How well could we calculate luminosity at FCCee?

S. Jadach , W. Płaczek, M. Skrzypek, B.F.L. Ward, S.A. Yost

Partly supported by the CERN FCC Design Study Programme.

MTTD Ustron, Poland, 17-22 Sept. 2023

M. Skrzypek (IFJ PAN, Kraków, Poland)

How well ...

MTTD, 17-22 Sept. 2023 1 / 24

Dedicated to the memory of Staszek Jadach

XXX Cracow EPIPHANY Conference

on Precision Physics at High Energy Colliders dedicated to the memory of Staszek Jadach

8-12 January 2024

Home

General Inform

General Information Registration

n Programme

Proceedings

Participants

Previous Conferences

M. Skrzypek (IFJ PAN, Kraków, Poland)

How well ...

MTTD, 17-22 Sept. 2023 3 / 24

Intro – Iumi basics

Bhabha cross sect. depends on detector acceptance angles

$$\sigma_{Bh} \simeq 4\pi \alpha^2 \left(\frac{1}{t_{\min}} - \frac{1}{t_{\max}}\right) = 4\pi \alpha^2 \left(\frac{t_{\max} - t_{\min}}{\overline{t}^2}\right), \quad \overline{t} = \sqrt{t_{\min} t_{\max}}$$

 \overline{t} is the characteristic scale of the process

 \overline{t}/s is the suppression factor between s- and t-channel contributions

Machine	$\theta_{\min} \div \theta_{\max} \text{ [mrad]}$	\sqrt{s} [GeV]	$ar{t}/s \simeq ar{ heta}^2/4$	\sqrt{t} [GeV]
LEP	28÷50	M _Z	$3.5 imes10^{-4}$	1.70
FCCee	64÷86	M_Z	13.7×10^{-4}	3.37
FCCee	64÷86	240	$13.7 imes 10^{-4}$	8.9
FCCee	64÷86	350	13.7×10^{-4}	13.0
ILC	31÷77	500	$6.0 imes 10^{-4}$	12.2
ILC	31÷77	1000	$6.0 imes 10^{-4}$	24.4
CLIC	39÷134	3000	$13.0 imes 10^{-4}$	108
CEPC	26÷105	M _Z	$6.8 imes 10^{-4}$	2.38
CEPC	26÷105	240	$6.8 imes 10^{-4}$	6.27

Luminosity today – BHLUMI status

The 2019 update comes from P. Janot & S. Jadach Phys.Lett.B 803 (2020) 135319

Type of correction / Error	1999	Update 2019
(a) Photonic $\mathcal{O}(L_e \alpha^2)$	0.027%	0.027%
(b) Photonic $\mathcal{O}(L_e^3 \alpha^3)$	0.015%	0.015%
(c) Vacuum polariz.	0.040%	0.009%
(d) Light pairs	0.030%	0.010%
(e) Z and s-channel γ exchange	0.015%	0.015%
(f) Up-down interference	0.0014%	0.0014%
(f) Technical Precision	-	(0.027)%
Total	6.1×10^{-4}	$3.7 imes 10^{-4}$

Table: Summary of the total (physical+technical) theoretical uncertainty for a typical calorimetric LEP luminosity detector within the generic angular range of 18–52 mrad. Total error is summed in quadrature.

- Hadronic vacuum polarisation from F. Jegerlehner (fortran code hadr5x.f) 2019
- Light pairs: real FERMISV MC by J. Hilgart et.al. 1993 and KoralW by S. Jadach et.al.; virtual – S. Actis et.al. 2008

Current BHLUMI precision forecast for FCCee			
Type of correction / Error	<i>M_Z</i> (2019) [1]	240 GeV	350 GeV [2]
(a) Photonic $\mathcal{O}(L_e \alpha^2)$	0.027%	0.032%	0.033%
(b) Photonic $\mathcal{O}(L_e^3 \alpha^3)$	0.015%	0.026%	0.028%
(c) Vacuum polariz.	0.009%	0.020%	0.022%
(d) Light pairs	0.010%	0.015%	0.015%
(e) Z and s-channel γ exchange	0.09%	0.25% (0.034%)	0.5% (0.07%)
(f) Up-down interference	0.009%	0.010%	0.010%
(g) Technical Precision	[0.027%]		
Total	10×10^{-4}	$25 imes 10^{-4}$	50×10^{-4}
		(6×10^{-4})	$(8.7 imes 10^{-4})$

Table: Entries in curly brackets represent hypothetic situation with all Born-level interferences included in BHLUMI

Entry (c) for M_Z optimistic (SiCal), 0.015% more realistic – [3] LCal setup

Few times worse than at LEP !!

