Meeting Higgs and EWPO with Rsymmetric SUSY

JHEP 1412 (2014) 124, arXiv:1504.05386 (accepted for Advances in High Energy Physics), arXiv:1510.X

P. Dießner[†], J. Kalinowski[‡], Wojciech Kotlarski^{†‡}, D. Stöckinger[†]

Matter to the Deepest, September 13-18th 2015, Ustroń, Poland

[†]Technische Universität Dresden, [‡]University of Warsaw

Plan of the talk

- Motivation
- R-symmetric SUSY
 - **u** what is an **R**-symmetry
 - $\Box \quad different possible R-symmetric models \rightarrow MRSSM$
- The electroweak sector
 - Lightest Higgs boson at 1-loop level and beyond
 - Constraints: W boson mass, STU parameters, Higgs searches and exclusions, vacuum stability, flavour physics
 - **Glimpse** of what we are working on now

Motivation

- Supersymmetry is still one of the most promising candidates for physics beyond the SM although
 - no direct SUSY signal at Run I of the LHC
 - direct searches still allow for TeV SUSY but indirect ones push minimal SUSY into uncomfortable parameter region
 - □ 125 GeV Higgs requires ≥ 700 GeV stops (≥ 5 TeV if we neglect mixing)
 - **n** flavor physics suggests even larger SUSY scale (within the MSSM)
- If gluinos are found, important question: are they Dirac or Majorana particles?

Motivation

- Supersymmetry is still one of the most promising candidates for physics beyond the SM although
 - no direct SUSY signal at Run I of the LHC
 - direct searches still allow for TeV SUSY but indirect ones push minimal SUSY into uncomfortable parameter region
 - □ 125 GeV Higgs requires ≥ 700 GeV stops (≥ 5 TeV if we neglect mixing)
 - **n** flavor physics suggests even larger SUSY scale (within the MSSM)
- If gluinos are found, important question: are they Dirac or Majorana particles?

Motivates us to go beyond the MSSM

Pros of the MRSSM

- \mathbf{v} it ameliorates the flavor problem of the MSSM Kribs, Poppitz, Weiner (2008)
- Dirac gluinos relax experimental limits on squark masses
- ☑ Dirac gaugino masses are supersoft Fox, Nelson, Weiner (2006)
- \blacksquare gives correct W and Higgs bosons masses at (possibly very) light stop masses **this talk**
- ☑ interesting LHC phenomenology distinct from the MSSM
- Dirac type neutralino as a candidate for dark matter
 Belanger, Benakli, Goodsell, Moura, Pukhov (2009), Buckley, Hooper, Kumar (2013)

R-symmetry

- additional symmetry of the SUSY algebra allowed by the Haag Łopuszański Sohnius theorem
- for N=1 it is a global $U_R(1)$ symmetry under which the SUSY generators are charged
- implies that the spinorial coordinates are also charged

$$Q_R(\theta) = 1, \ \theta \to e^{i\alpha}\theta$$

- Lagrangian invariance
 - **G** Kähler potential invariant if R-charge of vector superfield is 0
 - **R**-charge of the superpotential must be 2
 - □ soft-breaking terms must have R-charge 0
- Here I'll not consider model building but focus on phenomenological analysis of low energy theory

Low-energy R-symmetry realization

R charges of component fields						
-		Q _R	scalar	vector	fermionic	
	vector superfield	0	-	0	1	
	chiral superfield	Q	Q	-	Q-1	

- freedom in the choice of chiral superfield charge
- we choose SM fields to have $R=0 \rightarrow$ Higgs superfields $Q_R=0$, lepton and quark superfields have $Q_R=+1$
- with the above assignment R-symmetry forbids
 - $\Box \quad \mu \hat{H}_u \hat{H}_d$
 - $\label{eq:linear_constraint} \mathbf{\Box} \quad \lambda \hat{E} \hat{L} \hat{L}, \kappa \hat{U} \hat{D} \hat{D}, e \hat{H} \hat{L}$
 - soft SUSY breaking Majorana masses and trilinear scalar couplings
 - flavor problem ameliorated but now gauginos and higgsinos are masses → possible solution - Dirac gauginos

One way to fix it: <u>Dirac masses</u>								
Minimal R-Symmetric Supersymmetric Standardmodel (MRSSM) Kribs et.al. arXiv:0712.2039								
			<i>SU</i> (3) _C	$SU(2)_L$	$U(1)_Y$	$U(1)_{R}$		
	Singlet	Ŝ	1	1	0	0		
Additional fields:	Triplet	Ť	1	3	0	0		
	Octet	Ô	8	1	0	0		
	R-Higgses	Â _u	1	2	-1/2	2		
		Â _d	1	2	1/2	2		

other realizations:

