T2K latest results

THE HENRYK NIEWODNICZAŃSKI INSTITUTE OF NUCLEAR PHYSICS POLISH ACADEMY OF SCIENCES

Matter To The Deepest 2023 Grzegorz Żarnecki (IFJ PAN) on behalf of the T2K collaboration

grzegorz.zarnecki@ifj.edu.pl

Outline

- Introduction: flavour-mass mixing, neutrino oscillations
- T2K experiment design and analysis strategy
- Updates from 2020 oscillation analysis
- Oscillation analysis results
- Cross section measurements in T2K
- Summary

Flavour-mass mixing

$$\begin{pmatrix} |\nu_{e}\rangle \\ |\nu_{\mu}\rangle \\ |\nu_{\tau}\rangle \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} e^{\frac{i\alpha_{1}}{2}} & 0 & 0 \\ 0 & e^{\frac{i\alpha_{2}}{2}} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} |\nu_{1}\rangle \\ |\nu_{2}\rangle \\ |\nu_{3}\rangle \end{pmatrix}$$
Flavour-mass mixing described with PMNS matrix
Super-K, K2K, MINOS, OPERA NOVA, T2K
$$MINOS, OPERA NOVA, T2K$$

$$DChooz, RENO, Daya Bay, MINOS, NOVA, T2K$$

$$C_{ij}, S_{ij} - Cos\theta_{ij}, sin\theta_{ij} (\theta_{ij} - mixing angles), \delta_{CP} - CP violation (CPV) phase \alpha_{1}, \alpha_{2} - Majorana phases (not relevant for neutrino oscillations) T2K is sensitive to $\Delta m_{32}^2, \theta_{23}, \theta_{13} \text{ and } \delta_{CP}.$$$

Oscillation probability in vacuum

Probability that a neutrino produced in v_{α} flavour state will interact as neutrino in v_{β} state:

Matter effects

Presence of electrons modifies the oscillation probabilities as compared to those in vacuum. CC scattering on electrons is possible only for electron (anti-)neutrinos. The probability for (anti-) v_e appearance with the first order approximation of matter effects is expressed as:

$$P\left(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}\right) \approx \sin^{2}\theta_{23} \frac{\sin^{2}2\theta_{13}}{(A-1)^{2}} \sin^{2}[(A-1)\Delta_{31}]$$

$$\stackrel{-}{(+)} \alpha \frac{J_{0} \sin \delta_{CP}}{A(1-A)} \sin \Delta_{31} \sin(A\Delta_{31}) \sin[(1-A)\Delta_{31}]$$

$$+ \alpha \frac{J_{0} \cos \delta_{CP}}{A(1-A)} \cos \Delta_{31} \sin(A\Delta_{31}) \sin[(1-A)\Delta_{31}]$$

$$+ \alpha^{2} \cos^{2}\theta_{23} \frac{\sin^{2}2\theta_{12}}{A^{2}} \sin^{2}(A\Delta_{31})$$

where

$$\alpha = \Delta m_{21}^2 / \Delta m_{31}^2$$

$$\Delta_{ij} = \Delta m_{ij}^2 L / 4E$$

$$A = (-)2\sqrt{2}G_F n_e E / \Delta m_{31}^2$$

$$J_0 = \sin 2\theta_{12} \sin 2\theta_{13} \sin 2\theta_{23} \cos \theta_{13}$$

Sign of the matter effects differs for neutrinos and antineutrinos.

Oscillation probability

Example: probability that a neutrino produced in v_{μ} flavour state will interact as neutrino in v_{μ} state.

Impact of δ_{CP} violation phase for neutrinos and antineutrinos. Maximal CP violation results in approximately ±27% change of the v_e appearance probability (wrt. CP conserving values).

Matter effects small compared to CP violation (difference between $\delta_{CP} = 0, \pi$). 6

T2K experiment

- T2K is a long-baseline neutrino experiment. Two near detectors (INGRID, ND280) are used to study beam properties ~280 m from the source in J-PARC.
- Super-Kamiokande is used as the far detector.
- Started taking data in 2010, v_e appearance discovered in 2013.