- [1] S. Jadach et.al. Phys. Lett B790 (2019) 314
- [2] S. Jadach et.al. Eur. Phys. J. C (2021) 81:1047
- [3] P. Janot, S. Jadach Phys. Lett B803 (2020) 135319

Photonic corrections

- ► Included in BHLUMI: $O(\alpha + \alpha^2 L^2)$ -YFS exponentiated
- ► To be added: to BHLUMI $\mathcal{O}(\alpha^3 L^3)$ and $\mathcal{O}(\alpha^2 L^1)$ known
- Errors: $\mathcal{O}(\alpha^4 L^4)$ and $\mathcal{O}(\alpha^3 L^2)$
 - ► reference points LEP: $\mathcal{O}(\alpha^3 L^3) \simeq 1.5 \times 10^{-4}$ and $\mathcal{O}(\alpha^2 L^1) \simeq 2.7 \times 10^{-4}$
 - estimated based on LEP analysis and scale $(\alpha/\pi)^n L^m$
 - scale with energy/angles as $\ln^m(\bar{t}_{xx}/m_e^2)$
- ► Likely not needed: $\mathcal{O}(\alpha^2 L^0)$ known ~ $\mathcal{O}(\alpha^2 L^1)/L \simeq 2.7 \times 10^{-4}/16.3 \simeq 0.17 \times 10^{-4}$

$(\gamma_s + Z_s + \gamma_t + Z_t)^{\otimes 2}$ EW interferences

- ▶ Included in BHLUMI: $(\gamma_s + Z_s) \otimes \gamma_t$
- To be added:
 - complete Born trivial
 - complete $\mathcal{O}(\alpha_{EW})$ known, e.g. BHWIDE
- Error: $\mathcal{O}(\alpha_{EW}^2)$
 - estimated at FCCee(M_Z) based on analysis of
 S. Jadach *et.al.* Phys. Lett B790 (2019) 314 from BHWIDE
 - ► estimated at other energies/angles based on analysis done with $O(\alpha_{EW})$ DIZET/ZFITTER (by changing switch NPAR(2) from 2 to 3) M. Battaglia, S. Jadach, D. Bardin, *eConf* C010630 (2001) E3015, http://www.slac.stanford.edu/econf/C010630/papers/E3015.PDF for the energies of 800 GeV and 3 TeV. Extrapolation from 800 to 350/240 GeV not done \Rightarrow error likely overestimated (factor of 2-3 ???)
 - Error at higher \overline{t}/M_Z^2 almost entirely from $\gamma_t \otimes Z_t$ interference
- Amplitude-level exponentiation (KKMC-style) needed to account for leading $\mathcal{O}(\alpha_{EW}^2)$ corrs.

QED photonic up-down interference

Missing in BHLUMI size at O(α): 0.07 × t _{xx}/s − easy to include, t _{xx}/s depends only on angles LEP → FCCee: t/s grows 4 times (LEP → ILC: 2 times)

Error: h.o.t. – suppressed by (α/π) ln(t
_{xx}/m_e²) times safety factor of 2 (O(α²_{QED}) calculations exist) – almost negligible

Vacuum polarisation

- ► Uncertainty due to vacuum polarisation:
 - $\delta_{VP}\sigma/\sigma = 2\delta\alpha_{eff}(\bar{t})/\alpha_{eff}(\bar{t})$
 - δα_{eff}(t̄) from (based on R-ratio measured at low energies)
 F. Jegerlehner, CERN Yellow Reports: Monographs 3 (2020) 9–37

Fig. B.1.15: Hadronic uncertainty $\delta\Delta\alpha_{\rm had}(\sqrt{t})$. The progress since LEP times, from 1996 (left) to now (right) is remarkable. A great deal of much more precise low-energy data, $\pi\pi$, etc., are now available.

