Recent developments from Feynman integrals

Turning mathematics into precision predictions

Stefan Weinzierl
in collaboration with Robin Marzucca, Andrew J. McLeod, Ben Page, Sebastian Pögel and Xing Wang

$$
\text { September 19, } 2023
$$

(1) Introduction: Curves of genus 0 and 1
(2) Higher genus
(3) Higher dimensions

Scattering amplitudes

- We would like to make precise predictions for observables in scattering experiments from (quantum) field theory.
- Any such calculation will involve a scattering amplitude.
- Unfortunately we cannot calculate scattering amplitudes exactly.
- If we have a small parameter like a small coupling, we may use perturbation theory.
- We may organise the perturbative expansion of a scattering amplitude in terms of Feynman diagrams.

Scattering amplitude $=$ sum of all Feynman diagrams

Applications

High-energy experiments: LHC

Gravitational waves:

Low-energy experiments: Moller and P2

Spectroscopy: Lamb shift

Standard techniques

- Dimensional regularisation ('t Hooft, Veltman '72, Bollini, Giambiagi '72, Ashmore '72): $D=4-2 \varepsilon$, used to regulate ultraviolet and infrared divergences.
- Integration-by-parts identities (Tkachov '81, Chetyrkin '81): leads to master integrals $I=\left(I_{1}, I_{2}, \ldots, I_{N_{F}}\right)$.
- Method of differential equations (Kotikov '90, Remiddi '97, Gehrmann and Remiddi '99):

$$
d l=A(x, \varepsilon) I
$$

- Transformation to ε-factorised form (Henn'13):

$$
d l=\varepsilon A(x) l
$$

The method of differential equations

We want to calculate

$$
I(\varepsilon, x)
$$

as a Laurent series in ε.
(1) Find a differential equation with respect to the kinematic variables for the Feynman integral (always possible).
(2) Transform the differential equation into an ε-factorised form (bottle neck).
(3) Solve the latter differential equation with appropriate boundary conditions (always possible).

Example for an ε-factorised form

$$
d I=\varepsilon A(x) I, \quad A(x)=C_{1} \omega_{1}+C_{2} \omega_{2}
$$

with differential one-forms

$$
\omega_{1}=\frac{d x}{x}, \quad \omega_{2}=\frac{d x}{x-1}
$$

and matrices

$$
C_{1}=\left(\begin{array}{rrrrrr}
2 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 2 & 0 & 0 & 0 \\
0 & 0 & 0 & 2 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 \\
1 & -1 & 0 & 0 & 0 & 2
\end{array}\right), \quad C_{2}=\left(\begin{array}{rrrrrr}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 2 & 0 & -1 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & -2
\end{array}\right) .
$$

Notation

$N_{F}=N_{\text {Fibre }}: \quad$ Number of master integrals, master integrals denoted by $\quad I=\left(I_{1}, \ldots, I_{N_{F}}\right)$.
$N_{B}=N_{\text {Base }}: \quad$ Number of kinematic variables, kinematic variables denoted by $\quad x=\left(x_{1}, \ldots, x_{N_{B}}\right)$.
$\mathrm{N}_{\mathrm{L}}=N_{\text {Letters }}: \quad$ Number of letters, differential one-forms denoted by $\quad \omega=\left(\omega_{1}, \ldots, \omega_{N_{L}}\right)$.

Fibre bundles

We have a vector bundle:

- Fibre spanned by the master integrals $I_{1}, \ldots, I_{N_{F}}$.
(The master integrals $I_{1}(x), \ldots, I_{N_{F}}(x)$ can be viewed as local sections, and for each x they define a basis of the vector space in the fibre. In other words, they define a local frame.)
- Base space with coordinates $x=\left(x_{1}, \ldots, x_{N_{B}}\right)$ corresponding to kinematic variables.
- Connection defined by the matrix A appearing in the differential equation.

Allowed transformations:

- a change of basis in the fibre,
- a coordinate transformation on the base manifold.

