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Why soft photons?

Ratio of observed soft photon over expected from soft bremsstrahlung. [c. wong (2014)]

Experiment Collision Energy Photon k1 Obs/Brem Ratio
KT p, CERN, WA27, BEBC (1984) 70 GeV b < 60 MeV 40 £038
K+p, CERN, NA22, EHS (1993) 250 GeV kp < 40 MeV 6.4 +1.6
7T p, CERN, NA22, EHS (1997) 250 GeV. kp < 40 MeV 6.9 +1.3
7 p, CERN, WA83, OMEGA (1997) 280 GeV kp < 10 MeV 79 +1.4
7T+p, CERN, WA91, OMEGA (2002) 280 GeV k <20 MeV 5.3 +0.9
pp, CERN, WA102, OMEGA (2002) 450 GeV kp <20 MeV 4.1 £0.8
eTe™ = hadrons, CERN, LEP, DELPHI ~91 GeV(CM) kp <60 MeV 4.0
with hadron production (2010)
et e= S puT =, CERN, LEP, DELPHI ~91 GeV(CM) kp <60 MeV 1.0
with no hadron production (2008)

@ Excess of observed soft photons, but only for processes involving
hadrons.

e Future upgrades on the ALICE detector (ALICE 3 expected by
~2035) will be able to measure ultra-soft photons, up to 1MeV.

@ An efficient implementation for computing soft photon emission is
needed.
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ALICE 3 (N2035) [ALICE collaboration (2022)]

ture experiments

Observables

Kinematic range

Heavy-flavour hadrons

Dielectrons

Photons

Quarkonia and exotica

Ultrasoft photons

Nuclei

pr—0,
[n| <4

pr ~ 0.05 to 3GeV/c,
Mee = 0.05 to 4GeV/c?
pr ~0.11t0 50GeV/c,
-2<n<4

pr—0,

In| < 1.75

pr~ 1 to 50MeV/c,
3<n<s

pr— 0,
[n| <4

Table 3: Overview of key physics objects and the respective kinematic ranges of interest for

ALICE 3.

@ Exploration of real and virtual soft photons
@ pp — ppr T~ + v and pp — ppJ /1 + v processes
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Soft photon emission: Eikonal (LP) approximation

Emission of a soft photon from a general process N — M + ~:

b
N @ M
%*]ﬁjer

Aj = Qj@(Pj)éf*(k)mHj(Ph i — koo PN M)
J

In the limit of soft photons (k — 0) [Fe. Low- PhysRev. (1059)]

e (k
AP = QP ,E,Ii J34(p)
J

Summing over all possible photon emissions,

e*(k) +1  for anti-fermions
ALP — 0,2 ) ) gy, =
zj: 14 pj -k (p) —1  for fermions
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Soft photon emission: NLP (Low-Burnett-Kroll Theorem

. s

N @ M + N @ M

"4 (Aext + Aﬁlt) (Aext + AM

int

)

)—0:>kAM kAeXt

Considering only tree-level diagrams A’ . is fully determined by AL : e
Adler, Y. Dothan - Phys.Rev. (1966)]

Auy
Ui Q v
Afpnep(ps K Z 2 P ik, 2 + (k- p;)GY JV] H
,k”
v — gev P
i =9 bk

o G%"H: Substitute u(p;) — 0" u(p;) or equivalent for anti-fermions
and final-state fermions.

° ﬁjﬂ-[: Differentiate the amputated part of H with respect to pj:
¥ OH ;
Hjulp;) = Fpru(p))
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Soft photon emission: NLP (Low-Burnett-Kroll Theorem

)

. s

N @ M + N @ M

The expression is simplified considering the unpolarized process and

. —2
com putlng |.A‘ . [T.H. Burnett, N.M. Kroll - Phys.Rev.Lett. (1967)]
This is because of the relation

3(pj +m)
3p;f

which allows to combine all the NLP terms together;

ik, [U’“’,pj + m} = 2k - p;)G"

2 _ (m:Qipi) - (1;Q5p;)
|~A|LP+NLP - Z (pi - k)(p; - k)

,J

k)i O | =
14 BB g 0| e
pi " Dj o}
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Conservation of 4-momentum
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Conservation of 4-momentum: LP approximation

@ Low's theorem relates the amplitude A for N — M + ~ to the
amplitude H for N — M.

- Di

pi-e" (k)
Avp(p, k) = (Z inli_k H(p)
K3
@ It is not possible to impose conservation of 4-momentum for both
amplitudes simultaneously. Low's theorem relates a physical
amplitude to an unphysical one.

e Even worse, Feynman amplitudes are ill-defined for arbitrary
4-momenta: M = M + A is physically equivalent to M if A(p)
vanishes when >, p; = 0.

@ Low's theorem gives a relation between a well-defined quantity and
an ill-defined one!
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Conservation of 4-momentum: LP approximation

The amplitude A must have a unique, well-defined value if 4-momentum
is conserved: ). p; = k.