T2K beam

Off-axis strategy

- Off-axis strategy enhances oscillation effect and contribution of CC quasielastic (CCQE) interactions.
- Around T2K beam peak (~600 MeV) mostly CCQE and resonant interactions occur.
- Shift in off-axis angle $\delta OA \sim 1 \text{mrad} (0.057^{\circ}) \rightarrow \text{shift in}$ energy peak $\delta E/E \sim 2\%$ at far detector 9

On-axis near detector: INGRID

- Cross-shaped detector composed of 14 Fe/scintillator modules.
- Monitors beam's direction, profile and intensity.
- MUMON muon monitor (for muons exiting decay volume)

On-axis near detector: INGRID

Proton Module (consisting of scintillator material only) installed upstream of INGRID for the cross section measurements.

Off-axis near detector: ND280

- ND280 is a multipurpose detector used to constrain the off-axis flux and neutrino interaction models used in the oscillation analysis.
- CC interactions are studied in the tracker, made of two FGDs (fine grained detectors – scintillators) and three gaseous TPCs.
- FGDs serve as targets and provide good vertex and track resolution.
- Magnetic field allows for charge and momentum measurement.
- Energy loss in the TPCs allows for particle identification.

12

ND280 data samples

- Multiple ND280 samples used in the oscillation analysis:
 - For neutrino and antineutrino beam modes
 - Interaction in FGD1 or FGD2

Run number : 4200 | Spill : 0 | SubRun number :31 | Time : Mon 2010-03-22 18:52:28 JST |Trigge

Different signatures with respect to particles multiplicity

Three basic signatures used for classification. Divided into further subsamples for neutrino beam mode.

ND280 event display (tracker region)

Far detector: Super-Kamiokande

- 50 kton water Cherenkov detector
- Around 11000 PMTs measure the Cherenkov light inside the tank.
- For T2K energy scale most nucleons are under Cherenkov threshold.

Super-K data samples

- Neutrino energy reconstructed from lepton momentum and angle (assuming 2 body-like interaction).
- Single ring selection targets CCQE events.
- Additional sample targets $\nu_{\rm e} \, CC1 \pi^+$ events.

Single ring samples used in the far detector analysis Re – e-like ring, R μ – μ -like ring, ME – Michel electron

	e-like	μ-like
v mode	1Re + 0 ME	1Rµ + 0/1 ME
	1Re + 1 ME	
anti-v mode	1Re + 0 ME	1Rµ + 0/1 ME

CCQE

Analysis strategy - Frequentist

Analysis strategy – Bayesian

Major uncertainty in neutrino flux simulation arises from uncertainty of hadron production in proton interactions on graphite target.

- Improved flux prediction based on hadron multiplicity measurements by NA61/SHINE.
- Now using 2010 T2K replica target data [Eur. Phys. J.C79, 100 (2019)].

Updated neutrino interaction modeling.

At T2K energy scale CCQE and CC RES interactions are dominant.

CCQE

- Improved uncertainties for spectral function model by normalization of each nuclear shell for mean field
- Pauli Blocking included

CC Resonant (Rein-Sehgal)

- New tune to bubble chamber data
- New uncertainties on Δ resonance decay and effective binding energy

19

- New selection samples in ND analysis with proton and gamma tagging.
- Altogether 22 ND samples used.

- New selection sample in FD first use of multi-ring events.
- Sample targets v_{μ} interactions with single π + production.
- ~30% increase in μ -like statistics

Oscillation analysis results

$\sin^2\theta_{23} \text{ vs } \Delta m_{32}^2$

Reactor constraint on θ_{13} applied (sin²2 θ_{13} = 0.0861 ± 0.027).

Comparison with other experiments

T2K result taken from frequentist analysis. Contour computed with the constant $\Delta \chi^2$ method.

Best fit points for other experiments taken from arXiv:2303.03222

Super-K and IceCube improved their results recently.

CP violation phase δ_{CP}

CP conserving values ($\delta_{CP} = 0, \pm \pi$) excluded at 90% CL. Best fit value near maximal CP violation ($\delta_{CP} = -\pi/2$).

