Lepton flavour violating decays in the Grimus - Neufeld model

(based on 2206.00661 and 2211.14384)

<u>Vytautas Dūdėnas</u>¹ Thomas Gajdosik¹, Uladzimir Khasianevich², Wojciech Kotlarski³, Dominik Stöckinger²

¹Institute of Theoretical Physics and Astronomy, Faculty of Physics, Vilnius University ²Institut für Kern- und Teilchenphysik, TU Dresden ³National Centre for Nuclear Research, Warsaw, Poland

September 20, 2023

Overview: Grimus-Neufeld model, neutrino masses and LFV

- Grimus-Neufeld model [GN '89] = 2HDM + 1 sterile neutrino
 - can include neutrino masses and mixings with seesaw + radiative
 - can give LFV processes
- We look at GNM's specific scenario:
 - sterile Majorana mass is small ⇒enhanced LFV decay rates
 - \Rightarrow Approximate Z_2 symmetry in Yukawa sector
 - \Rightarrow Makes it similar to other popular models: scotogenic, scoto-seesaw.
- Larger LFV decay rates make restrictions from experiments possible on scalar+neutrino sector.
 - \Rightarrow We put constrains on scalar+ neutrino sector from LFV

• The Lagrangian:

$$\mathscr{L} = \mathscr{L}_{2HDM} - \frac{1}{2}MNN - Y_i^{(1)}\ell_i\varepsilon H_1N - Y_i^{(2)}\ell_i\varepsilon H_2N + h.c., \quad \ell_i = \begin{pmatrix} v_i \\ \ell_i^- \end{pmatrix}$$

where ℓ – lepton doublet, *N*-sterile neutrino, $j = e, \mu, \tau$; H_1 and H_2 in the Higgs basis ($\langle H_1 \rangle = \frac{1}{\sqrt{2}}v$, $\langle H_2 \rangle = 0$).

• We say that if

$$y^2 \equiv \sum_i \left| Y_i^{(1)} \right|^2 \ll 1$$

we have approximate Z_2 symmetry in Yukawa sector:

SM particles $\rightarrow +$ SM particles, $N, H_2 \rightarrow -N, -H_2$

y − Z₂ small symmetry breaking parameter
 ⇒ tiny seesaw scale (next slide)

<ロ> < 団> < 団> < 三> < 三> < 三> < 三</p>

tiny $Y_i^{(1)}$ and tiny seesaw

$$\mathscr{L} = \mathscr{L}_{2HDM} - \frac{1}{2}MNN - \frac{Y_i^{(1)}}{i}\ell_i\varepsilon H_1N - Y_i^{(2)}\ell_i\varepsilon H_2N + h.c.$$

• First two additional terms (when $\langle H_1 \rangle \rightarrow \frac{1}{\sqrt{2}} v$) lead to two non-vanishing neutrino masses at tree-level (labeled $m_3 < m_4$):

$$m_3 = \frac{y^2 v^2}{2m_4}, m_4 - m_3 = M, y^2 \equiv \sum_i |Y_i^{(1)}|^2$$

- scale of active neutrinos $m_3 = O(0.01 \text{eV})$.
- seesaw: $m_4 \gg m_3 \Rightarrow m_4 pprox M$
- we assume $y < O\left(10^{-7}\right) \Rightarrow m_4 < 10 \text{GeV}$ a tiny seesaw scale.
- The last term in ${\mathscr L}$ induces radiative neutrino mass generation and LFV.

$$\mathscr{L} = \mathscr{L}_{2HDM} - \frac{1}{2}MNN - Y_i^{(1)}\ell_i\varepsilon H_1N - Y_i^{(2)}\ell_i\varepsilon H_2N + h.c., \quad Y_i^{(1)} \ll 1$$

Figure: Radiative mass generation gives m_2^{pole} .

N

 $Y_{i}^{*(2)}$

 $Y_{i}^{(2)}$

Figure: LFV decay $\ell_i \rightarrow \ell_i \ell_i \ell_k$, $A_{\rm box} \propto \left(Y^{(2)}\right)^4 \frac{1}{m_{\mu^+}^2}$ イロト イロト イヨト イヨト

-

Light neutrino mass matrix

• Define at external momentum $p^2 = 0$, in the Higgs basis:

parametrization of $Y_i^{(2)}$

Yukawa couplings in Flavour basis (parameters, not fixed by neutrino data are in red, i = e, μ, τ):

$$Y_{i}^{(1)} = ie^{-i\phi(\Lambda)} \sqrt{\frac{2m_{3}^{\text{pole}}m_{4}}{v^{2}z(r,\omega_{22})}} \left(0, R_{22}, \frac{m_{3}^{\text{pole}}}{m_{2}^{\text{pole}}} R_{32}\right)_{j}} U_{ji},,$$

