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Overview: Grimus-Neufeld model, neutrino masses and LFV

e Grimus—Neufeld model [GN '89] = 2HDM + 1 sterile neutrino
e can include neutrino masses and mixings with seesaw + radiative
e can give LFV processes
@ We look at GNM's specific scenario:
o sterile Majorana mass is small
=-enhanced LFV decay rates
=-Approximate Z, symmetry in Yukawa sector
=Makes it similar to other popular models: scotogenic, scoto-seesaw.
o Larger LFV decay rates make restrictions from experiments possible on
scalar+neutrino sector.
= We put constrains on scalar+ neutrino sector from LFV
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@ The Lagrangian:

L = Doriom — %MNN —YWpeN - YPlieHN+he., f= ( gvi )

1

where ¢ — lepton doublet, N—sterile neutrino, j = e, i, t; H; and H> in the Higgs
basis ((H1) = \%v, (H2) =0).
o We say that if
2 _y [y
y _Z Y <1

we have approximate Z, symmetry in Yukawa sector:
SM particles — +SM particles, N,H, — —N,—H>

@ y — Z, small symmetry breaking parameter
= tiny seesaw scale (next slide)
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tiny Y77 and tiny seesaw

1
L = Laom — ZMNN = Y ieHiN = Y2 lieHoN + hec.

e First two additional terms (when (H;) — \%v) lead to two non-vanishing neutrino
masses at tree-level (labeled m3 < my):

y2 V2

2!774

2
m3 = ,m4—m3:M,yZEZ‘Y’.(1)’ .

o scale of active neutrinos ms = 0 (0.01eV).
@ seesaw: my > m3 = myg~ M
e we assume y < O (10_7) = my < 10GeV — a tiny seesaw scale.

@ The last term in . induces radiative neutrino mass generation and LFV.
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YY"/ : radiative mass and LFV

1
L = Lariom — ZMNN = YO i N - YD tiehN 4 he., v <1

N Vb
—————————————>—
(2) (2) #(2)
Y; Y; Y;
Figure: Radiative mass Figure: LFV decay ¢; — (;y N
. . pole 2 1 &
generation gives m5®<. Apenguin < (Y(2)) 3
H

Figure: LFV decay ¢; — £;{;{y,
Apox o (Y(z))4 1

2
mHi
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Light neutrino mass matrix
2 . . .

@ Define at external momentum p“ =0, in the Higgs basis

H
RN . 2
4 N f Z m4 m
A= / \\ h=2 In ~ Asmy,
f./ N \ 3272 my
1 1
@ We have a 3 x 3 mass matrix for light neutrinos of rank 2 in flavor basis
2
1) (1) v 2)\(2
I yl( )Y-( )ﬁ—i_yl( )YJ( )/\+O(Y(1) ><|00p>
4 N——
Radiative

Seesaw
pole

| | |
U*mU" = diag (0 mb®e mgoe) , my%¢ < m§

If normal ordering assumed, mpole \/Am3, mgc"e =/Am3; and U" ~ Upuns.
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e We diagonalize



parametrization of Y;

@ Yukawa couplings in Flavour basis (parameters, not fixed by neutrino data are in
red, i = e, U, T):

. 2 pole pole
yl(l) — I'e—'¢(/\) m37rn4) (O Ryp, —— s R3o ljji??
J

‘/22(,47 W gole
pole pole
| . . U for NO
Yl(z) = s|gn(/\) m (O Ro2, — - pole R32) Uji’ U= {OPMOIS for 10’
, mb i 10¥ppmns

R_ cosr ei®22 —sinr e*"“’f‘.Z(”“’zlz)e"q)(A) Vradiative | _ R V2
sin r e @s2(r,022) cosre ®22gi¢(A) ’ Vseesaw V3
@ r is a mixing angle between seesaw and radiative, my>— a free phase.

