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Scattering amplitudes

We would like to make precise predictions for observables in scattering

experiments from (quantum) field theory.

Any such calculation will involve a scattering amplitude.

Unfortunately we cannot calculate scattering amplitudes exactly.

If we have a small parameter like a small coupling, we may use

perturbation theory.

We may organise the perturbative expansion of a scattering amplitude in

terms of Feynman diagrams.

Scattering amplitude = sum of all Feynman diagrams
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Applications

High-energy experiments: LHC
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Gravitational waves:
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Low-energy experiments: Moller and P2
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Spectroscopy: Lamb shift
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Standard techniques

Dimensional regularisation (’t Hooft, Veltman ’72, Bollini, Giambiagi ’72, Ashmore ’72):

D = 4−2ε, used to regulate ultraviolet and infrared divergences.

Integration-by-parts identities (Tkachov ’81, Chetyrkin ’81):

leads to master integrals I = (I1, I2, . . . , INF
).

Method of differential equations (Kotikov ’90, Remiddi ’97, Gehrmann and Remiddi ’99):

dI = A(x ,ε) I

Transformation to ε-factorised form (Henn ’13):

dI = εA(x) I
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The method of differential equations

We want to calculate

I (ε,x)

as a Laurent series in ε.

1 Find a differential equation with respect to the kinematic variables for the

Feynman integral (always possible).

2 Transform the differential equation into an ε-factorised form (bottle neck).

3 Solve the latter differential equation with appropriate boundary conditions

(always possible).
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Example for an ε-factorised form

dI = εA(x) I, A(x) = C1ω1 +C2ω2

with differential one-forms

ω1 =
dx

x
, ω2 =

dx

x −1
,

and matrices

C1 =

















2 0 0 0 0 0

0 0 0 0 0 0

0 0 2 0 0 0

0 0 0 2 0 0

0 0 0 1 1 0

1 −1 0 0 0 2

















, C2 =

















0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 2 0 −1 −1 0

0 0 0 0 0 −2

















.
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Notation

NF = NFibre: Number of master integrals,

master integrals denoted by I = (I1, ..., INF
).

NB = NBase: Number of kinematic variables,

kinematic variables denoted by x = (x1, ...,xNB
).

NL = NLetters: Number of letters,

differential one-forms denoted by ω = (ω1, ...,ωNL
).
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Fibre bundles

We have a vector bundle:

Fibre spanned by the master integrals I1, ..., INF
.

(The master integrals I1(x), . . . , INF
(x) can be viewed as local sections, and for each x they define a

basis of the vector space in the fibre. In other words, they define a local frame.)

Base space with coordinates x = (x1, ...,xNB
) corresponding to kinematic

variables.

Connection defined by the matrix A appearing in the differential equation.

Allowed transformations:

a change of basis in the fibre,

a coordinate transformation on the base manifold.
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Iterated integrals

Definition

For ω1, ..., ωk differential 1-forms on a manifold M and γ : [0,1]→ M a path,

write for the pull-back of ωj to the interval [0,1]

fj (λ)dλ = γ∗ωj .

The iterated integral is defined by

Iγ (ω1, ...,ωk ;λ) =

λ∫

0

dλ1f1 (λ1)

λ1∫

0

dλ2f2 (λ2) ...

λk−1∫

0

dλk fk (λk) .

Chen ’77
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Section 1

Geometry
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The base space

Question:

After a suitable coordinate transformation, can we relate the base space to a

space known from mathematics?
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The base space

Assume we have (n−3) variables z1, . . . ,zn−3 and differential one-forms

ωk ∈ {d ln(z1) ,d ln(z2) , . . . ,d ln(zn−3) ,

d ln(z1 −1) , . . . ,d ln(zn−3 −1) ,

d ln(z1 − z2) , . . . ,d ln(zi − zj) , . . . ,d ln(zn−4 − zn−3)}

The iterated integrals Iγ(ω1, . . . ,ωr ;λ) are multiple polylogarithms.

We require zi /∈ {0,1,∞} and zi 6= zj :

This defines the moduli space M0,n: The space of configurations of n

points on a Riemann sphere modulo Möbius transformations.

Usually the zi are functions of the kinematic variables x and the

arguments of the dlog-forms define the Landau singularities.
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Differential one-forms on M0,n

Multiple polylogarithms:

ωMPL =
dz

z − c
.

Take home message:

Feynman integrals, which evaluate to multiple polylogarithms are related to a

Riemann sphere (a smooth complex algebraic curve of genus zero).

z1

z2

z3
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Beyond multiple polylogarithms

Not every Feynman integral can be expressed in terms of multiple

polylogarithms.

