# Recent results and future physics program of the Pierre Auger Cosmic Ray Observatory



Radomír Šmída for the Pierre Auger collaboration



### Outline

The Pierre Auger Observatory

Recent results *w/ special attention to the DM physics* Presented at the ICRC2015 conference in August this year, arXiv:1509.03732

Future plans

Units:  $1 \text{ EeV} = 10^{18} \text{ eV} = 10^{9} \text{ GeV}$ 

-----

The FUNK experiment

### The Pierre Auger Observatory

The primary goal is a study of the most energetic cosmic rays  $(10^{18} - 10^{20} \text{ eV})$ 

The flux of such particles is extremely rare (e.g. about 1 CR / km<sup>2</sup> sr century at 10<sup>19</sup> eV)

The observatory covers a flat semi-desert area of 3000  $\rm km^2$ 

Located next to the Andes mountain at the average elevation of about 1400 m a.s.l.

Located in the southern hemisphere in Argentina, province Mendoza

Construction started in 2004 and finished in 2008

The hybrid detector: combination of two well tested measurement techniques

ARACIIA f Capricorn Montevideo Los Leone

Collaboration of 450 scientists from about 80 institutions in 18 countries (Poland: Institute of Nuclear Physics PAN, Krakow & University of Lodz)

More details: http://www.auger.org/ and Pierre Auger Collab., NIMA 798 (2015)

### Surface detector (SD)

1660 water Cherenkov stations on 1.5 km grid Sampling secondary particles on the ground Events with zenith angle up to 80° (!) Almost 100% uptime and well defined exposure Trigger: 3 or more tanks with a local trigger

or an external trigger







### Fluorescence detector (FD)

24 telescopes in 4 buildings

One telescope observes 30° (elevation) x 30° (azimuth)

440 PMTs in each camera



Observation is possible only during moonless nights: 12 shifts of ca. 18 nights per yr

15% uptime has been achieved (!)



### Extensive air showers

Ultra-high energy primary particle interacts in the atmosphere and secondary particles (y, e-, e+,  $\mu$ ,  $\nu$ , ...) are consequently produced.

Atmosphere can be considered as a part of the detector.

Air shower development (longitudinal and lateral) depends on the energy and type of the primary particle



Radomír Šmída – The Pierre Auger Observatory

### **FD** reconstruction



Radomír Šmída – The Pierre Auger Observatory

### **Atmospheric Monitoring Devices**

Scattering and attenuation of UV photons between an air shower and a telescope

Rapid atmospheric monitoring system

Online reconstruction within a few minutes

Precise knowledge about the immediate status of the atmosphere for the most interesting events

≝ 300

250

200

150

100

0

Many instruments on site







### Low-energy extensions – CRs below 3x10<sup>18</sup> eV

Goals:

- 1. To test scenarios of a transition from Galactic to extragalactic sources
- 2. Direct comparison of results obtained by other cosmic-ray experiments
- 3. Site for testing new detectors (i.e. lower energy, higher event rate)



### Extensive R&D program

#### Measurement in MHz



#### Measurement in GHz



RPC



#### Layered water Cherenkov detector



## Transient luminous events (TLEs) ca. 100 km above thunderstorms



Among others...

### Performance – long term stability



Key performance parameters for the Auger Observatory.

| SD                                        |                                             |
|-------------------------------------------|---------------------------------------------|
| SD annual exposure, $\theta < 60^{\circ}$ | $\sim$ 5500 km <sup>2</sup> sr yr           |
| T3 rate                                   | 0.1 Hz                                      |
| T5 events/yr, $E > 3$ EeV                 | ~ 14,500                                    |
| T5 events/yr, $E > 10$ EeV                | ~ 1500                                      |
| Reconstruction accuracy ( $S_{1000}$ )    | 22% (low <i>E</i> ) to 12% (high <i>E</i> ) |
| Angular resolution                        | 1.6° (3 stations)                           |
| Energy resolution                         | 0.9° ( > 5 stations)                        |
| <b>FD</b>                                 | 16% (low <i>E</i> ) to 12% (high <i>E</i> ) |
| On-time                                   | ~15%                                        |
| Rate per building                         | 0.012 Hz                                    |
| Rate per HEAT                             | 0.026 Hz                                    |
| Hybrid                                    |                                             |
| Core resolution                           | 50 m                                        |
| Angular resolution                        | 0.6°                                        |
| Energy resolution (FD)                    | 8%                                          |
| $X_{max}$ resolution                      | < 20 g/cm <sup>2</sup>                      |