@ Note: there exist single parameter point (r y7) for each flavour /7, that Y(Z) =0.

oRecallthatform4<v:>/\~m4,soY ~ /g, Y ~ \/772>Y(2)

1

Y(l) :
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Bounds from LFV

. . f(r,@22 H . glr,no
Figure: Apenguin & /(\’”72/#) Figure: Apox o< A(2m2Hi)

e Upper bounds on Y come from:

e Br(¢; = {;y) ( lower bound on "photon factor’ Am?,)
o Br(¢j — £ilili) Br(¢j — lilly) (lower bound on "box factor” A2m?* )

*If boxes dominate over penguins

2
o Perturbative unitarity (from Y ; Y,-(z)‘ < 87 we get lower bound on A)
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Photon dominance

@ Photon dominance: Apenguin >> Abox then:

54« 11 m?
Br(li = 3/;) = [_l&t+37r<

—4+|nmé>] -Br(li = I;y),
J

2-body decay experiments are more constraining (put bounds on Am2...) in this
regime.

e We have:
Mie 1, (Am)

Apox /A i~ = _ = N HE
box/ penguin /\2mf_li A H* (/\mili)2

e For /\mf# = const, Apox/Apenguin ~ m,%/i = increase my+, can deviate from
photon dominance

e Then 3-body decays can become more constraining (put bounds on /\2mf_,i) )
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Photon dominance for low myz: constraints from ¢; — £;y

@ U — ey is most constraining in almost all of the parameter space (give "typical”
constraint on Am?,.).

@ T— ey and T — Uy become important in a tiny parameter space around Ye(z) =0
and Yf) =0 (called "special” regions, give "absolute” constraint on /\m,zj,i)
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Constraints from u — ey

NO: min |[A|m¥. allowed by g — ey 10: min |A|m%. allowed by y1 — ey
5 <
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Figure: Lower bound on Am?,. from p — ey as a function of r and @, for NO and 10. White
regions are dissalowed by neutrino sector. The p — ey vanishes at two points in r — @ plane,
indicated in the plots by ‘YE(ZH)‘ =0. Typical lower bound: [A|m?. > 1074GeV>.

11/15



Very lowest /\m,z_,i from 7 decays

@ The special solutions of Ye(i) =0 makes i — ey vanish, but T decays have

non-zero prediction at those points:

e 7 decays give bounds /\mf_li on , when Ye(zpz =0

Process and parameter point | NO, [A|m?,. [GeV3] | 10, |A|m?. [GeV3]
Toeyat Vi = 1.9-10°° 4.0-10°
Touyat Y =0 1.3-10°° 7.6-10°6

Table: Lower bound on /\m,z_,i in special points.

e Absolute bound (when whole model is excluded) is the lower of the two.
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Final results

strongest Absolute lower bound
constraint parameter | Normal (Inverted) ordering | my=/TeV
T ey IN|m?2,./ (10-°GeV?) 1.9(4.0) <1.2(0.4)
T — 3e N2m2,. / (10 18Gev?) 2.6(98.7) 1.2(0.4) = 3.4(4.7)
pert. unitarity IA]/(10712GeV) 0.5(2.1) >3.2(4.7)
Typical lower bound

Parameter Normal (Inverted) ordering my=/TeV
u— ey N[ m?2,./ (10-°GeV?) 8.8(4.9) <1.5(1.7)
u— 3e Nm?,. /(10" 15Gev?) 3.4(0.85) > 1.5(1.7)
pert. unitarity didn't reach for my+ <5 TeV.

e Typical (what you whould typically get from random scan) is at least an order of
magnitude stronger than the absolute bound.
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Connection to scalar sector

@ For easy interpretation, let us assume Z5 in scalar sector, and my+ ~ my ~ my,

then:
2 2 2
mosmg  m v
\/\]m,z_,i =4t 5 In—- H ]7L5|m4 292
32r 32r
5 mﬁ v

AN2m?,. ~ R
T me, (32m2)?

which roughly leads to:

As| > 1(2)-1072kY mp+ < 1.2(0.4) TeV
absolute for NO(I0):{ *8/ < 12V 10 Ty Mk < 1.2(0.4)
M’5‘ 2 1( ) 10~ ma/keV my+ > 1. 2( )TeV
typical- 5| > eV myx < 1.5(1.7) TeV
A5 2 ";:j/k:@V mis > 1.5(1.7) TeV

@ LFV relates neutrinos, with Peccei-Quinn symmetry breaking operator in the scalar

. \2
sector £ > %15 (HZ' H1>
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Conclusions

e Small A5 (Peccei-Quinn symmetry breaking), and small m4 (or, equivalently, small
Z>» symmetry breaking coupling, Y(l)) can give signatures in LFV decays in GNM.

o Signatures for large ma are not likely (give way weaker constraints )

@ Results directly apply to scoto-seesaw model and give qualitative behaviour for
scotogenic model too (both of them have exact Z,, but more sterile neutrinos)

@ There is at least an order of magnitude difference between completely excluded
("absolute”) and most likely (or "typically”) excluded values.

Thank you!
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