Starting from two-loops, we encounter more complicated functions.

The next-to-simplest Feynman integrals involve an elliptic curve.
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Elliptic curves

We do not have to go very far to encounter elliptic integrals in precision

calculations: The simplest example is the two-loop electorn self-energy in

QED:
There are three Feynman diagrams contributing to the two-loop electron self-energy in QED

with a single fermion:

All master integrals are (sub-) topologies of the kite graph:

One sub-topology is the sunrise graph with three equal non-zero masses:

(Sabry, ’62)

Stefan Weinzierl (Uni Mainz) Feynman integrals September 19, 2023 15 / 37



Elliptic curves

Where is the elliptic curve?

For the sunrise it’s very simple: The second graph polynomial defines an

elliptic curve in Feynman parameter space:

−p2a1a2a3 +(a1 +a2 +a3)(a1a2 +a2a3 +a3a1)m2 = 0.
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Moduli spaces

Mg,n: Space of isomorphism classes of smooth (complex, algebraic) curves

of genus g with n marked points.

complex curve
z1

z2

z3⇔

z1

z2

z3

z1

z2

z3⇔z2

z1

z3

real surface
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Coordinates

Genus 0: dimM0,n = n−3.

Sphere has a unique shape

Use Möbius transformation to fix zn−2 = 1, zn−1 = ∞, zn = 0

Coordinates are (z1, ...,zn−3)

Genus 1: dimM1,n = n.

One coordinate describes the shape of the torus

Use translation to fix zn = 0

Coordinates are (τ,z1, ...,zn−1)
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Differential one-forms on M1,n

1 From modular forms (fk(τ) modular form):

ωmodular

k = 2πi fk(τ)dτ

Adams, S.W. ’17

2 From the Kronecker function:

ωKronecker
k = (2πi)2−k

[

g(k−1) (z,τ)dz +(k −1)g(k) (z,τ)
dτ

2πi

]

Broedel, Duhr, Dulat, Tancredi, ’17
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Numerics

Physics is about numbers:

Iterated integrals of modular forms and elliptic multiple polylogarithms can

be evaluated numerically with arbitrary precision.

Implemented in GiNaC.

Walden, S.W, ’20

ginsh - GiNaC Interactive Shell (GiNaC V1.8.1)

__, _______ Copyright (C) 1999-2021 Johannes Gutenberg University Mainz,

(__) * | Germany. This is free software with ABSOLUTELY NO WARRANTY.

._) i N a C | You are welcome to redistribute it under certain conditions.

<-------------’ For details type ‘warranty;’.

Type ?? for a list of help topics.

> Digits=50;

50

> iterated_integral({Eisenstein_kernel(3,6,-3,1,1,2)},0.1);

0.23675657575197179243274817775862177623438999192840338805367
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Generalisations

We understand by now very well Feynman integrals related to algebraic

curves of genus 0 and 1. These correspond to iterated integrals on the

moduli spaces M0,n and M1,n.

The obvious generalisation is the generalisation to algebraic curves of

higher genus g, i.e. iterated integrals on the moduli spaces Mg,n.

However, we also need the generalisation from curves to surfaces and

higher dimensional objects: The geometry of the banana graphs with

equal non-vanishing internal masses

are Calabi-Yau manifolds.
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Section 2

Higher genus curves
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Hyperelliptic curves

Definition

A hyperelliptic curve is an algebraic curve of genus g ≥ 2 whose defining

equation takes the form

y2 = P(z),

for some polynomial P(z) of degree (2g +1) or (2g +2).

They generalise elliptic curves, whose defining equation takes the same form

when g = 1.

We are interested in Feynman integrals, where the maximal cut takes the

form

∫
dz

N(z)
√

P (z)
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Non-planar double boxes

Non-planar double boxes (with sufficient internal/external masses) provide

examples of higher-genus Feynman integrals.

In the loop momentum

representation one obtains a

genus 3 curve.

Georgoudis, Zhang, ’15

In the Baikov representation one

obtains a genus 2 curve.

Can we understand this?

Yes we can!

R. Marzucca, A. McLeod, B. Page, S.Pögel, S.W., ’23
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Extra involutions

Any hyperelliptic curve H : y2 = P(z) has an involution symmetry

e0 : y →−y .