• $\alpha_{eff}(\overline{t})$ from

F. Jegerlehner, Nucl. Phys. Proc. Suppl. 162 (2006) 22–32

 By FCCee operation time factor of 2 improvement expected (F. Jegerlehner)

Light pairs

- Current state of the art: BHLUMI + external four-fermion code + virtual semianalytical corrections
 - P. Janot and S. Jadach, Phys. Lett. B 803 (2020) 135319
- included components:
 - ee-pair, μμ-pair, ττ-pair, qq-pair with s-channel photonic emissions (FERMISV, KORALW)
 - result for LEP: $4 \times 10^{-4} \pm 1 \times 10^{-4}$
- future prospects for external 4*fermion* code scenario orrer components:
 - error components:
 - 4f + γ (25% of 4f) s vs. t mismatch ~ 30%
 O(α) 4fermion calculations exist for selected final states
 - $4f + 2\gamma$, 6f
- ► future prospects for BHLUMI upgrade scenario
 - error components:
 - 4f + γ absent correct *t*-channel behavior (LL+soft),
 O(α) 4fermion likely not needed
 - $4f + 2\gamma$ included via exponentiation + LL,
 - ▶ 6f

Light pairs

- Extrapolation to other energies/angles use LEP result for $ff: 4 \times 10^{-4} \pm 1 \times 10^{-4}$ and scale with $\ln^2(\overline{t}_{xx}/m_{yy}^2)/\ln^2(\overline{t}_{LEP}/m_{yy}^2)$ (pairs)
 - use LEP result for ff_{γ} terms: 20% × 4 × 10⁻⁴ (G. Montagna, M. Moretti, O. Nicrosini, A. Pallavicini, and F. Piccinini, Nucl. Phys. B547 (1999) 39-59), and scale with

 $\ln(\bar{t}_{xx}/m_{e}^{2})/\ln(\bar{t}_{IFP}/m_{e}^{2})$ (photons)

- \blacktriangleright τ -pair (negligible at LEP) estimated relative to muon-pair as $\ln^2(\overline{t}_{xx}/m_{\tau}^2)/\ln^2(\overline{t}_{xx}/m_{\mu}^2)$
- hadron-pair estimated relative to muon-pair as $R_{had} \times \ln^2(\bar{t}_{XX}/(0.5 GeV)^2) / \ln^2(\bar{t}_{XX}/m_{\mu}^2)$

Lumi at FCCee: Technical precision

- At LEP BHLUMI technical prec. was tested in two ways:
 - Comparison with semian. integration of O(α²)_{exp} matrix el. of BHLUMI: agreement 2.7 × 10⁻⁴
 - Comparison with LUMLOG+OLDBIS hybrid MC and with SABSPV MC. All of these MCs have incomplete soft resummation: agreement 2.7 × 10⁻⁴ (for sharp photon energy cut-offs 1.7 × 10⁻³)
- Now another MC code BabaYaga [Balossini et.al.] with complete soft-photon resummation is available. After upgrade to NNLO in hard process it could be ideal for technical comparison with BHLUMI

Lumi at FCCee – Forecast

Forecast			
Type of correction / Error	FCCee _{Mz} [1]	FCCee ₂₄₀ [2]	FCCee ₃₅₀ [2]
(a) Photonic $\mathcal{O}(L_e^2 \alpha^3)$	0.10×10^{-4}	$0.10 imes 10^{-4}$	$0.13 imes 10^{-4}$
(b) Photonic $\mathcal{O}(L_e^4 \alpha^4)$	$0.06 imes 10^{-4}$	$0.26 imes 10^{-4(a)}$	$0.27 imes 10^{-4(a)}$
(c) Vacuum polariz.	$0.6 imes 10^{-4}$	$1.0 imes 10^{-4}$	$1.1 imes 10^{-4}$
(d) Light pairs	$0.5 imes 10^{-4}$	$0.4 imes 10^{-4}$	$0.4 imes 10^{-4}$
(e) Z and s-channel γ exch.	$0.1 imes 10^{-4(\diamond)}$	$1.0 imes 10^{-4(*)}$	$1.0 imes 10^{-4(*)}$
(f) Up-down interference	$0.1 imes 10^{-4}$	$0.09 imes 10^{-4}$	$0.1 imes 10^{-4}$
Total	$1.0 imes 10^{-4}$	$1.5 imes 10^{-4}$	$1.6 imes 10^{-4}$

Numbers: (*) likely overestimated, (*a*) include safety factor 2. Technical error is not included **Precision dominated by:**

- Vacuum polarisation (c) seems irreducible.
- The EW O(α²) uncertainty (e): Numbers (*) are likely overestimated (taken from 800 GeV estimate) – factor 2 too big ? Number (◊) possibly underestimated (0.3 × 10⁻⁴ ?)