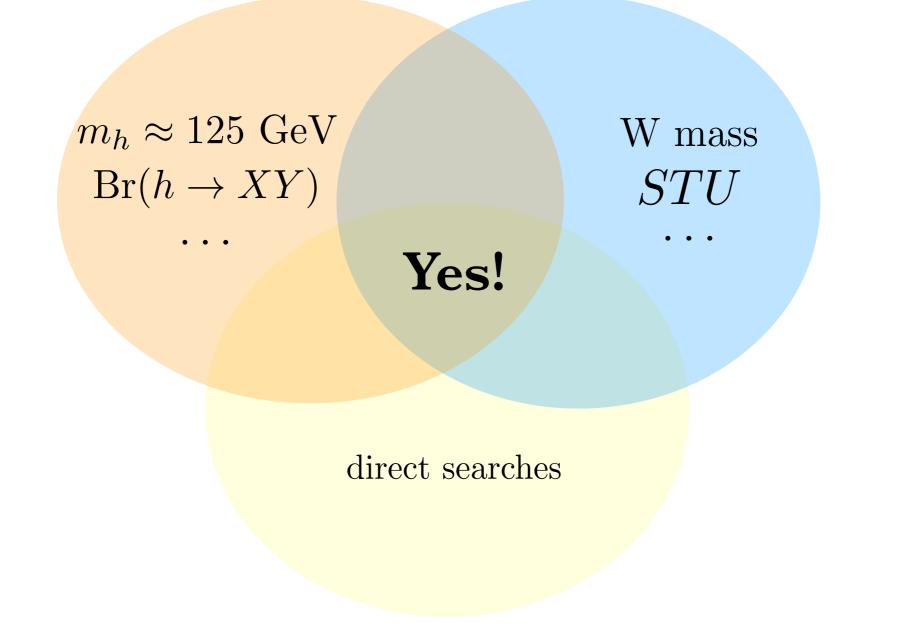
Davies, March-Russell, McCullough (2011) Lee, Raby, Ratz, Schieren, Schmidt-Hoberg, Vaudrevange (2011) Frugiuele, Gregoire (2012)

MRSSM lagrangian

Superpotential — Choi, Choudhury, Freitas, Kalinowski, Zerwas (2011)

$$W = \mu_d \hat{R}_d \hat{H}_d + \mu_u \hat{R}_u \hat{H}_u$$
$$+ \Lambda_d \hat{R}_d \hat{T} \hat{H}_d + \Lambda_u \hat{R}_u \hat{T} \hat{H}_u + \lambda_d \hat{S} \hat{R}_d \hat{H}_d + \lambda_u \hat{S} \hat{R}_u \hat{H}_u$$
$$- Y_d \hat{d} \hat{q} \hat{H}_d - Y_e \hat{e} \hat{l} \hat{H}_d + Y_u \hat{u} \hat{q} \hat{H}_u$$

- α μ-type terms
- \Box terms with λ , Λ couplings generate quartic Higgs couplings in the potential
- MSSM-like Yukawa terms
- Allowed soft SUSY-breaking terms
 - \Box conventional MSSM B_{μ} -term: $V \ni B_{\mu}(H_d^-H_u^+ H_d^0H_u^0) + h.c.$
 - **D** Dirac mass terms for gauginos $M^D \tilde{g}\tilde{g}'$
 - \square scalar soft masses $m^2 |\Phi|^2$

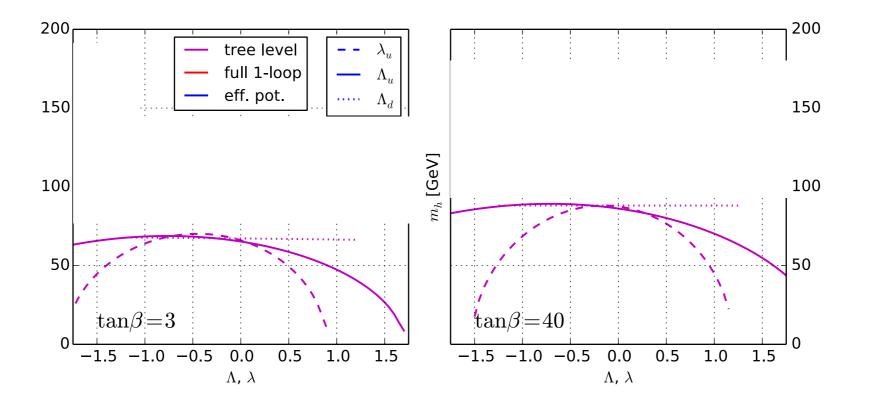

Can MRSSM accommodate both the Higgs and EWPO?

