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Process: b → u decay
The total rate for b → u decay is

Γ(B → Xuℓν̄ℓ) = Γ0

1 + CF

∑
n≥1

(
αs

π

)n

Xn


+ O

(
Λ2

QCD
m2

b

)
(1)

Γ0 = G2
F m5

b |Vub|2Aew/(192π3)
αs ≡ α

(5)
s (µs) = 0.2186 with µs the renormalization scale

Aew = 1.014 leading electroweak correction [A. Sirlin, Nucl. Phys. B 196 (1982), 83-92]

mb is on-shell mass of the bottom quark
Color factors in QCD: CF = 4/3, CA = 3, TF = 1/2
We set NL = 4 massless quarks and NH = 1 (we ignore charm mass effects)

O

(
Λ2

QCD
m2

b

)
[J. Chay, H. Georgi and B. Grinstein, 1990 I. I. Y. Bigi, M. A. Shifman, N. G. Uraltsev and A. I.

Vainshtein, 1993, A. V. Manohar and M. B. Wise, 1994, M. Gremm and A. Kapustin 1997, T. Becher, H. Boos and E.

Lunghi, 2007, A. Alberti, P. Gambino and S. Nandi, 2014, T. Mannel, A. A. Pivovarov and D. Rosenthal, 2015, T.

Mannel and A. A. Pivovarov, 2019]
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State of the art
X1=−1.80975 CF [Kinoshita, Sirlin, Phys. Rev. 113 (1959) 1652]

X2=−15.975 CF [T. van Ritbergen, Phys. Lett. B 454, 353 (1999)]

A X3=(−202 ± 20) CF [Matteo Fael, Matthias Steinhauser, Kay Schönwald, 2011.13654]

B X3=(−195.3 ± 9.8) CF [Long-Bin Chen, Hai Tao Li, Zhao Li, Jian Wang, Yefan Wang, Quan-feng

Wu, 2309.00762]

C X3=(−201.3 ± 1.95) CF [This work]

A From b → clν̄l, expansion δ = 1 − mc/mb up to δ12, plus
extrapolation to mc/mb → 0

B Compute leading color diagrams only
C We compute fermionic contributions exact and take bosonic leading

color contributions
We investigate right now different renormalization schemes to
understand: Does the perturbative series have a good convergence?
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Calculational set up
l

ν

b u bGF GF

We apply the optical theorem. For example the leading order is a
two-loop diagram

It has a neutrino, a lepton and a up quark as internal particles at
leading order

At N3LO we have 5-loops, and gluons and ghosts and bottom quarks
appear as internal particles

The weak interaction is treated as an effective vertex

Our aim is to consider QCD corrections up to third order which adds
three more loops. 4 / 19



Diagram generation

bottom
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lepton
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Originally the calculation is set up with QGRAF[P. Nogueira, J. Comput. Phys. 105,

279 (1993).] and Tapir [Gerlach, Herren, Lang, 2201.05618]

Alternatively DiaGen generates the amplitude [JU, Michał Czakon, Marco Niggetiedt]

Generates a script, which does the color algebra and Dirac algebra in
Form [Jos Vermaseren]

Expresses the amplitude in terms of minimal number of integrals
Number of diagrams 1092 -> Number of integral families 97
Timing: diagram generation 20 minutes / FORM procedure 1 day
Generates input for the program Kira
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Integral family

p1 p1

p1 + k1

k1

k2

I(s⃗, D|a1, . . . , a5) =∫
dDk1dDk2

[k1
2 − m2

1]a1︸ ︷︷ ︸
P

a1
1

[(p1 + k1)2]a2︸ ︷︷ ︸
P

a2
2

[k2
2]a3︸ ︷︷ ︸

P
a3
3

[(p1 + k2)2]a4︸ ︷︷ ︸
P

a4
4

[(k2 − k1)2]a5︸ ︷︷ ︸
P

a5
5

qj = k1, . . . , kL, p1, . . . , pE

sij = qi qj , i = 1, . . . , L, j = i, . . . , L + E
s⃗ = ({si}, {m2

i }), dimensional regularization parameter D = 4 − 2ϵ
The integral family definition is complete, if all Pi are linearly
independent in the sij

s11 = m2
1 + P1, s12 = 1

2(m2
1 + P1 + P3 − P5), s22 = P3,

s13 = 1
2(−m2

1 − P1 − p1 p1 + P2), s23 = 1
2(−p1 p1 − P3 + P4)
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Integration-by-parts (IBP) identities

I(a1, . . . , a5) =
∫ dDk1dDl2

[k12−m2
1]a1 [(p1+k1)2]a2 [k22]a3 [(p1+k2)2]a4 [(k2−k1)2]a5∫

dDk1 . . . dDkL
∂

∂(ki)µ

(
(qj)µ

1
[P1]a1 . . . [PN ]aN

)
[Chetyrkin, Tkachov, 1981] =0

c1({af }, s⃗, D)I(a1, . . . , aN −1) + · · · + cm({af }, s⃗, D)I(a1+1, . . . , aN ) =0

m number of terms generated by one IBP identity

Reduction: express all integrals with the same set of propagators but with different
exponents af as a linear combination of some basis integrals (master integrals)