Precision loss at higher energies reasonable factor of 2 loss w.r.t. M_Z

[1] S. Jadach, W. Płaczek, M. Skrzypek, B. F. L. Ward, S. A. Yost, Phys. Lett. B 790 (2019) 314

[2] S. Jadach, W. Płaczek, M. Skrzypek, B. F. L. Ward, Eur. Phys. J. C (2021) 81:1047

M. Skrzypek (IFJ PAN, Kraków, Poland)

Forecast study for FCCee _{Mz}			
Type of correction / Error	Published [1]	Redone	
(a) Photonic $\mathcal{O}(L_e^2 \alpha^3)$	$0.10 imes 10^{-4}$	$0.10 imes 10^{-4}$	
(b) Photonic $\mathcal{O}(L_e^4 \alpha^4)$	$0.06 imes 10^{-4}$	$0.06 imes 10^{-4}$	
(b') Photonic $\mathcal{O}(\alpha^2 L_e^0)$		$0.17 imes 10^{-4}$	
(c) Vacuum polariz.	$0.6 imes 10^{-4}$	$0.6 imes 10^{-4}$	
(d) Light pairs	$0.5 imes 10^{-4}$	$0.27 imes10^{-4}$	
(e) Z and s-channel γ exch.	$0.1 imes 10^{-4}$	$0.1 imes 10^{-4}$	
(f) Up-down interference	$0.1 imes 10^{-4}$	$0.08 imes 10^{-4}$	
Total	1.0×10^{-4}	$0.70 imes 10^{-4}$	

Lumi at FCCee_{Mz} – Forecast study

- (d) light pairs are re-analysed w.r.t. [1] (safety factor 1.25 is removed; *ff* γ non-leading contrib. less conservative: z_{cut} ≤ .5 can help; *hadr*-pair uncertainty is set to few % as in [2])
- (f) value not rounded up is used as compared to Ref. [1]
- "Total" value not rounded up is used as compared to Ref. [1] (the above three entries corrected at 240 and 350 GeV as well)
- ▶ (b) missing non-logarithmic $O(\alpha^2 L_e^0)$ correction added for completeness
- (e): size of $\mathcal{O}(\alpha^2)_{EW}$ corrs. to be revisited available BHWIDE (conservative scaling 0.3×10^{-4}) & DIZET (switches, at higher energy)

CEEX amplitude level exponentiation instrumental (KKMC style) ?

[1] S. Jadach, W. Płaczek, M. Skrzypek, B. F. L. Ward, S. A. Yost, Phys. Lett. B 790 (2019) 314

[2] ALEPH Collaboration, D. Buskulic et al., Z. Phys. C 66 (1995) 3-18

Possible precision $\sim 0.7 \times 10^{-4}$ within the reach ??

M. Skrzypek (IFJ PAN, Kraków, Poland)

Lumi precision at 0.1×10^{-4} level?

at the Z-peak

M. Skrzypek (IFJ PAN, Kraków, Poland)

How well ...

MTTD, 17-22 Sept. 2023 16 / 24

Lumi via gamma-gamma

Another option for Lumi measurement: $e^+e^- \rightarrow \gamma\gamma$ [1],[2] (KLOE, CLEO, BESIII)

- $\blacktriangleright\,$ statistical error $\sim 2 \times 10^{-5}$
- \blacktriangleright not sensitive to hadronic corrections (vac. pol. contributes at NNLO) $\leq 10^{-5}$
- not sensitive to detector geometry (measurement at wide angles), low angle Bhabha needs μ-meter alignment
- huge background due to large angle Bhabhas (~ 100 times bigger than signal)
- channel sensitive to new physics, must be well controled
- ▶ precision below 10^{-4} requires full $\mathcal{O}(\alpha^2)$ QED and EW corrections

[2] Precision studies of quantum electrodynamics at future e^+e^- colliders

J. Alcaraz Maestre, arXiv:2206.07564

M. Skrzypek (IFJ PAN, Kraków, Poland)

^[1] Electroweak corrections to $e^+e^- \rightarrow \gamma\gamma$ as a luminosity process at FCC-ee Carlo M. Carloni Calame, Mauro Chiesa, Guido Montagna Oreste Nicrosinia, Fulvio Piccinini, arXiv:1906.08056

M. Skrzypek (IFJ PAN, Kraków, Poland)

Bhabha lumi: 0.1×10^{-4} at Z-peak?