$m_h \approx 125 \text{ GeV}$ $\operatorname{Br}(h \to XY)$

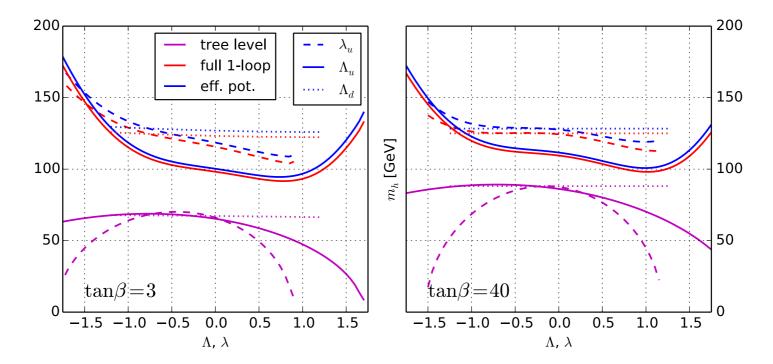
W mass STU

direct searches

Can MRSSM accommodate both the Higgs and EWPO?


Scalar Higgs sector and tree-level analysis

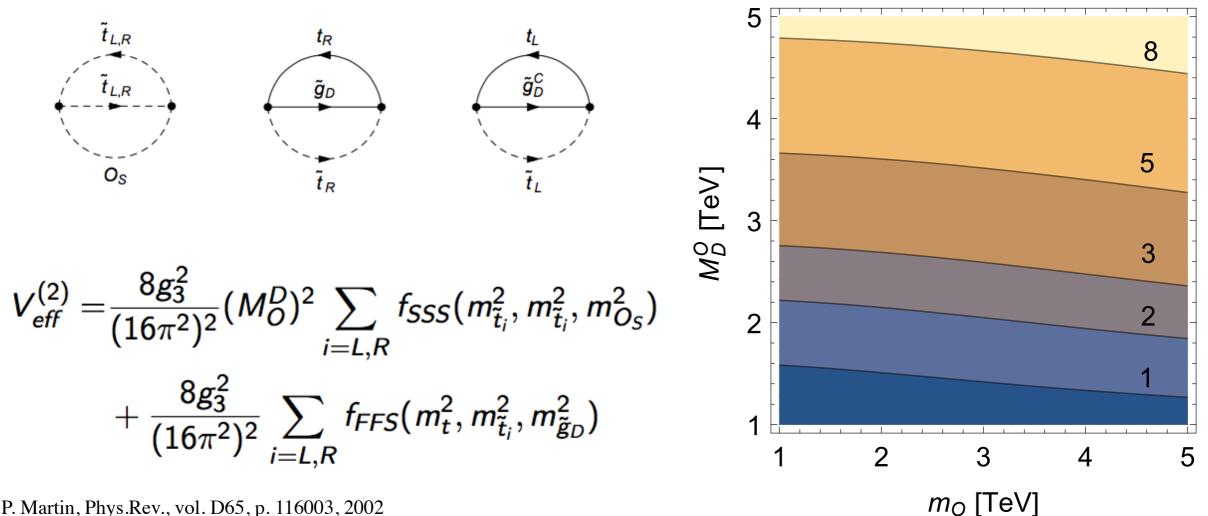
- 4 scalar degrees of freedom $\{\sigma_d, \sigma_u, \sigma_S, \sigma_T\}$ mix to form 4 physical Higgs bosons
- Approximate formula for the lightest Higgs mass at the tree level


$$m_{h,\text{approx}}^2 = M_Z^2 \cos^2 2\beta - v^2 \left(\frac{\left(g_1 M_D^B + \sqrt{2\lambda\mu}\right)^2}{4(M_D^B)^2 + m_S^2} + \frac{\left(g_2 M_D^W + \Lambda\mu\right)^2}{4(M_D^W)^2 + m_T^2} \right) \cos^2 2\beta$$

under simplifying assumptions: large m_A^2 , $\lambda = \lambda_u = -\lambda_d$ $\Lambda = \Lambda_u = \Lambda_d$ $\mu = \mu_u = \mu_d$ $v_s \approx v_T \approx 0$

• Tree-level mass of the lightest state always **lower** than in the MSSM due to the mixing with σ_S and σ_T fields.