Comparison with NOvA

- NOvA results are much more consistent with CP conserving values for normal mass ordering.
- For inverted mass ordering both NOvA and T2K measure δ_{CP} near $-\pi/2$ (or $3\pi/2$).
- Slight preference for the normal mass ordering and the upper octant of θ_{23} .

Jarlskog invariant J_{CP}

$$J_{CP} = \frac{1}{8}\sin(2\theta_{12})\sin(2\theta_{13})\sin(2\theta_{23})\cos\theta_{13}\sin\delta_{CP}$$

- PMNS parametrisation independent
- Requires prior probability density function for Bayesian analysis.
- Results depend on using uniform (flat) prior probability in δ_{CP} or sinδ_{CP}.
- In both cases T2K excludes J_{CP}=0 (CP conserving value) at 90% CL and prefers maximal CP violation.

Jarlskog Invariant, Both Hierarchies

Cross section measurements in T2K

T2K cross section measurements

Multiple targets: hydrocarbon, water, iron, argon ND280 Multiple angles w.r.t. neutrino beam axis -2.5 deg different energies off-axis Barrel ECA P0D ECAL Neutrino and anti-neutrino beam modes **Possibility to study interactions relevant** WAGASCI 1.5 deg for T2K oscillation analysis off-axis (CC0 π , CC1 π on C, O), explore nuclear effects and measure rare processes. Blind analysis approach, fake data studies INGRID on-axis Reducing model dependencies by selection Beam studies, binning optimisation, phase-space reduction, accurate choice of observables. 29

Joint On/Off axis v_{μ} CCO π measurement on scintillator with FGD1 and the Proton Module (1)

Joint On/Off axis v_{μ} CC0 π measurement on scintillator with FGD1 and the Proton Module (2)

Cross section is reported as flux integrated for on axis and off axis flux.

Preprint on arXiv:2303.14228

ND280 extracted cross section bins

v_{μ} and \bar{v}_{μ} CC coherent pion production on carbon (1)

Rare interaction mode that is not well modelled theoretically.

Interactions in ND280's subdetector FGD1. Signal selected as events with exactly two tracks (μ-like and π-like), low energy deposit around vertex (vertex activity) and low momentum transferred squared.

$\nu_l + N \to l^- + \pi^+ + N$

 $\bar{\nu}_l + N \rightarrow l^+ + \pi^- + N$

Recoiled nucleus remains in the ground state.

v_{μ} and \bar{v}_{μ} CC coherent pion production on carbon (2)

First measurement of antineutrino coherent pion production at sub-GeV energies. Due to statistical limitations the cross section (per nucleus) is reported as a single energy bin.

Firstly, the cross section for the entire FGD1 is calculated. Then the result is rescaled based on FGD1 composition and a scaling function F(A) to get cross section on carbon (for the plots below $F(A) = A^{1/3}$). **Preprint on arXiv:2308.16606**

Summary and outlook

- T2K collaboration improved the various aspects of the oscillation analysis: new flux prediction, new ND and FD samples, corrections and new uncertainties in modeling the neutrino interactions.
- Current T2K data favors CP violation, while NOvA results are consistent with CP conservation. Both experiments favor normal mass hierarchy and the upper octant of θ_{23} .
- T2K has a broad program of cross section mesurements with new results uploaded this year on arXiv.
- Upgrade of the ND280 detector is expected to be finalised this year. More precise measurements for the oscillation analysis and cross sections!