$$Y_{i}^{(2)} = \text{sign}(\Lambda) \sqrt{\frac{m_{2}^{\text{pole}}}{|\Lambda| \cdot z(r,\omega_{22})}} \left(0, R_{22}, \frac{m_{3}^{\text{pole}}}{m_{2}^{\text{pole}}} R_{32}\right)_{j}} U_{ji}, \quad U = \begin{cases} U_{PMNS}^{\dagger} & \text{for NO} \\ O_{IO} U_{PMNS}^{\dagger} & \text{for IO} \end{cases},$$

$$R = \left(\begin{array}{c} \cos r e^{i\omega_{22}} & -\sin r e^{-i\omega_{32}(r,\omega_{22})} e^{i\phi(\Lambda)} \\ \sin r e^{i\omega_{32}(r,\omega_{22})} & \cos r e^{-i\omega_{22}} e^{i\phi(\Lambda)} \end{array} \right), \quad \left(\begin{array}{c} v_{\text{radiative}} \\ v_{\text{seesaw}} \end{array} \right) = R \left(\begin{array}{c} v_{2} \\ v_{3} \end{array} \right)$$

- r is a mixing angle between seesaw and radiative, ω_{22} a free phase.
- Note: there exist single parameter point (r, ω_{22}) for each flavour *i*, that $Y_i^{(2)} = 0$.
- Recall that for $m_4 < v \Rightarrow \Lambda \sim m_4$, so $Y_i^{(1)} \sim \sqrt{m_4}$, $Y^{(2)} \sim \frac{1}{\sqrt{m_4}} \Rightarrow Y^{(2)} \sim \frac{1}{Y^{(1)}}$.

- Upper bounds on $Y^{(2)}$ come from:

 - Br $(\ell_i \to \ell_j \gamma)$ (lower bound on "photon factor" Λm_H^2) Br $(\ell_i \to \ell_j \ell_k \ell_k)$, Br $(\ell_i \to \ell_k \ell_k \ell_k)$ (lower bound on "box factor" $\Lambda^2 m_H^2$ *) *If boxes dominate over penguins

• Perturbative unitarity (from
$$\sum_i \left| Y_i^{(2)} \right|^2 < 8\pi$$
 we get lower bound on A)

• Photon dominance: $A_{\text{penguin}} \gg A_{\text{box}}$ then:

$$\mathsf{Br}(l_i \to 3l_j) \approx \left[-\frac{5 \cdot \alpha}{18\pi} + \frac{\alpha}{3\pi} \left(-\frac{11}{4} + \ln \frac{m_i^2}{m_j^2} \right) \right] \cdot \mathsf{Br}(l_i \to l_j \gamma),$$

2-body decay experiments are more constraining (put bounds on $\Lambda m^2_{H^{\pm}}$) in this regime.

• We have:

$$A_{
m box}/A_{
m penguin} \sim rac{\Lambda m_{H^\pm}^2}{\Lambda^2 m_{H^\pm}^2} = rac{1}{\Lambda} = m_{H^\pm}^2 rac{\left(\Lambda m_{H^\pm}^2
ight)}{\left(\Lambda m_{H^\pm}^2
ight)^2}$$

- For $\Lambda m_{H^{\pm}}^2 = \text{const}$, $A_{\text{box}}/A_{\text{penguin}} \sim m_{H^{\pm}}^2 \Rightarrow$ increase $m_{H^{\pm}}$, can deviate from photon dominance
 - Then 3-body decays can become more constraining (put bounds on $\Lambda^2 m_{H^{\pm}}^2$).

- $\mu \to e\gamma$ is most constraining in *almost* all of the parameter space (give "typical" constraint on $\Lambda m_{H^{\pm}}^2$).
- $\tau \to e\gamma$ and $\tau \to \mu\gamma$ become important in a tiny parameter space around $Y_e^{(2)} = 0$ and $Y_{\mu}^{(2)} = 0$ (called "special" regions, give "absolute" constraint on $\Lambda m_{H^{\pm}}^2$)

Constraints from $\mu ightarrow e \gamma$

Figure: Lower bound on $\Lambda m_{H^{\pm}}^2$ from $\mu \to e\gamma$ as a function of r and ω_{22} for NO and IO. White regions are dissalowed by neutrino sector. The $\mu \to e\gamma$ vanishes at two points in $r - \omega$ plane, indicated in the plots by $\left| Y_{e,\mu}^{(2)} \right| = 0$. Typical lower bound: $|\Lambda| m_{H^{\pm}}^2 \gtrsim 10^{-4}_{-3} \text{GeV}_{2}^3$, where $\mu \to e\gamma$ vanishes at two points in $r - \omega$ plane, indicated in the plots by $\left| Y_{e,\mu}^{(2)} \right| = 0$. Typical lower bound: $|\Lambda| m_{H^{\pm}}^2 \gtrsim 10^{-4}_{-3} \text{GeV}_{2}^3$.

