarrow W^* \rightarrow H^{++}W^-$, $H^{++} \rightarrow l^+l^+$, $m_{H^{++}} > 500 \text{ GeV}$
- Seesaw III Fermion triplet
 - $pp \rightarrow W^* \rightarrow \Sigma^+ \Sigma^0$, $m_{\Sigma} > 250 \text{ GeV}$
- Extended gauge sectors
- Supersymmetry
 - SUSY Seesaw / R-Parity violating SUSY (loop-mediated neutrino masses)

LHC probes neutrino mass models at TeV scale

- Strong synergy with $0\nu\beta\beta$
 - LHC can deep-probe anatomy of $0\nu\beta\beta$ LNV operators
- Lepton Number Violation as smoking gun
 - Can falsify high-scale baryogenesis
 - BUT: LNV not necessarily predicted