Iterated integrals

Definition

For $\omega_{1}, \ldots, \omega_{k}$ differential 1-forms on a manifold M and $\gamma:[0,1] \rightarrow M$ a path, write for the pull-back of ω_{j} to the interval $[0,1]$

$$
f_{j}(\lambda) d \lambda=\gamma^{*} \omega_{j} .
$$

The iterated integral is defined by

$$
I_{\gamma}\left(\omega_{1}, \ldots, \omega_{k} ; \lambda\right)=\int_{0}^{\lambda} d \lambda_{1} f_{1}\left(\lambda_{1}\right) \int_{0}^{\lambda_{1}} d \lambda_{2} f_{2}\left(\lambda_{2}\right) \ldots \int_{0}^{\lambda_{k-1}} d \lambda_{k} f_{k}\left(\lambda_{k}\right)
$$

Chen '77

Section 1

Geometry

The base space

Question:

After a suitable coordinate transformation, can we relate the base space to a space known from mathematics?

The base space

- Assume we have $(n-3)$ variables z_{1}, \ldots, z_{n-3} and differential one-forms

$$
\begin{aligned}
\omega_{k} \in & \left\{d \ln \left(z_{1}\right), d \ln \left(z_{2}\right), \ldots, d \ln \left(z_{n-3}\right)\right. \\
& d \ln \left(z_{1}-1\right), \ldots, d \ln \left(z_{n-3}-1\right) \\
& \left.d \ln \left(z_{1}-z_{2}\right), \ldots, d \ln \left(z_{i}-z_{j}\right), \ldots, d \ln \left(z_{n-4}-z_{n-3}\right)\right\}
\end{aligned}
$$

- The iterated integrals $l_{\gamma}\left(\omega_{1}, \ldots, \omega_{r} ; \lambda\right)$ are multiple polylogarithms.
- We require $z_{i} \notin\{0,1, \infty\}$ and $z_{i} \neq z_{j}$:

This defines the moduli space $\mathscr{M}_{0, n}$: The space of configurations of n points on a Riemann sphere modulo Möbius transformations.

- Usually the z_{i} are functions of the kinematic variables x and the arguments of the dlog-forms define the Landau singularities.

Differential one-forms on $\mathcal{M}_{0, n}$

Multiple polylogarithms:

$$
\omega^{\mathrm{MPL}}=\frac{d z}{z-c}
$$

Take home message:

Feynman integrals, which evaluate to multiple polylogarithms are related to a Riemann sphere (a smooth complex algebraic curve of genus zero).

Beyond multiple polylogarithms

- Not every Feynman integral can be expressed in terms of multiple polylogarithms.
- Starting from two-loops, we encounter more complicated functions.
- The next-to-simplest Feynman integrals involve an elliptic curve.

Elliptic curves

We do not have to go very far to encounter elliptic integrals in precision calculations: The simplest example is the two-loop electorn self-energy in QED:
There are three Feynman diagrams contributing to the two-loop electron self-energy in QED with a single fermion:

All master integrals are (sub-) topologies of the kite graph:

One sub-topology is the sunrise graph with three equal non-zero masses:

(Sabry, '62)

Elliptic curves

Where is the elliptic curve?

For the sunrise it's very simple: The second graph polynomial defines an elliptic curve in Feynman parameter space:

$$
-p^{2} a_{1} a_{2} a_{3}+\left(a_{1}+a_{2}+a_{3}\right)\left(a_{1} a_{2}+a_{2} a_{3}+a_{3} a_{1}\right) m^{2}=0
$$

Moduli spaces

$\mathcal{M}_{g, n}$: Space of isomorphism classes of smooth (complex, algebraic) curves of genus g with n marked points.
complex curve

Coordinates

Genus 0: $\quad \operatorname{dim} \mathcal{M}_{0, n}=n-3$.
Sphere has a unique shape
Use Möbius transformation to fix $z_{n-2}=1, z_{n-1}=\infty, z_{n}=0$
Coordinates are $\left(z_{1}, \ldots, z_{n-3}\right)$
Genus 1: $\quad \operatorname{dim} \mathcal{M}_{1, n}=n$.
One coordinate describes the shape of the torus
Use translation to fix $z_{n}=0$
Coordinates are ($\tau, \mathbf{z}_{1}, \ldots, \mathbf{z}_{\mathrm{n}-1}$)