Gives relations between the scalar integrals with different exponents af

Number of L(E + L) IBP equations, for each choice of i = 1, . . . , L and
j = 1, . . . , E + L

af = symbols: Seek for recursion relations, LiteRed [Lee, 2012]

af = integers: Sample a system of equations, Laporta algorithm [Laporta, 2000]

Seeds: I(a1, . . . , a5) = [P1]a1 . . . [PN ]aN
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Trick to simplify a reduction

Example integral I(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, −5, 0, 0, 0, 0, 0, 0, 0)
It is necessary to reduce 5 scalar products
Very difficult with public tools out of the box Kira [Klappert, Lange, Maierhöfer,

Usovitsch, 1705.05610, 2008.06494], Reduze [von Manteuffel, Studerus, 1201.4330], FIRE 6 [Smirnov,

Chuharev, 1901.07808], FiniteFlow [Peraro, 1905.08019]+LiteRed
But it works for sure with Kira if we integrate out one-loop
self-energy analytically∫

dDk kα1 ...kαn

(−k2)λ1 [−(q−k)2]λ2 =

iπD/2

(−q2)λ1+λ2+ϵ−2

[n/2]∑
r=0

ANT (λ1, λ2; r, n)( q2

2 )r{[g]r[g]n−2r}α1...αn with

ANT (λ1, λ2; r, n) = Γ(λ1+λ2+ϵ−2−r)Γ(n+2−ϵ−λ1−r)Γ(2−ϵ−λ2+r)
Γ(λ1)Γ(λ2)Γ(4+n−λ1−λ2−2ϵ)
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Integral family with symbolic propagator power

SLTOP5l992[1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,-1,-1]
=(19 terms) −3Γ(2−d/2)Γ(−1+d/2)Γ(d/2)

Γ(−1+d) ×
xSLTOP5l992[−1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, −1, 0]

New integral family has one-loop less (20 propagator power indices
reduce to 14 indices), but one propagator is raised to a symbolic
propagator power

xSLTOP5l992[b1-1,1,1,1,1,1,1,1,1,1,0,-1,0], b1 = ((4 − D)/2)

Choose master integrals such that b1 is without integer shifts

Reintroduce Γ(−2+D)
Γ(1+ −4+D

2 )2Γ( 4−D
2 ) , when 4-loop → 5-loop conversion

Kira does support symbolic reduction for years

In this work I improved symbolic reduction with Kira 9 / 19



Tricks in symbolic reduction with Kira

∫
dDk1 . . . dDkL

∂

∂(ki)µ

(
(qj)µ

1
[P1]a1 . . . [PN ]aN

)
[Chetyrkin, Tkachov, 1981] =0

c1({af }, s⃗, D)I(a1, . . . , aN −1) + · · · + cm({af }, s⃗, D)I(a1+1, . . . , aN ) =0

Number of IBP (identities) generators: L(E + L)
The IBP generators are highly linearly dependent, especially at 5-loop
I eliminate many of the operators
I prefer to eliminate operators, which result in a positive shift to the
symbolic power
We eliminate integrals with no imaginary part
Allowed seeds for I(b1 + a1, a2, . . . , a14) are: a2, . . . , a14 can take
positive and negative values, but a1 is only allowed to take negative
values
Especially the last point gives orders of magnitude better reduction
results
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Amplitude reduction

Amplitude reduction for the 5-loop process finished in 2 month

Timing: worst case is 10 days on 12 cores

All integrals from the squared amplitude are expressed through master
integrals, which have either at most 2 dots or 2 scalar products

Unfortunately I do not have any log files anymore, to go into the rich
details of reduction specific properties
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5-loop integral calculation with AMFlow [Liu, Xiao and Ma,

Yan-Qing,2201.11669]

Auxiliary mass flow integral obtained formally with i0 = −η

Iν⃗(η) =
L∏

i=1

∫
dDkl

iπ
D
2

P
−νK+1
K+1 . . . P −νN

N

(P1 − η)ν1 . . . (PK − η)νK
(2)

With the limit
Iν⃗(η) = lim

η→i0−
Iν⃗(η) (3)

Strengths
Systematic: in principle works for arbitrary integrals
Differential equation solver scales linear with precision set

Drawbacks
Auxiliary integrals potentially involve many master integrals
The tool was not tested at 5-loop level, yet
One of the bottlenecks was the determination of non-zero regions with
the expansion-by-regions method
Other critical error was eliminated in the differential equation solver 12 / 19



Modifications to AMFlow
Problem

To construct the differential equations, the IBP reductions are the
bottleneck

Integral family involves one more additional scale: auxiliary mass flow η.

