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Motivation

The amplituhedron [N. Arkani-Hamed and J. Trnka, 2013]
provides the all-loop integrand for the planar N = 4 sYM theory.

Despite being UV finite it can still have IR divergneces.

Requires regularization ⇒ dimensional regularization.
Computing amplitudes can be challenging in the dimensional
regularization.

Dimensional regularization breaks the geometric picture.
Can we regulate the IR divergences directly at the amplituhedron
level?
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https://link.springer.com/article/10.1007/JHEP10(2014)030


Amplituhedron

The four-point Amplituhedron consists of four external momentum
twistors Z1, Z2, Z3, Z4 and L lines {(AB)i}, satisfying

⟨(AB)i12⟩>0, ⟨(AB)i23⟩>0,
⟨(AB)i34⟩>0, ⟨(AB)i14⟩>0 ,

Sign flip condition

⟨(AB)i13⟩ < 0, ⟨(AB)i24⟩ < 0 .

Additional positivity conditions:

⟨(AB)i(AB)j⟩ > 0

where

⟨1234⟩ ≡ det(Z1Z2Z3Z4)
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From geometry to the integrand

A differential form (canonical form) with logarithmic singularities on
the boundary of the positive geometry.

one-simplex: [a,b]

Logarithmic singularities on the boundaries: a : dx
x−a , b : dx

x−b

Canonical form:

Ω[a,b] =
dx

x − a
− dx

x − b
=

a − b
(x − a)(x − b)

dx

=dlog(x − a)− dlog(x − b) = dlog
(

x − a
x − b

)
Residues on the boundaries:

resx=a(Ω[a,b]) = 1 , resx=b(Ω[a,b]) = −1
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Deformation in two dimensions

Amplituhedron:

z > 0 ,w > 0

ω =
dwdz

wz

Deformation:

ηz + w > 0 , η̃w + z > 0

ω =
dwdz(1 − ηη̃)

(ηz + w)(η̃w + z)
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Four point one-loop amplituhedron

Let us introduce the notation:

X1 = Z1Z2 ,X2 = Z2Z3 ,X3 = Z3Z4 ,X4 = Z1Z4 ,Y = ZAZB .

Z1

Z2

Z4

Z3

YX2

X1

X3

X4

massless on-shell kinematics:

X 2
i = (Xi ,Xi) = 0 , (XiXi+1) = 0

Number of boundaries: (4,10,12,6)
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Deformation

The deformed Amplituhedron shifts external kinematics with two
deformation parameters x , y ,

X̂1 = X1 + xX3 ,

X̂2 = X2 + yX4 ,

X̂3 = X3 + xX1 ,

X̂4 = X4 + yX2 .
Z1

Z2

Z4

Z3

X̂2

X̂1

X̂3

X̂4

Adjacent conditions still hold: (X̂i X̂i+1) = 0
Massive propagators: X̂ 2

i ̸= 0

Thanks to the deformation parameters all collinear configurations
are removed as boundaries!
Number of boundaries: (4,6,4,2)
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Kinematics

Z1

Z2

Z4

Z3

X̂2

X̂1

X̂3

X̂4 ⇔

p1

p2

p4

p3

m2

m1

m3

m4

p2
i = m2

i + m2
i+1

Dual conformal cross ratios:

u =
(X̂1X̂3)

2

X̂ 2
1 X̂ 2

3

=
1
4

(
x +

1
x

)2

=
(−s + m2

1 + m2
3)

2

4m2
1m2

3
,

v =
(X̂2X̂4)

2

X̂ 2
2 X̂ 2

4

=
1
4

(
y +

1
y

)2

=
(−t + m2

2 + m2
4)

2

4m2
2m2

4
.
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Two-loop deformed amplitude

We consider the amplitude, normalized by its tree-level contribution,

M = 1 − g2M(1) + g4M(2) +O(g6) ,

with g2 = g2
YMNc/(16π2)
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One-Loop contribution

M = 1 − g2M(1) + g4M(2) +O(g6)

Deformed one-loop integral:

M(1) =

∫
Y

(1 − x2) (1 − y2)

(X̂1Y )(X̂2Y )(X̂3Y )(X̂4Y )

Can be easily evaluated using Feynman parameters:

M(1)(x , y) =∫ ∞

0

d4α

GL(1)
(1 − x2) (1 − y2)

[(α1x + α3)(α1 + α3x) + (α2y + α4)(α2 + α4y)]2
=

2 log(x) log(y)

Can also be established with the differential equations method!
10 / 15



Two-loop amplitude

M = 1 − g2M(1) + g4M(2) +O(g6) ,

M(2) = −Q
(
x2)− Q

(
y2)+ Q

(
x2y2)+ J3

(
x2) log (y2)+ J3

(
y2) log (x2) ,

with

Q(z) = 3Li4(z)− 3 log(z)Li3(z) +
3
2
log2(z)Li2(z) +

1
2
log3(z) log(1 − z)+

3π4

10
+

π2

4
log2 (z) +

3
16

log4 (z) + log2 (z)Li2(1 − z) + 4π2Li2
(
−
√

z
)
−

log (z)Li3
(

1 − 1
z

)
− log (z)Li3 (1 − z) ,

and

J3(z) =
1
4
log3 (z) + log (z)Li2 (1 − z)− 2Li3 (1 − z)− 2Li3

(
1 − 1

z

)
.