Lightest Higgs mass — full lloop analysis

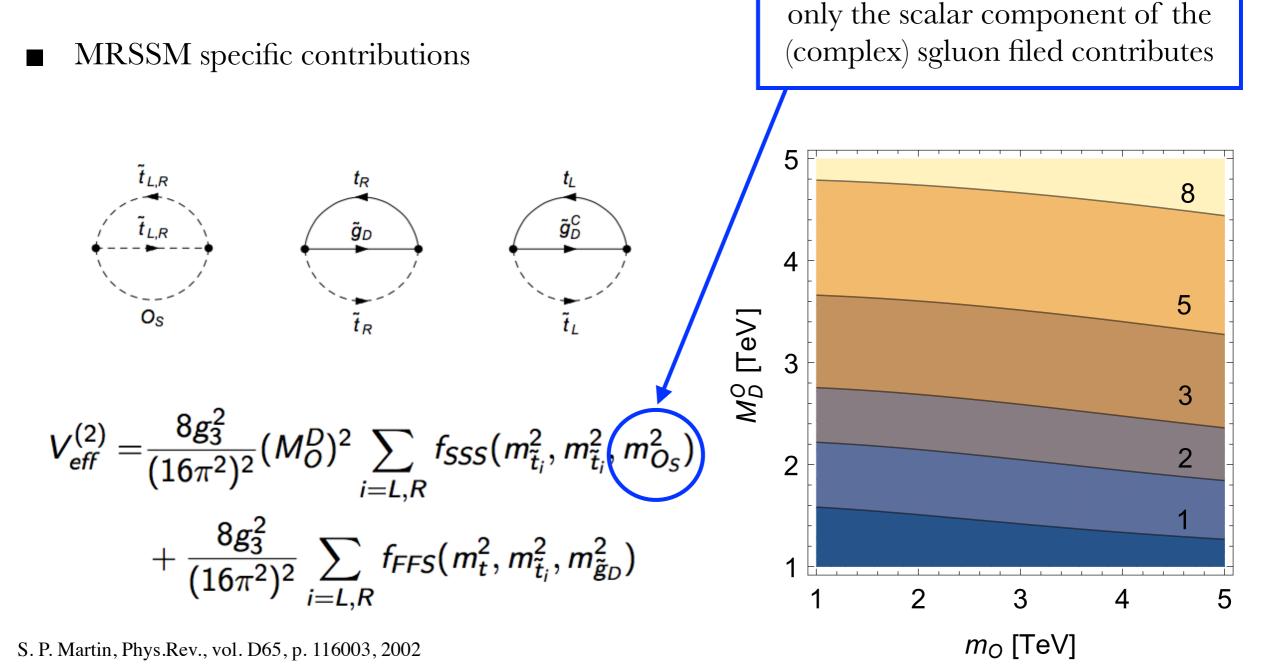


large enhancement of tree-level Higgs mass

- \square with ~1 TeV stops and no LR mixing lightest higgs mass too low
- large contributions from new states, mainly Higgs and R-Higgs sectors

Lightest Higgs mass — leading 2-loop corrections

- Effective potential approximation without contributions from broken gauge groups
- MRSSM specific contributions



S. P. Martin, Phys.Rev., vol. D65, p. 116003, 2002

M. D. Goodsell, K. Nickel, and F. Staub, Eur.Phys.J., vol. C75, no. 1, p. 32, 2015

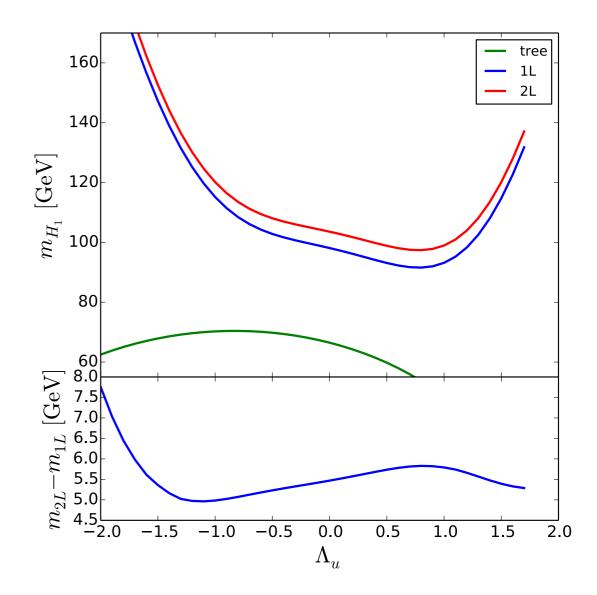
Lightest Higgs mass — leading 2-loop corrections

Effective potential approximation without contributions from broken gauge groups

M. D. Goodsell, K. Nickel, and F. Staub, Eur.Phys.J., vol. C75, no. 1, p. 32, 2015

Impact of 2-loop corrections

- MRSSM specific contributions
 Two loop corrections in the DR scheme are generally positive and amount to approximately +5 GeV
- Updated BM points


m_{H_1}	$125.3 \mathrm{GeV}$	$125.5~{\rm GeV}$	125.4 GeV
m_W	$80.397 \mathrm{GeV}$	80.381 GeV	$80.386~{\rm GeV}$
HiggsBounds's obsratio	0.61	0.65	0.87
HiggsSignals's p-value	0.72	0.66	0.72