### The energy scale – systematic uncertainties

|  | Systematic | uncertainties | in | the | energy scale. |  |
|--|------------|---------------|----|-----|---------------|--|
|--|------------|---------------|----|-----|---------------|--|

| Fluorescence yield   | Absolute fluorescence yield<br>Fluorescence spectrum and quenching parameters<br><i>Subtotal, fluorescence yield</i>                                               | 3.4%<br>1.1%<br><b>3.6</b> %                 |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| Atmosphere           | Aerosol optical depth<br>Aerosol phase function<br>Wavelength dependence of aerosol scattering<br>Atmospheric density profile<br><i>Subtotal, atmosphere</i>       | 3–6%<br>1%<br>0.5%<br>1%<br><b>3.4–6.2</b> % |
| Calibration          | Absolute FD calibration<br>Nightly relative calibration<br>Optical efficiency<br><i>Subtotal, FD calibration</i>                                                   | 9%<br>2%<br>3.5%<br><b>9.9</b> %             |
| Reconstruction       | Folding with point spread function<br>Multiple scattering model<br>Simulation bias<br>Constraints in the Gaisser–Hillas fit<br>Subtotal, FD profile reconstruction | 5%<br>1%<br>2%<br>3.5–1%<br><b>6.5–5.6</b> % |
| Invisible energy (v) | Invisible energy                                                                                                                                                   | 3-1.5%                                       |
| Long torm stability  | Statistical error of SD calibration fit                                                                                                                            | <b>0.7–1.8</b> %                             |
| Lung-lenn Slaumly    | Stability of the energy scale                                                                                                                                      | 5%                                           |
|                      | Total                                                                                                                                                              | 14%                                          |

It is a tremendous accomplishment!



### AGASA spectrum in 2002



### Mass composition by FD

#### PRD 90 (2014) arXiv:1509.03732



### Inelastic proton-proton cross section

#### PRL 109 (2012) arXiv:1509.03732



### PRD 91 (2015)

### Neutrinos



No neutrino candidates have been found so far.

Combined (1 Jan 04 - 20 Jun 13)-

Downward-going  $75 < \theta < 90$  deg. Downward-going  $60 < \theta < 75$  deg.

10<sup>20</sup>

Earth-Skimming

10<sup>19</sup>

10<sup>18</sup>

E<sub>v</sub> [eV]

A large range of exotic models of neutrino production are excluded with C.L. larger than 99%.

The current limit is a factor 4 below the Waxman-Bahcall bound on v production in optically thin sources.

Complementary to the IceCube.

Radomír Šmída – The Pierre Auger Observatory

### Photons and ultra-relativistic magnetic monopoles



The photon flux limits have further far-reaching consequences by providing important constraints on theories of quantum gravity involving Lorentz invariance violation (LIV), see, for example, [60–63]. Further, identifying a single photon shower at ultra-high energy would imply very strong limits on another set of parameters of LIV theories [64–66].

### **Arrival Directions**



Map in <u>galactic coordinates</u> of the Li-Ma significances of excesses in  $12^{\circ}$  radius windows for the events with  $E \ge 54$  **EeV**. The Super-Galactic Plane (dashed line) and Centaurus A (white star). A post-trial probability is not significant.



Sky map in <u>equatorial coordinates</u> of flux in 1/km<sup>2</sup>/yr/sr smoothed in angular windows of 45° radius, for observed events above **8 EeV**.