Differential one-forms on $\mathcal{M}_{1, n}$

(1) From modular forms $\left(f_{k}(\tau)\right.$ modular form):

$$
\omega_{k}^{\text {modular }}=2 \pi i f_{k}(\tau) d \tau
$$

Adams, S.W. '17
(2) From the Kronecker function:

$$
\omega_{k}^{\text {Kronecker }}=(2 \pi i)^{2-k}\left[g^{(k-1)}(z, \tau) d z+(k-1) g^{(k)}(z, \tau) \frac{d \tau}{2 \pi i}\right]
$$

Broedel, Duhr, Dulat, Tancredi, '17

Numerics

Physics is about numbers:

- Iterated integrals of modular forms and elliptic multiple polylogarithms can be evaluated numerically with arbitrary precision.
- Implemented in GiNaC.

Walden, S.W, '20

```
ginsh - GiNaC Interactive Shell (GiNaC V1.8.1)
    __, Copyright (C) 1999-2021 Johannes Gutenberg University Mainz,
    (__) * | Germany. This is free software with ABSOLUTELY NO WARRANTY.
    ._) i N a C | You are welcome to redistribute it under certain conditions.
<-------------' For details type 'warranty;'.
Type ?? for a list of help topics.
> Digits=50;
50
> iterated_integral({Eisenstein_kernel (3,6,-3,1,1,2)},0.1);
0.23675657575197179243274817775862177623438999192840338805367
```


Generalisations

- We understand by now very well Feynman integrals related to algebraic curves of genus 0 and 1 . These correspond to iterated integrals on the moduli spaces $\mathcal{M}_{0, n}$ and $\mathcal{M}_{1, n}$.
- The obvious generalisation is the generalisation to algebraic curves of higher genus g, i.e. iterated integrals on the moduli spaces $\mathcal{M}_{g, n}$.
- However, we also need the generalisation from curves to surfaces and higher dimensional objects: The geometry of the banana graphs with equal non-vanishing internal masses

are Calabi-Yau manifolds.

Section 2

Higher genus curves

Hyperelliptic curves

Definition

A hyperelliptic curve is an algebraic curve of genus $g \geq 2$ whose defining equation takes the form

$$
y^{2}=P(z)
$$

for some polynomial $P(z)$ of degree $(2 g+1)$ or $(2 g+2)$.
They generalise elliptic curves, whose defining equation takes the same form when $g=1$.

We are interested in Feynman integrals, where the maximal cut takes the form

$$
\int d z \frac{N(z)}{\sqrt{P(z)}}
$$

Non-planar double boxes

Non-planar double boxes (with sufficient internal/external masses) provide examples of higher-genus Feynman integrals.

- In the loop momentum representation one obtains a genus 3 curve.
Georgoudis, Zhang, '15
- In the Baikov representation one obtains a genus 2 curve.

Can we understand this?

Yes we can!
R. Marzucca, A. McLeod, B. Page, S.Pögel, S.W., '23

Extra involutions

- Any hyperelliptic curve $H: y^{2}=P(z)$ has an involution symmetry $e_{0}: y \rightarrow-y$.
- The solution to this riddlle: The higher genus curve has an extra involution. In the simplest case, if $P(z)$ is of the form

$$
P(z)=Q\left(z^{2}\right)=\left(z^{2}-\alpha_{1}^{2}\right) \ldots\left(z^{2}-\alpha_{g+1}^{2}\right)
$$

the extra involution is given by $e_{1}: z \rightarrow-z$.

- There is an algorithm to detect the extra involution.
- To a hyperelliptic curve with an extra involution we can associate two curves through the substitution $w=z^{2}$

$$
\begin{aligned}
& H_{1}: \quad y_{1}^{2}=Q(w) \\
& H_{2}:
\end{aligned}
$$

of genus $\left\lfloor\frac{g}{2}\right\rfloor$ and $\left\lceil\frac{g}{2}\right\rceil$, respectively.