A

B

С

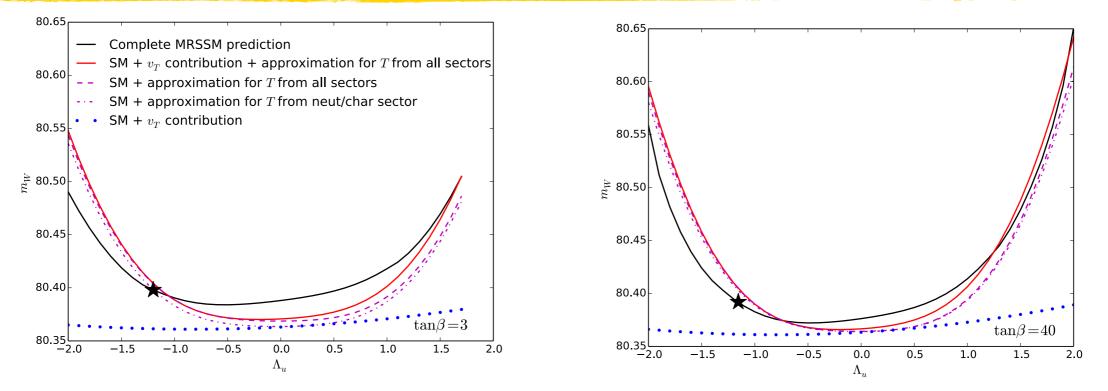
with reduced values of superpotential parameters Λ_u

m_W calculation setup

■ MRSSM contains a Y=0 Higgs triplet with vev v_T giving tree level contribution to m_W , which is measured with very high precision ($m_W = 80.385 \pm 0.015$)

■ EW-gauge sector is described at tree-level in terms of 4 parameters

$$\{g_1, g_2, v, v_T\} \to \{\alpha_{EM}, G_\mu, m_Z, \hat{v}_T\}$$


Chankowski, Pokorski, Wagner (2007)

 Calculation based on Degrassi, Fanchiotti, Sirlin (1990) scheme modified to accommodate non vanishing v_T

$$m_W^2 = \frac{1}{2} m_Z^2 \hat{\rho} \left[1 + \sqrt{1 - \frac{4\pi \hat{\alpha}}{\sqrt{2} G_\mu m_Z^2 \hat{\rho} (1 - \Delta \hat{r}_W)}} \right] \qquad \hat{\rho} = \frac{m_W^2}{m_Z^2 \hat{c}_W^2} \qquad \hat{\rho}_0 = 1 + \frac{4v_T^2}{v^2}$$

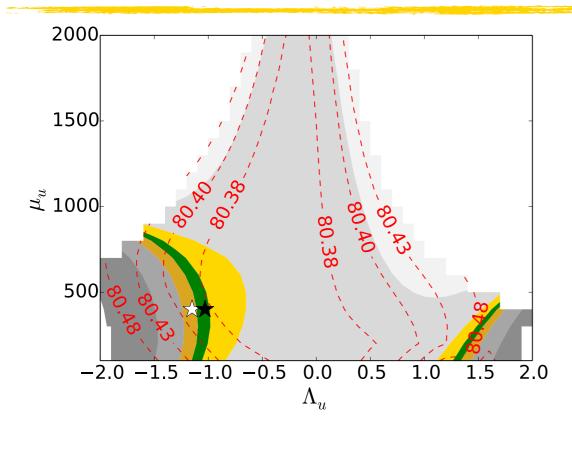
- $\Delta \hat{r}_W$ contains: "oblique" and vertex- and box-corrections as well as term that translates pole m_W to the running one
- automatically recovers SM 2-loop reducible contributions

Results for m_W

built in large cancelations between $\Delta \alpha, \Delta \hat{r}_W, \hat{\rho}$

to understand qualitatively the parameter dependence expand in STU

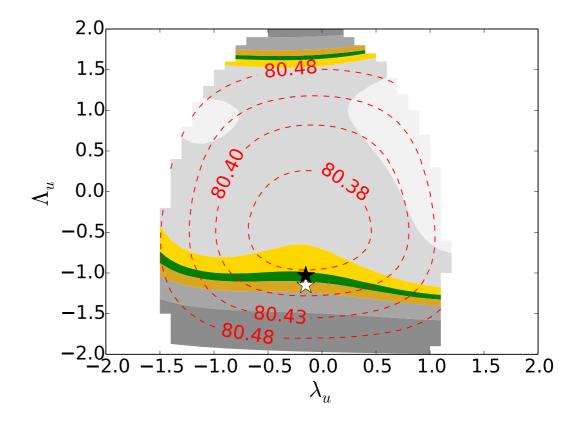
$$m_W = m_W^{\text{ref}} + \frac{\hat{\alpha}m_Z\hat{c}_W}{2(\hat{c}_W^2 - \hat{s}_W^2)} \left(-\frac{S}{2} + \hat{c}_W^2T + \frac{\hat{c}_W^2 - \hat{s}_W^2}{4\hat{s}_W^2}U\right)$$