Very lowest $\Lambda m^2_{H^\pm}$ from au decays

- The special solutions of $Y_{e,\mu}^{(2)} = 0$ makes $\mu \to e\gamma$ vanish, but τ decays have non-zero prediction at those points:
 - τ decays give bounds $\Lambda m_{H^{\pm}}^2$ on , when $Y_{e,\mu}^{(2)} = 0$ Process and parameter point | NO, | Λ | $m_{H^{\pm}}^2$ [GeV³] | IO, | Λ | $m_{H^{\pm}}^2$ [GeV³] $\tau \rightarrow e\gamma$ at $Y_{\mu}^{(2)} = 0$ 1.9 · 10⁻⁶ 4.0 · 10⁻⁶ $\tau \rightarrow \mu\gamma$ at $Y_e^{(2)} = 0$ 1.3 · 10⁻⁵ 7.6 · 10⁻⁶

Table: Lower bound on $\Lambda m_{H^{\pm}}^2$ in special points.

• Absolute bound (when whole model is excluded) is the lower of the two.

strongest	Absolute lower bound		
constraint	parameter	Normal (Inverted) ordering	$m_{H^\pm}/{ m TeV}$
$ au o e \gamma$	$\left \left \Lambda \right m_{H^{\pm}}^2 / \left(10^{-6} \mathrm{GeV}^3 ight) ight $	1.9(4.0)	< 1.2(0.4)
au ightarrow 3e	$\Lambda^2 m_{H^\pm}^2 / \left(10^{-18} { m GeV}^4 ight)$	2.6(98.7)	$1.2(0.4) \div 3.4(4.7)$
pert. unitarity	$ \Lambda /(10^{-12}\text{GeV})$	0.5(2.1)	> 3.2(4.7)
	Typical lower bound		
	Parameter	Normal (Inverted) ordering	$m_{H^\pm}/{ m TeV}$
$\mu ightarrow e \gamma$	$\mid \left \Lambda \right m_{H^\pm}^2 / \left(10^{-5} { m GeV}^3 ight)$	8.8(4.9)	< 1.5(1.7)
$\mu ightarrow$ 3e	$\Lambda^2 m_{H^{\pm}}^2 / \left(10^{-15} \text{GeV}^4 \right)$	3.4(0.85)	> 1.5(1.7)
pert. unitarity	didn't reach for $m_{H^{\pm}} < 5$ TeV.		

• Typical (what you whould typically get from random scan) is at least an order of magnitude stronger than the absolute bound.

Connection to scalar sector

• For easy interpretation, let us assume Z_2 in scalar sector, and $m_{H^\pm} \approx m_A \approx m_H$, then:

$$\begin{split} |\Lambda| \, m_{H^{\pm}}^2 &= \frac{m_{H^{\pm}}^2 \, m_4}{32 \pi^2} \ln \frac{m_{H}^2}{m_A^2} \approx |\lambda_5| \, m_4 \cdot \frac{v^2}{32 \pi^2} \\ \Lambda^2 m_{H^{\pm}}^2 &\approx \lambda_5^2 \frac{m_4^2}{m_{H^{\pm}}^2} \cdot \frac{v^4}{(32 \pi^2)^2} \end{split}$$

which roughly leads to:

$$\begin{array}{l} \text{absolute for NO(IO):} \begin{cases} |\lambda_5| \gtrsim 1\,(2) \cdot 10^{-2} \frac{\text{keV}}{m_4} & m_{H^\pm} < 1.2(0.4)\,\text{TeV} \\ |\lambda_5| \gtrsim 1\,(5) \cdot 10^{-2} \frac{m_{H^\pm}/\text{TeV}}{m_4/\text{keV}} & m_{H^\pm} > 1.2(0.4)\,\text{TeV} \\ \end{cases} \\ \text{typical:} \begin{array}{l} |\lambda_5| \gtrsim \frac{\text{keV}}{m_4} & m_{H^\pm} < 1.5(1.7)\,\text{TeV} \\ |\lambda_5| \gtrsim \frac{m_{H^\pm}/\text{TeV}}{m_4/\text{keV}} & m_{H^\pm} > 1.5(1.7)\,\text{TeV} \end{array}$$

• LFV relates neutrinos, with Peccei-Quinn symmetry breaking operator in the scalar sector $\mathscr{L} \ni \frac{1}{2}\lambda_5 \left(H_2^{\dagger}H_1\right)^2$

- Small λ₅ (Peccei-Quinn symmetry breaking), and small m₄ (or, equivalently, small Z₂ symmetry breaking coupling, Y⁽¹⁾) can give signatures in LFV decays in GNM.
 Signatures for large m₄ are not likely (give way weaker constraints)
- Results directly apply to scoto-seesaw model and give qualitative behaviour for scotogenic model too (both of them have exact Z_2 , but more sterile neutrinos)
- There is at least an order of magnitude difference between completely excluded ("absolute") and most likely (or "typically") excluded values.

Thank you!