Reduction necessary for integrals with up to one dot and two scalar
products

Compared to the amplitude reduction we have less scalar products, but
one more scale

Solution
To improve the AMFLow run time we have written our own IBP
interface to Kira

Automatic: do the 5-loop reductions by converting the integral families
from 5-loop to 4-loop. Convert resulting 4-loop master integrals back
to 5-loop.

Differential equations are derived for these new 5-loop master integrals13 / 19



Numerical results
All integrals which appear in the fermionic part of the amplitude are
computed to a high precision, 40 digits of accuracy

SLTOP5l992[1, 1, 1, 1, 1, 1, 0, 1, 0, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]

= (1.7532775277000914198075023186440731037−421.7578991818784250760648350179082675138I)+

0.08333333333333333333333333333333333333333/ϵ5 +

0.1761601396243613080806199624656656537324/ϵ4 −

(0.128122939737351305761954983116897702468 −

1.832595714594046055769875306913043349115I)/ϵ3 −

(12.83243357898317568876458546444082974198 +

6.90156090824811083759913541674986728464I)/ϵ2 −

(52.42494402414620647593686192734683910325+66.41098857415666926442856834196875614216I)/ϵ

14 / 19



Future: bosonic results
Evaluations of master integrals of ∼ 30 integral families are missing

Estimated time for evaluation of one bosonic integral family is 30
days.

Bottleneck is the IBP reduction. More improvement in Kira needed.

Many bottlenecks in Kira are uncovered and are in process to be
cleaned up

Apply other strategies, e.g. Feynman parameter integration through
differential equations [Hidding, Usovitsch, 2206.14790]

This method is similar in spirit to auxiliary mass flow, but it tries to
minimize in addition the number of master integrals.
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Summary and outlook

Summary and Outlook

Advanced the state-of-the-art calculation of N3LO b → ulν̄l process

The publication of the complete fermionic corrections is in preparation

The N3LO corrections uncertainty is reduced to percent level

The calculation of bosonic corrections is halfway through, amplitude
reduction is complete

Remaining question will soon be answered: does the series have a
good convergence?

Improved symbolic IBP reductions with Kira

Uncovered bottlenecks in Kira, which are in fixing process right now

Advertised new tool DiaGen, soon available for automatic amplitude
generation 16 / 19



Feynman parameter integration through differential equations

Feynman parameter integration through differential
equations [Hidding, Usovitsch, 2206.14790]

Initial integral

I(1)
ν1...νK

=
∫ L∏

i=1

ddkl

iπ
d
2

D
−νK+1
K+1 . . . D−νn

n

(D1 + iδ)ν1 . . . (DK + iδ)νK
(4)

We exploit the Feynman trick

1
Dνi

1 . . . DνK
K

= Γ(ν)
Γ(ν1) . . . Γ(νn)

∫ ∞

0
dKx

xν1−1
1 . . . xνK−1

n δ
(
1 −

∑K
j=1 xj

)
(x1D1 + . . . + xKDK)ν

(5)
1

Dν1
1 Dν2

2
= Γ(ν1 + ν2)

Γ(ν1)Γ(ν2)

∫ 1

0
dx1

xν1−1
1 (1 − x1)ν2−1

(x1D1 + (1 − x1)D2)ν1+ν2
(6)
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Feynman parameter integration through differential equations

Iterating the Feynman parameter integration

Using (6), we may write

I(1)
ν1...νK

= Γ(ν1 + ν2)
Γ(ν1)Γ(ν2)

∫ 1

0
dx1 xν1−1

1 (1 − x1)ν2−1I
(2)
ν1+ν2,ν3...νK

(7)

where ν1 and ν2 are assumed to be positive. If we iterate the
recursion, we obtain

I(1)
ν1...νK

= Γ(ν)
Γ (ν1) . . . Γ (νK)

K−1∏
j=1

∫ 1

0
dxjx

µj−1
j (1 − xj)νj+1−1

 I(K−1)
ν ,

= Γ(ν − ld/2)
Γ (ν1) . . . Γ (νK)

K−1∏
j=1

∫ 1

0
dxjx

µj−1
j (1 − xj)νj+1−1

 Ũν−(l+1)d/2

F̃ν−ld/2

(8)

where µj = ν1 + . . . + νj , and ν = µK
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Feynman parameter integration through differential equations

System of differential equations with respect to the
Feynman parameter

For each family I⃗(χ,d), of the form [Kotikov, 1991, Remiddi, 1997, Gehrmann, Remiddi, 2000]

∂xχ−1 I⃗(χ) = Mxχ−1 I⃗(χ) (9)

Transport(DiffExp) boundary conditions to obtain a piecewise solution
between 0 < xχ < 1
Integrate the expansions according to (7)
The boundary condition for the first iteration is

I(K)
ν =

∫ L∏
i=1

ddkl

iπ
d
2

1
(D1...K)ν

= Γ(ν − Ld/2)
Γ(ν)

Ũν−(L+1)d/2

F̃ ν−Ld/2 (10)

With kinematics set to numerial values, and all Feynman parameters
set to 11/23
D1...l = x1D1 + . . . + xlDl
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