The solution to this riddle: The higher genus curve has an extra

involution. In the simplest case, if P(z) is of the form

P (z) = Q
(

z2
)

=
(

z2 −α2
1

)

. . .
(

z2 −α2
g+1

)

the extra involution is given by e1 : z →−z.

There is an algorithm to detect the extra involution.

To a hyperelliptic curve with an extra involution we can associate two

curves through the substitution w = z2

H1 : y2
1 = Q (w)

H2 : y2
2 = wQ (w)

of genus ⌊g

2
⌋ and ⌈g

2
⌉, respectively.
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Lorentz invariance

Why is there an extra involution?

For our example we can trace it back to discrete Lorentz transformations

(parity, time reversal):

In the Baikov representation everything is manifestly Lorentz invariant,

the Baikov variables are Lorentz invariants:

z = k2 −m2.

In the loop momentum representation we choose a frame, we choose a

parametrisation of the loop momenta, we choose an elimination order:

The full Lorentz symmetry is not required to be trivially realised, but may

manifest itself through extra symmetries of the curve.
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Examples

Top pair production at NNLO

(genus drop from 3 to 2)
t

t

Møller scattering at NNLO

(genus drop from 3 to 2)
Z

Z

Z
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Section 3

Calabi-Yau manifolds
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Calabi-Yau manifolds

Definition

A Calabi-Yau manifold of complex dimension n is a compact Kähler manifold M

with vanishing first Chern class.

Theorem (conjectured by Calabi, proven by Yau)

An equivalent condition is that M has a Kähler metric with vanishing Ricci

curvature.
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Mirror symmetry

The mirror map relates a Calabi-Yau manifold A to another Calabi-Yau

manifold B with Hodge numbers h
p,q
B = h

n−p,q
A .

Candelas, De La Ossa, Green, Parkes ’91

1

0 0

0 h1,1 0

1 h2,1 h2,1 1

0 h1,1 0

0 0

1

1

0 0

0 h2,1 0

1 h1,1 h1,1 1

0 h2,1 0

0 0

1

Calabi-Yau manifold A mirror image B
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Fantastic Beasts and Where to Find Them

Bananas

Fishnets

Amoebas

Tardigrades

Paramecia

Aluffi, Marcolli, ’09, Bloch, Kerr, Vanhove, ’14

Bourjaily, McLeod, von Hippel, Wilhelm, ’18

Duhr, Klemm, Loebbert, Nega, Porkert, ’22
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Bananas

The l-loop banana integral with (equal) non-zero masses is related to a

Calabi-Yau (l −1)-fold.

An elliptic curve is a Calabi-Yau 1-fold, this is the geometry at two-loops.

The system of differential equations for the equal mass l-loop banana

integral can be transformed to an ε-factorised form.

Change of variables from x = p2/m2 to τ given by mirror map.

Transformation constructed from special local normal form of a Calabi-Yau

operator.

M. Bogner ’13, D. van Straten ’17

Strong support for the conjecture that a transformation to an ε-factorised

differential equation exists for all Feynman integrals.
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Results: Six loops
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Expansion around y = 0 converges at six loops for |p2|> 49m2.

Agrees with results from pySecDec.

The geometry of this Feynman integral is a Calabi-Yau five-fold.

Pögel, Wang, S.W. ’22
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Examples

Electron self-energy in QED

(related to a Calabi-Yau 3-fold).

Dijet production at N3LO

(related to a Calabi-Yau 2-fold).
t t

Top pair production at N4LO

(related to a Calabi-Yau 3-fold)
t t t
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Conclusions

Feynman integrals are needed for precision calculations in perturbative

quantum field theory.

Method of differential equations is a powerfull tool for computing Feynman

integrals.

It is helpful to relate a Feynman integral to a geometric object (spheres,

elliptic curves, curves of higher genus, Calabi-Yau n-folds, ...).

Algebraic geometry gives us information on the original Feynman integral.
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Section 4

Back-up slides

Stefan Weinzierl (Uni Mainz) Feynman integrals September 19, 2023 36 / 37



The Kronecker function

Define the first Jacobi theta function θ1(z,q) by (with q = e2πiτ)

θ1 (z,q) = −i
∞

∑
n=−∞

(−1)n
q

1
2(n+ 1

2)
2

eiπ(2n+1)z .

The Kronecker function F(z,α,τ):

F (z,α,τ) = θ′1 (0,q)
θ1 (z +α,q)

θ1 (z,q)θ1 (α,q)
=

1

α

∞

∑
k=0

g(k) (z,τ)αk

We are interested in the coefficients g(k)(z,τ) of the Kronecker function.
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