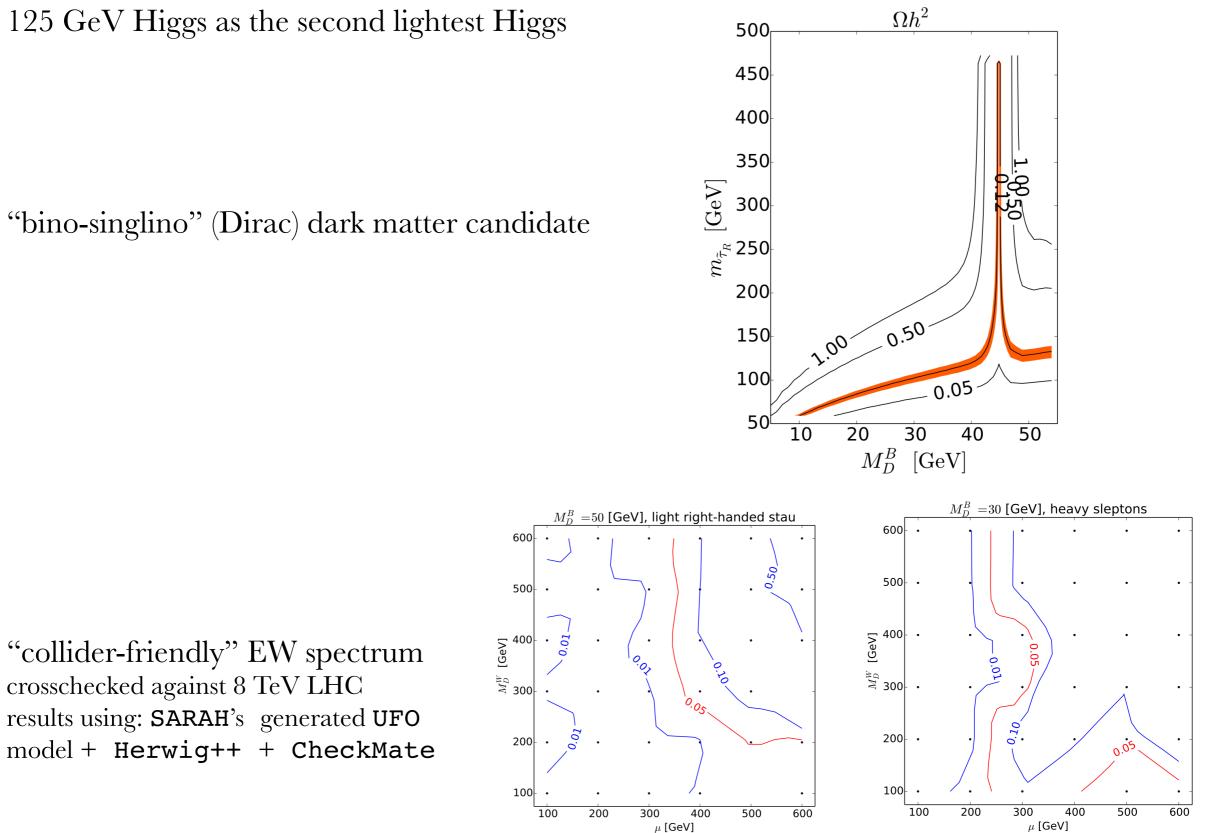

additional benefit: *STU* give also a handle on observables other than m_W

			$\tan\beta = 3$	$\tan\beta=10$	$\tan\beta = 40$
		S	0.0097	0.0092	0.0032
tor our be	for our benchmark points we find	T	0.090	0.091	0.085
		U	0.00067	0.00065	0.0010

Properties of benchmark points

- 3 distinct parameter points with $\tan \beta = 3, 10, 40$
- W mass within 1σ from measured value $m_W^{\text{exp}} = 80.385 \pm 0.015 \text{ GeV}$
- lightest Higgs mass around 125 GeV
- Higgs sectors in agreement with direct measurements and exclusion limits HiggsBounds and HiggsSignals
- due to the lack of A-terms MRSSM is safe as far as colour- and charge-breaking minima are concerned Casas, Lleyda, Muñoz (1996)
- **a**bsolute vacuum stability [disclaimer: within the scope of application of **Vevacious**]
- reasonable TeV range mass spectra


$m_h - m_W$ interdependence for $\tan \beta = 40$


- \Box contours for m_W
- \Box color gradient for m_h
- □ ★ for benchmark point with 2-loop Higgs mass
 (☆ for 1-loop)