Dipolar anisotropy at the few % level above 8 EeV.

### Upgrade – AugerPrime

Mass composition measurement above 40 EeV!

Scintillator (about 4 m<sup>2</sup>)





<u>New electronics</u> (faster sampling, more precise timing, higher dynamic range, new triggers, etc.)





Extension of the FD uptime (higher night sky bgd)



Figure 6.3: A real FD event with reconstructed energy  $7 \times 10^{19}$  eV. In the left panel are measured data (clear sky and no scattered moonlight, a baseline variance of 25 (ADC counts)<sup>2</sup>) and in the right panel the same data after adding random noise corresponding to a 40 times higher NSB.

### AugerPrime – outlook

#### Main aims of Auger Upgrade

- 1. Origin of flux suppression (GZK energy loss vs. maximum injection energy)
- 2. Proton contribution of more than 10% at  $E > 6x10^{19}$  eV, particle astronomy?
- 3. New particle physics beyond the reach of LHC?

## AugerPrime well-suited to address these questions

#### Timeline and exposure

April 2015: preliminary design report March 2016: engineering array Fall 2016-17: deployment 2018-24: data taking (40,000 km<sup>2</sup> sr yr

|       | $\log_{10}(E/eV)$ | $dN/dt _{infill}$ | $dN/dt _{SD}$ | $N _{infill}$ | $N _{SD}$   |
|-------|-------------------|-------------------|---------------|---------------|-------------|
| rt    |                   | $[yr^{-1}]$       | $[yr^{-1}]$   | [2018-2024]   | [2018-2024] |
|       | 17.5              | 11500             | -             | 80700         | -           |
|       | 18.0              | 900               | -             | 6400          | -           |
| r     | 18.5              | 80                | 12000         | 530           | 83200       |
| ( yr) | 19.0              | 8                 | 1500          | 50            | 10200       |
|       | 19.5              | $\sim 1$          | 100           | 7             | 700         |
|       | 19.8              | -                 | 9             | -             | 60          |
|       | 20.0              | -                 | $\sim 1$      | -             | ~9          |

#### Total cost (WBS): \$15M





### Conclusions

Precise measurement of cosmic rays from 0.5 EeV to the highest energies.

- Strong flux suppression above 40 EeV, but itt origin remains unknown
- Mass composition changes from light to heavier above 10 EeV Unknown composition at the most interesting energies (i.e. above 40 EeV)
- Proton-proton cross section at  $\sqrt{s} = 56 \text{ TeV}$
- Strong upper limits on the flux of neutrinos, photons and also monopoles Decays of SHDM particles are excluded
- No clear signature of a point source
- Rich R&D program

<u>AugerPrime</u> will allow mass composition study at the highest energies and is well-suited to address the most striking questions of cosmic-ray physics

### The FUNK experiment

#### Search for DM in the Hidden-Photon Sector with a Large Spherical Mirror

If dark matter consists of hidden-sector photons which kinetically mix with regular photons, a tiny oscillating electric-field component is present wherever we have dark matter. In the surface of conducting materials this induces a small probability to emit single photons almost perpendicular to the surface, with the corresponding photon frequency matching the mass of the hidden photons.

The Auger mirror prototype @ KIT

Spherical mirror 14 m<sup>2</sup>

Composed of 36 segments

Reflective surface on Alu backing

88% reflectivity in UV

Assembled inside of a windowless air-conditioned experimental hall



Collaborators from KIT, CERN, DESY, Heidelberg, Berlin, Zaragoza

Radomír Šmída – The FUNK experiment

## The FUNK experiment – preliminary results

#### D. Veberic et al., arXiv:1509.02386



Radomír Šmída – The FUNK experiment

### The FUNK experiment – future plans

D. Veberic et al., arXiv:1509.02386

Low noise PMT with far-UV extended sensitivity inside a cooled casing (-50° C)



C band (3-4 GHz) receivers from the CROME exp.

R.Š. et al., PRL 113 (2014)





Radomír Šmída – The FUNK experiment