Only classical polylogarithms no Li2,2 or (Li2)2.
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Symbol alphabet

A ={x , 1 − x , 1 + x , y , 1 − y , 1 + y , x − y , x + y , 1 − xy , 1 + xy}

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

x

y

x  0

y  0

1 - x  0

1 + x  0

1 - y  0

1 + y  0

1 - x y  0

1 + x y  0

x - y  0

x + y  0
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High-energy limit

This corresponds to x , y → 0 , or equivalently, s, t → ∞, keeping
x/y = t/s fixed.

lim
x ,y→0

logM = −1
2
Γcusp(g) log x log y + Γcollinear(g) (log x + log y) + C(g) ,

Γcusp = 4g2 − 8ζ2g4 +O(g6)
Γcollinear(g) = −4ζ3g4 +O(g6) and C(g) = −3/10π4g4 +O(g6).

Analogous to formulas in
dimensional regularization [Z. Bern, l. Dixon and V. Smirnov, 2005] and
on the Coulomb branch [L. Alday et al., 2010]
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https://journals.aps.org/prd/abstract/10.1103/PhysRevD.72.085001
https://link.springer.com/article/10.1007/JHEP01(2010)077


Regge limit

This corresponds to y → 0, keeping x fixed (t → ∞).
We find that the leading terms in the Regge limit are given by

lim
y→0

M(x = eiϕ, y) = r(ϕ, θ0;g) yΓcusp(ϕ;θ0;g) +O(y0) ,

where

Γcusp(ϕ, θ;g) = g2ξ(−2 log x) + g4

{
ξ

4
3
log x

(
π2 + log2 x

)
+

ξ2

[
4Li3

(
x2)− 4Li2

(
x2) log(x)− 4

3
log3(x)− 2

3
π2 log(x)− 4ζ3

]}
and

ξ =
cos θ − cosϕ

i sinϕ
=

1 + x2 − 2x cos θ

1 − x2

provided that we set ξ = 1
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Summary

We generalized the four-particle Amplituhedron geometry of
planar sYM such that the amplitude M(x , y) is infrared finite and
depends on two dual conformal parameters x , y .

We obtained analytic result for the two-loop deformed amplitude.

In different kinematic limits we obtained behaviour similar to that
on the Coulomb branch.

We expect that this new setup will lead to substantial progress in
making the connection between geometry and integrated
functions.
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Extra slides
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Embedding formalism

Embedding in the projective space C4 → CP5:
xµ → X a = (xµ,X−,X+), with X a ≃ αX a (α ̸= 0).

Scalar product

(XY ) = 2xµyµ + X+Y− + X−Y+

The integration measure is defined such that∫
Y

1
(YQ)4 =

1
Γ(4)

1
[1
2(QQ)]2

.
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Differential equations in four-dimensions
[S. Caron-Huot and J. Henn, 2014]

Working with finite integrals in D = 4 simplifies the differential
equations.

We work in the embedding formalism where a dual conformal
symmetry is apparent.

Derivatives of dual conformal integrals with respect to kinematic
variables are dual conformal. This is also true for the
integration-by-parts identities (IBP), Thus, we can work only with a
subset of integrals.

In D = 4 different loop orders can be connected using the
four-dimensional Laplace-type equation.

Differential equation matrix in a triangular form. Basis functions of
uniform transcendental weight.
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https://link.springer.com/article/10.1007/JHEP06(2014)114


One-loop differential equations

We consider the integrals belonging to the family

Ga1,a2,a3,a4 :=

∫
Y

1
(X̃1Y )a1(X̃2Y )a2(X̃3Y )a3(X̃4Y )a4

with
4∑

i=1

ai = 4

We use the following derivatives:

∂x =
1

(−1 + x)(1 + x)
(xO1,1 − O1,3 − O3,1 + xO3,3)

where Oi,j = (Xi∂Xj ). An analogous definition holds for ∂y .
We solve the differential equations iteratively

∂xG1,1,1,1 =
2xG1,1,1,1 − 2G0,1,2,1

1 − x2
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One-loop differential equations

System of the differential equations:

g1 = 4xy G2,2,0,0 ,

g2 = −2x(1 − y2)G0,1,2,1 ,

g3 = −2(1 − x2)y G1,2,1,0 ,

g4 = (1 − x2)(1 − y2)G1,1,1,1 .

dg⃗ = d


0 0 0 0

log (y) 0 0 0
log (x) 0 0 0

0 log (x) log (y) 0

 g⃗

Integrated out result:

g1 = 2 ,

g2 = 2 log(y) ,
g3 = 2 log(x) ,
g4 = 2 log(x) log(y) .
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Two-loop differential equations
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IBP vectors

The generation of an IBP relation is based on the fundamental
identity

0 =

∫
Y

∂

∂Y a δ

(
1
2

Y 2
)

Qa(Y ) ,

To generate IBP relations, we will be considering the IBP vectors
of the form

Qa
ij,1 ≡ (Y1Xj)X a

i − (Y1Xi)X a
j , Qa

ij,2 ≡ (Y2Xj)X a
i − (Y2Xi)X a

j ,

for (i , j) ∈ {1,2,3,4}.
In general we require orthogonality between Yk for k = 1,2 and
IBP vectors Qij , i.e., (Yk ,Qij) = 0.
In the two-loop case we can consider additional vectors

Qa
i,2 ≡ (Y1Xi)Y a

2 − (Y1Y2)X a
i , Qa

i,1 ≡ (Y2Xi)Y a
1 − (Y2Y1)X a

i .
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Double box

Two-loop contribution

M(2)(x , y) = Idb(x , y) + Idb(y , x) ,

Integral representation

Idb(x , y) =
∫

Y1

∫
Y2

(1 − x2)2(1 − y2)

(X̂1Y1)(X̂2Y1)(X̂3Y1)(Y1Y2)(X̂1Y2)(X̂3Y2)(X̂4Y2)

Two-loop box

Idb(x , y) = −Q(y2) +
1
2

Q
(

y2

x2

)
+

1
2

Q(x2y2) + J3(x2) log(y2)
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