34

Backup

Best fit values (Frequentist) with 68.3% credible intervals

sin²θ₂₃

		Hierarchy	Most Probable Value	Range
T2K ·	+ reactor	Normal	0.555	[0.492, 0.578]
		Inverted	0.555	[0.505, 0.579]
		Both	0.554	[0.495, 0.578]

$\begin{tabular}{ c c c c c c } \hline Hierarchy & Most Probable Value & Range \\ \hline \hline & Normal & 2.501 \times 10^{-3} eV^2 & [2.447, 2.554] \times 10^{-3} \\ \hline & T2K + reactor & \hline \end{array}$	
Normal $2.501 \times 10^{-3} \mathrm{eV^2}$ $[2.447, 2.554] \times 10^{-3}$ T2K + reactor	
12K + reactor	${ m eV^2}$
Inverted $2.473 \times 10^{-3} \mathrm{eV}^2$ $[2.420, 2.525] \times 10^{-3}$	$^{3}\mathrm{eV^{2}}$
Both $2.495 \times 10^{-3} \mathrm{eV^2}$ $[2.440, 2.548] \times 10^{-3}$	${}^{6}\mathrm{eV}^{2}$

 Δm^2

sin²θ ₁₃			δ _{CP}				
	Hierarchy	Most Probable Va	lue Range		Hierarchy	Most Probable V	alue Range
	Normal	22.5×10^{-3}	$[21.8, 23.2] \times 10^{-3}$	$T_{2}K \perp reactor$	Normal .	-1.95	[-2.60, -1.03]
12K + reactor	Inverted	22.6×10^{-3}	$[21.9, 23.3] \times 10^{-3}$		Inverted	-1.43	[-2.02, -0.87]
	Both	22.8×10^{-3}	$[22.1, 23.5] \times 10^{-3}$		Both	-1.72	[-2.45, -0.96]

preliminary T2K technical note 430

Model comparison probabilities (Frequentist)

Table 33: Posterior probabilities for different hypotheses from T2K run 1–10 data and the results of the reactor experiments.

	$\sin^2\theta_{23} < 0.5$	$\sin^2\theta_{23} > 0.5$	Line total
Normal ordering	0.236	0.540	0.776
Inverted ordering	0.049	0.174	0.224
Column total	0.285	0.715	1.000

preliminary

T2K technical note 430

Best Fit values (Bayesian)

	$\sin^2 heta_{23}$	$\Delta m^2_{32} (imes 10^{-3}) {\rm eV}^2$
2D best fit	0.531	2.51
68% C.I. (1σ) range	0.489 - 0.560	$-2.562.53 \cup 2.42 - 2.58$

Table 15: Best-fit values and 1D 68% credible interval ranges for the disappearance parameters from the T2K + reactor constraint data fit. The 2D best-fit values are taken from the mode of the 2D marginal posterior distributions in $\sin^2 \theta_{23} - \Delta m_{32}^2$.

$$\begin{array}{c|c} & \sin^2 \theta_{13} & \delta_{CP} \\ \hline 2 \text{D best fit} & 0.0221 & -1.84 \\ \hline 68\% \text{ C.I. } (1\sigma) \text{ range} & 0.0214 - 0.0227 & -2.58 - -1.01 \end{array}$$

Table 16: Best-fit values and 1D 68% credible interval ranges for the appearance parameters from the T2K + reactor constraint data fit. The 2D best-fit values are taken from the mode of the 2D marginal posterior distributions in $\sin^2 \theta_{13} - \delta_{CP}$.

preliminary

T2K technical note 429

Model comparison probabilities (Bayesian)

	$\sin^2\theta_{23} < 0.5$	$\sin^2\theta_{23} > 0.5$	Sum	
NH $(\Delta m_{32}^2 > 0)$	0.24	0.49	0.73	preliminary
IH $(\Delta m^2_{32} < 0)$	0.07	0.20	0.27	T2K
Sum	0.31	0.69	1.00	429

Table 14: Model comparison probabilities for normal and inverted hierarchies, as well as upper and lower octants, extracted from a T2K + reactor constraint data fit.

ND280 Upgrade

Replace part of the P0D detector (measured NC π^0 production) with a new scintillator target (SuperFGD), two TPCs and a ToF detector

✓Three projections ⇒ isotropic
✓3D fine granularity ⇒ short tracks
✓0.6 ns time resolution ⇒ neutron energy

From the presentation by C. Giganti

JINST 13 P02006 (2018)

Upgraded ND280 performance

- Improved muon angular acceptance
- Lower threshold for proton tracking
- Neutron detection via proton recoil. Neutron energy estimation with time-of-flight.

Upgrade impact on the CPV search