Lorentz invariance

Why is there an extra involution?

For our example we can trace it back to discrete Lorentz transformations (parity, time reversal):

- In the Baikov representation everything is manifestly Lorentz invariant, the Baikov variables are Lorentz invariants:

$$
z=k^{2}-m^{2}
$$

- In the loop momentum representation we choose a frame, we choose a parametrisation of the loop momenta, we choose an elimination order: The full Lorentz symmetry is not required to be trivially realised, but may manifest itself through extra symmetries of the curve.

Examples

- Top pair production at NNLO (genus drop from 3 to 2)
- Møller scattering at NNLO (genus drop from 3 to 2)

Section 3

Calabi-Yau manifolds

Calabi-Yau manifolds

Definition

A Calabi-Yau manifold of complex dimension n is a compact Kähler manifold M with vanishing first Chern class.

Theorem (conjectured by Calabi, proven by Yau)
An equivalent condition is that M has a Kähler metric with vanishing Ricci curvature.

Mirror symmetry

The mirror map relates a Calabi-Yau manifold A to another Calabi-Yau manifold B with Hodge numbers $h_{B}^{p, q}=h_{A}^{n-p, q}$.
Candelas, De La Ossa, Green, Parkes '91

Calabi-Yau manifold A

mirror image B

Fantastic Beasts and Where to Find Them

- Bananas

- Fishnets

- Amoebas
- Tardigrades
- Paramecia

Bananas

- The /-loop banana integral with (equal) non-zero masses is related to a Calabi-Yau ($/-1$)-fold.
- An elliptic curve is a Calabi-Yau 1-fold, this is the geometry at two-loops.
- The system of differential equations for the equal mass /-loop banana integral can be transformed to an ε-factorised form.
- Change of variables from $x=p^{2} / m^{2}$ to τ given by mirror map.
- Transformation constructed from special local normal form of a Calabi-Yau operator.
M. Bogner '13, D. van Straten '17
- Strong support for the conjecture that a transformation to an ε-factorised differential equation exists for all Feynman integrals.

Results: Six loops

Expansion around $y=0$ converges at six loops for $\left|p^{2}\right|>49 m^{2}$.
Agrees with results from pySecDec.

The geometry of this Feynman integral is a Calabi-Yau five-fold.
Pögel, Wang, S.W. '22

Examples

- Electron self-energy in QED (related to a Calabi-Yau 3-fold).

- Dijet production at $\mathrm{N}^{3} \mathrm{LO}$ (related to a Calabi-Yau 2-fold).
- Top pair production at $\mathrm{N}^{4} \mathrm{LO}$ (related to a Calabi-Yau 3-fold)

Conclusions

- Feynman integrals are needed for precision calculations in perturbative quantum field theory.
- Method of differential equations is a powerfull tool for computing Feynman integrals.
- It is helpful to relate a Feynman integral to a geometric object (spheres, elliptic curves, curves of higher genus, Calabi-Yau n-folds, ...). Algebraic geometry gives us information on the original Feynman integral.

Section 4

Back-up slides

The Kronecker function

Define the first Jacobi theta function $\theta_{1}(z, q)$ by (with $q=e^{2 \pi i \tau}$)

$$
\theta_{1}(z, q)=-i \sum_{n=-\infty}^{\infty}(-1)^{n} q^{\frac{1}{2}\left(n+\frac{1}{2}\right)^{2}} e^{i \pi(2 n+1) z}
$$

The Kronecker function $F(z, \alpha, \tau)$:

$$
F(z, \alpha, \tau)=\theta_{1}^{\prime}(0, q) \frac{\theta_{1}(z+\alpha, q)}{\theta_{1}(z, q) \theta_{1}(\alpha, q)}=\frac{1}{\alpha} \sum_{k=0}^{\infty} g^{(k)}(z, \tau) \alpha^{k}
$$

We are interested in the coefficients $g^{(k)}(z, \tau)$ of the Kronecker function.