 $m_h = 126 \pm 2 \,\,\mathrm{GeV}$

$$m_h = 126 \pm 8 \text{ GeV}$$

Current research topic — "light singlet scenario"

Summary and outlook

- We took the low energy model without discussing its UV completion
- Viable realization of R-symmetric SUSY

 - agreement with PEWO and flavor-physics
 - stable vacuum
 - ✓ LHC ,,friendly" particle spectra
- Future goals
- **R**-symmetric SQCD at 14 TeV LHC

Summary and outlook

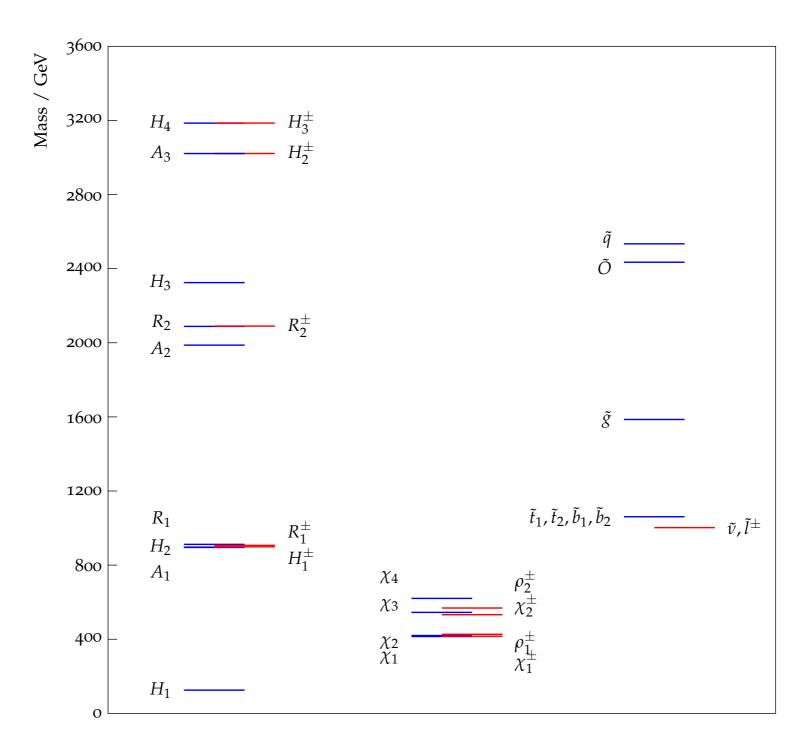
- We took the low energy model without discussing its UV completion
- Viable realization of R-symmetric SUSY

 - agreement with PEWO and flavor-physics
 - stable vacuum
 - ✓ LHC ,,friendly" particle spectra
- Future goals
- **R**-symmetric SQCD at 14 TeV LHC

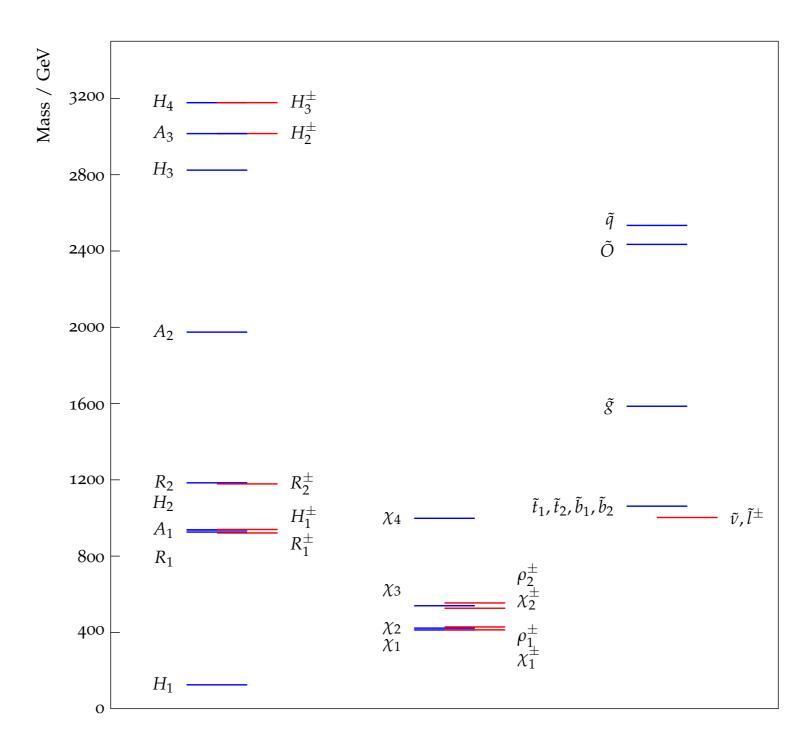
Thank you for your attention!