Because H(p) is not well defined we have an ambiguity on A given by

(Z inw> A)

7
A(p) must vanish at the surface ). p; =0, so

ij—>0:>A(p)—>0
J

which means A(p) = O(k) and the ambiguity in A is a NLP correction.

Low's theorem can be used unambiguously at LP.
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Conservation of 4-momentum: NLP approximation

A = 3 2 (02

4,3

1+

(p k)p’bu G;LV |H|2
Pi* Dj oy

In general, we proved the following:

For any function A(p) that vanish in the surface >, p, = 0, gauge
invariance implies that

Z (niQipi) - (n;Q;p5)

(pj ) k)pzp ;wi
i K)(p; - k) “

A(p) = 0O(1
LG g 80 = o)

1+

2%

So, Low's theorem gives a well-defined result also at NLP for any
amplitude H, as long as the exact same amplitude is used consistently
everywhere.
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Shifted kinematics
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Shifted kinematics

Idea: Evaluate #H using a different set of conserved momenta so that H
is uniquely defined.

[T.H. Burnett, N.M. Kroll - Phys.Rev.Lett. (1967)] [V. Del Duca, E. Laenen, L. Magnea, L. Vernazza, C.D. White - JHEP (2017)]
[D. Bonocore, A. Kulesza - Phys.Rev.B (2021)]

The expression for LBK theorem looks like a first order expansion:

(n:Qipi) - (n;Q;p5) (pj - k)pin a9 ] T

—2
Aesie == 2 20 00,0 | e O o
A (:Qipi) - ;Qp5) \ =72
|AlLpinLp = — Z (pi~11)(pjj~]gj) ;) |H(p + dp)|

4,3

- 9
—CH(p + dp)|

v ’L ZpZ
opy =1;Q;C~ Z( “) .

i

pj + 0p; fulfil the conservation of momentum for #;

D dpj=—k= (pj+3p;) =0
J J
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On-shell shifted kinematics

— 92 _—2
|AlLpxep = —ClH(p + dp)|

op; = n;Q;C™ Z (szpm) G = O(k)

i

The shifts modify the mass of the particles by NNLP terms.

pj - 0p; = 0= (p; +0p;)* = mj + O(k*)

This is consistent with the approximation, but not ideal for numerical
implementations.
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On-shell shifted kinematics

— 92 _—2
|AlLpxtp = —CIH(p + dp)|

op; = n;Q;C™ Z (szpm) G = O(k)

The shifts modify the mass of the particles by NNLP terms.
pj - 0p; =0 = (p; +0p;)* = mi + O(k?)

This is consistent with the approximation, but not ideal for numerical
implementations.

We found an alternative way to do the shifts that:

@ is consistent with LBK theorem at NLP,
@ satisfies four-momentum conservation,

@ keeps the particles on-shell to all orders in the expansion of k.
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Results

o (pb)
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o (pb) Comparison with different amplitudes

—— tree-level radiative amplitude

NLP with analytical amplitude

—— NLP with MadGraph amplitude
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Radiative amplitude calculated with MadGraphs_aMC@NLO.
LP amplitudes are obtained using the new on-shell shifts.

eTet s pTpty, V5 =1Tev
pry>01GeV, pr,>10GeV, |n/<25 AR=04
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Results

o (pb)
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Histogram pr, fore“e* - p-pu*y

tree level radiative amplitude
LP aproximation
NLP with on-shell shifts
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All amplitudes are generated with MadGraph5_aMC@NLO.
e’et sputy, V5 =91.1GeV

10MeV< pr < 5GeV, pr,>10GeV, || <25, AR=04
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o (pb)

10

Histogram pr., for pp = p-u'y

—— tree level radiative amplitude
LP aproximation
—— NLP with on-shell shifts

pry(Ge
All amplitudes are generated with MadGraphs_aMC@NLO.
pp =ty V5 =13Tev

100MeV < pr, <50GeV, pru>10GeV, [nj<25, OR>04
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Results

o (pb) Low pr.y regime forpp —» p~pu*y
- tree-level radiative amplitude
LP aproximation
== NLP with on-shell shifts
10t
100
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101
0.00 0.02 0.04 0.06 0.08 010
Pr.y (GeV)
All amplitudes are generated with MadGraph5_aMC@NLD.
pp = HTETY, VS =13Tev

IMeV <pr,<1GeV, pr.>10GeV, |n<25 AR=04
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Conclusions

@ Precision predictions call for understanding the NLP terms.

@ LBK theorem is free of inconsistencies and can be used safely for
calculating soft photon spectra.

@ Reformulation of LBK theorem using on-shell shifted kinematics
opens the door to an efficient implementation for the NLP
approximation for the emission of (ultra-)soft photons (e.g. as
measured in the future by ALICE3 detector).

@ More work has to be done in order to understand the origin of the
soft photon anomaly observed at LEP.
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