Vacuum polarisation

From BFL Ward's presentation at RADCOR 2023:

Note: Lattice methods with jegerlehner's results allow, in principle, (c) -> (c)/6 $\Delta \alpha_{had}(t) = \Delta \alpha_{had}(-Q_0^2)|_{lat} + [\Delta \alpha_{had}(t) - \Delta \alpha_{had}(-Q_0^2)]|_{pQCDAdler}$ BA

Lattice results are mainly limited now by statistics (?), so if enoug computing resources are available, the 0.1 \times 10⁻⁴ precision at –few GeV² may be feasible.

The above is more optimistic than the 3.5σ tension with estimates based on exp. data of R-ratio reported in arXiv: 2203.08676, 2211.11401 [hep-lat] for $\Delta \alpha_{had}^{(5)}(-Q^2)$, $Q^2 = 3 \div 7 \text{ GeV}^2$.

The precision of lattice results given in the above papers is $\Delta \alpha_{had}(-5 GeV^2) = 0.00716 \pm 0.9 \times 10^{-4}$ – on par with R-ratio method.

EW corrections

In S. Jadach, W. Płaczek, M. Skrzypek, B. F. L. Ward, and S. A. Yost, Phys. Lett. B 790 (2019) 314–321 we estimated

- *O*(α²_{EW}) uncertainties in BHWIDE at Z-peak: Conservatively estimated as ^α/_π ln ^{t̄}/_{m²} × *O*(α²_{from exponentiation}) times safety factor of 2. This gives 0.7 × 10⁻⁴ for QED part and 0.3 × 10⁻⁴ for EW part. Added linearly one obtains 1 × 10⁻⁴. But we are interested only in EW part !
- More aggresive estimate (no safety factor, added in quadratures) would give 0.4 × 10⁻⁴ for total and 0.15 × 10⁻⁴ for EW part.

Bhabha lumi: 0.1×10^{-4} at Z-peak?

DIZET analysis of EW corrs. done above Z-peak. At the peak different graphs contribute ($\gamma_t \otimes Z_s$ vs $\gamma_t \otimes Z_t$), but rough idea could be valid? *M. Battaglia, S. Jadach, and D. Bardin, eConf C010630 (2001) E3015 S. Jadach, "MC tools for extracting luminosity spectra. What do we need?". https://jadach.web.cern.ch/jadach/public/LumLCslac.pdf, 2002*

DIZET: Varied $M_H =$ 120 \rightarrow 500GeV, $M_t =$ 165 \rightarrow 185GeV and NPAR(2)=3 \rightarrow NPAR(2)=4 which manipulates non-leading 2-loop EW corrections $\mathcal{O}(G_F^2 M_t^2 M_Z^2)$, Degrassi et.al., keeping 2-loop EW corrections $\mathcal{O}(G_F^2 M_t^4)$.

Fermion pairs

One will probably need $\mathcal{O}(\alpha)$ corrections to four fermion final state.

- Calculations of Denner et.al. (PLB 612(2005) 223) exist for charged current final states. Claimed physical precision (due to higher orders) at WW threshold is few×0.1% of the 4f Born.
- ► The whole pair contribution to Bhabha is ~ 4 × 10⁻⁴. Assuming precision of 1% for NC final states we are well below 0.1 × 10⁻⁴ target, provided *t*-channel multiphotons are properly resummed.

Note, that above \sim 500 GeV Sudakov logs must be resummed.