Back-up slides

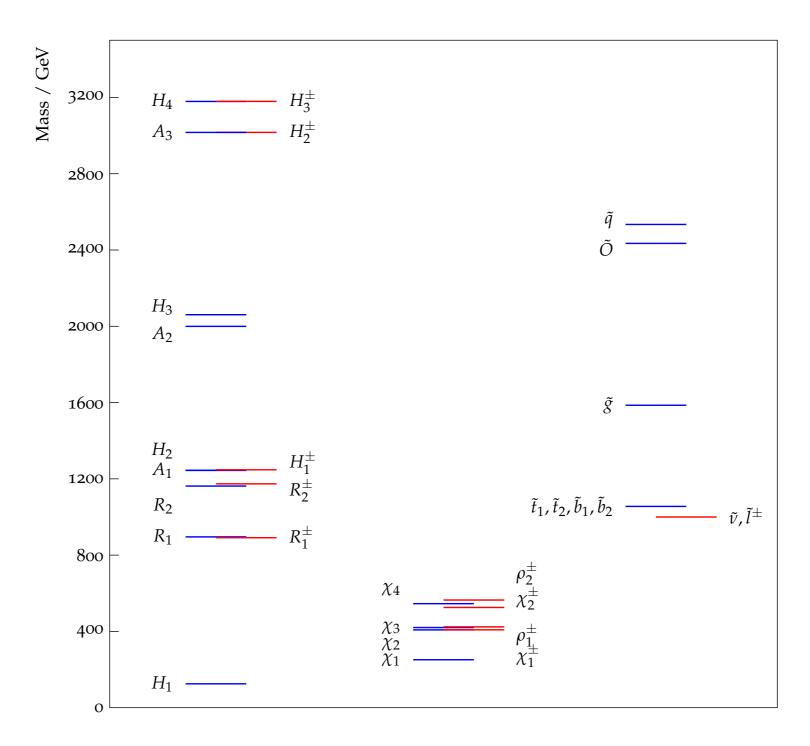
Particles content summary: MSSM vs. MRSSM


	Higgs			R-Higgs			
	CP-even	CP-odd	charged	charginos	neutral	charged	sgluon
MSSM	2	1	1	2	0	0	0
MRSSM	4	3	3	2+2	2	2	1

	neutralino	gluino	
MSSM	4	1	Majorana fermions
MRSSM	4	1	Dirac fermions


Benchmark points

	BMP1	BMP2	BMP3
aneta	3	10	40
B_{μ}	500^{2}	300^{2}	200^{2}
λ_d,λ_u	1.0, -0.8	1.1, -1.1	0.15, -0.15
Λ_d,Λ_u	-1.0, -1.2	-1.0, -1.0	-1.0, -1.15
M_B^D	600	1000	250
$m_{R_u}^2$	2000^{2}	1000^{2}	1000^{2}
μ_d, μ_u		400,400	
M_W^D		500	
M_{O}^{D}		1500	
$M_{O}^{D} \ m_{T}^{2}, m_{S}^{2}, m_{O}^{2}$	30	$00^2, 2000^2, 10$	
$m^{\hat{2}}_{Q;1,2}, m^2_{Q;3}$ $m^2_{D;1,2}, m^2_{D;3}$ $m^2_{U;1,2}, m^2_{U;3}$		$2500^2, 1000^2$	
$m_{D;1,2}^{2}, m_{D;3}^{2}$		$2500^2, 1000^2$	
$m_{U;1,2}^2, m_{U;3}^2$		$2500^2, 1000^2$	
m_L^2, m_E^2		1000^{2}	
$m_{R_d}^{\overline{2}}$		700^{2}	
$\overline{v_S}$	5.9	1.3	-0.14
v_T	-0.33	-0.19	-0.34
$m_{H_d}^2$	671^{2}	761^{2}	1158^{2}
$\begin{array}{c} m_{H_d}^2 \\ m_{H_u}^2 \end{array}$	-532^{2}	-544^{2}	-543^{2}


Particle spectrum for tan $\beta = 3$

Particle spectrum for tan $\beta = 10$

Particle spectrum for tan $\beta = 40$

- Model implemented in **SARAH**
- Numerical analysis done within **SARAH**'s generated **SPheno**-like code
- Cross checked with analytic calculation with FeynArts/FormCalc
- Higgs sector checked with HiggsBounds and HiggsSignals
 - Vacuum stability checked with Vevacious

$$\beta_{g_3}^{(1)} = 0$$

$$\beta_{g_3}^{(2)} = \frac{1}{5}g_3^3 \left(11g_1^2 - 20\text{Tr}\left(Y_d Y_d^\dagger\right) - 20\text{Tr}\left(Y_u Y_u^\dagger\right) + 340g_3^2 + 45g_2^2\right)$$