Bottom line 0.1×10^{-4} precision *a priori* not excluded

M. Skrzypek (IFJ PAN, Kraków, Poland)

Lumi forecast at ILC and CLIC

Forecast			
Type of correction / Error	ILC ₅₀₀	ILC ₁₀₀₀	CLIC ₃₀₀₀
(a) Photonic $\mathcal{O}(L_e^2 \alpha^3)$	$0.13 imes 10^{-4}$	$0.15 imes 10^{-4}$	$0.20 imes 10^{-4}$
(b) Photonic $\mathcal{O}(L_e^4 \alpha^4)$	$0.27 imes 10^{-4}$	$0.37 imes 10^{-4}$	$0.63 imes 10^{-4}$
(c) Vacuum polariz.	$1.1 imes 10^{-4}$	1.1×10^{-4}	$1.2 imes10^{-4}$
(d) Light pairs	$0.4 imes10^{-4}$	$0.5 imes10^{-4}$	$0.7 imes10^{-4}$
(e) Z and s-channel γ exch.	$1.0 imes 10^{-4(*)}$	$2.4 imes10^{-4}$	$16 imes10^{-4}$
(f) Up-down interference	$< 0.1 imes 10^{-4}$	$< 0.1 imes 10^{-4}$	$0.1 imes 10^{-4}$
Total	$1.6 imes 10^{-4}$	$2.7 imes 10^{-4}$	$16 imes 10^{-4}$

Number (*) is somewhat overestimated (taken from 800 GeV estimate)

- Precision at high energies totally due to the EW $\mathcal{O}(\alpha^2)$ hard process uncertainty (e).
- ► EW interferences are dominated by $\gamma_t \otimes Z_t$ (15% of $\gamma_t \otimes \gamma_t$ at CLIC) and $Z_t \otimes Z_t$ (2% of $\gamma_t \otimes \gamma_t$ at CLIC)
 - usefull for $\mathcal{O}(\alpha_{EW}^2)$ calculation ?
 - CEEX amplitude level exponentiation mandatory ?

At 3 TeV loss of precision is dramatic, dominant $\mathcal{O}(\alpha_{EW}^2)$ and CEEX are a must!

Lumi forecast at CEPC

Forecast			
Type of correction / Error	CEPC _{MZ}	CEPC ₂₄₀	
(a) Photonic $\mathcal{O}(L_{\theta}^2 \alpha^3)$	0.08×10^{-4}	$0.10 imes 10^{-4}$	
(b) Photonic $\mathcal{O}(L_{\theta}^{4}\alpha^{4})$	$0.14 imes 10^{-4}$	$0.21 imes10^{-4}$	
(c) Vacuum polariz.	$0.6 imes10^{-4}$	$1.2 imes 10^{-4}$	
(d) Light pairs	$0.24 imes 10^{-4}$	$0.34 imes10^{-4}$	
(e) Z and s-channel γ exch.	$0.5 imes10^{-4}$	$1.0 imes 10^{-4(*)}$	
(f) Up-down interference	$0.03 imes10^{-4}$	$0.04 imes10^{-4}$	
Total	$0.83 imes 10^{-4}$	$1.62 imes 10^{-4}$	

Number (*) is likely overestimated.

- The total error is summed in quadrature. A technical error is not included.
- ► In the lines (d), (f) and "Total" of the column "CEPC_{MZ}" safety factors were removed as compared to [1].
- In line (e) estimate based on BHWIDE in [1] is used with a 1/2 factor applied due to reduced transfer. That number differs from the 0.1 × 10⁻⁴ used for FCCee_{M_Z}.

[1] S. Jadach, W. Płaczek, M. Skrzypek, B. F. L. Ward, S. A. Yost, Phys. Lett. B 790 (2019) 314

Summary

- Our starting point is BHLUMI 4.04 with the inherited from LEP precision of 0.06%
- > 2019 development of Janot&Jadach reduced this error to 0.037%
- ► The precision of BHLUMI for FCCee₂₄₀ as of now is 25 × 10⁻⁴ and forecasted one is 1.5 × 10⁻⁴, factor of 2 worse than at FCCee_{Mz}
- At high energies forecasted precision deteriorates drastically, up to 16 × 10⁻⁴ for CLIC at 3 TeV, due to missing O(α²)_{EW} corrections
- ► Forecasted in Jadach et.al. (2019) precision 1 × 10⁻⁴ at FCCee_{MZ} seems to be reducible to 0.7 × 10⁻⁴ by reducing error on pair emission and loosening conservative approach to safety factors; O(α²_{EW}) corrs must be revisited. Further precision improvement seems to be blocked by the error on vacuum polarisation contrib.
- ▶ Precision 0.1×10^{-4} at Z-peak could be discussed provided lattice QCD delivers vacuum polarisation with precision 0.1×10^{-4} (matter of CPU?), dominant $\mathcal{O}(\alpha_{EW}^2)$ corrs to Bhabha and $\mathcal{O}(\alpha_{EW})$ corrs to 4-fermions are available.
- Technical precision requires second MC code, e.g. BABAYAGA