Maximally entangled proton and entropy in high energy collisions

Krzysztof Kutak

Motivation

bounds and properties of EE may provide some new insight on behavior of pdfs links to other areas (thermodynamics, gravity, quantum information, conformal field theory) Interesting in context of parton saturation and thermalization problem of Quark Gluon Plasma Various approaches to entropy in the low x limit: entropy of gluon density, thermodynamic entropy momentum space entanglement, coordinate space entanglement, Wehrl entropy,...

```
K. Kutak '11, R. Peschanski '13,
```

A. Kovner, M. Lublinsky '15, A. Kovner, M. Lublinsky, M. Serino '18,

Hagiwara, Y, Hatta, B. Xiao, Yuan'18, N. Armesto, F. Dominguez, A. Kovner, M. Lublinsky, V. Skokov'19

Z. Tu, D. Kharzeev, T. Ulrich '20, C. Akkaya, H. Duan , A. Kovner, V. Skokov '20

K. Zhang, K. Hao, D. Kharzeev, V. Korepin' 21, E. Levin, D. Kharzeev '21,

D. Kharzeev '21, M. Hentschinski, K. Kutak '21,

Dvali, Venugopalan' 21 Liu, Nowak, Zahed, 21;

A. Dumitriu, Kolbusz '22, H. Duan , A. Kovner, V. Skokov '22

Boltzman and von Neuman entropy formulas – reminder

The entropy S of macrostate is given by the log of number W of distinct microstates that compose it

$$S = -\sum_{i=1}^W p(i) \ln p(i) \qquad \text{Gibbs entropy}$$
 For uniform distribution
$$p(i) = \frac{1}{W} \quad \text{the entropy is maximal} \qquad \frac{\text{Boltzmann entropy}}{S = \ln W}$$

Since partons are introduced as the microscopic constituents that compose the macroscopic state of the proton, it is natural to evaluate the corresponding entropy or entropy corresponding to parton density.

K. Kutak '11, Peschanski'12

But proton as a whole is a pure state and the von Neuman

A. Kovner, M. Lublinsky '15
D. Kharzeev, E. Levin '17,...
entropy is 0. Can one get any nontrivial result?

For pure state (one state) density matrix is: For mixed state i.e. classical statistical mixture

$$\rho=|\psi\rangle\langle\psi|$$

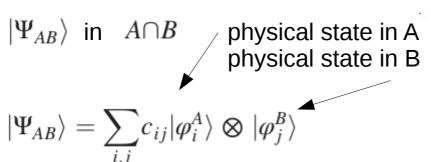
$$\rho=\sum p(i)|\psi_i\rangle\langle\psi_i|$$

$$S_{VN}=-Tr[\rho\ln\rho]=-1\ln1=0$$

$$S_{VN}\neq0$$
 Kharzeev, Levin '17

Entanglement entropy in DIS

The composite system is described by



entangled

if the product can not be expressed as separable product state

$$|\Psi_{AB}\rangle = \sum_{i,j} c_{ij} |\varphi_i^A\rangle \otimes |\varphi_j^B\rangle$$

separable

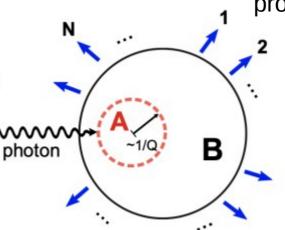
if the product can be expressed as separable product state

electron

$$|\Psi_{AB}
angle = |arphi^A
angle \otimes |arphi^B
angle$$

 $\mathcal{H}_A \otimes \mathcal{H}_B$

proton's rest frame

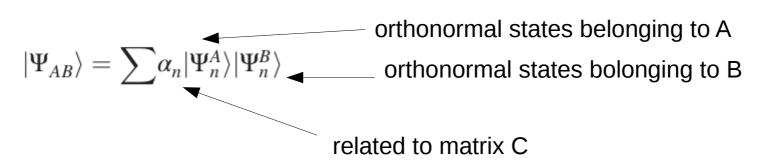


 \mathcal{H}_B of dimension n_B .

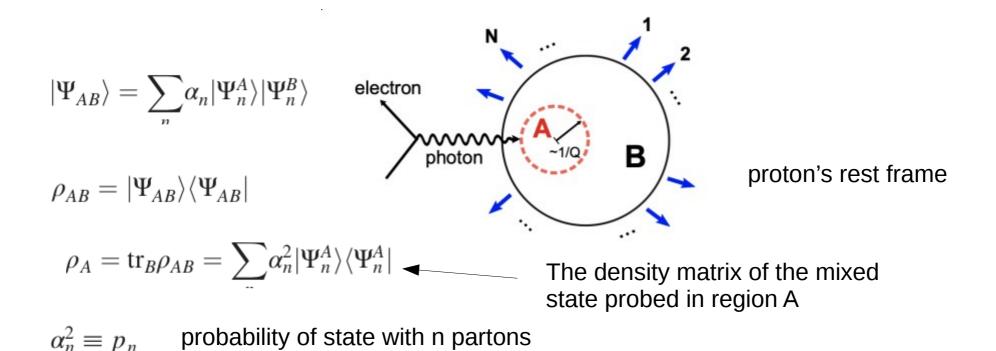
 \mathcal{H}_A of dimension n_A

Kharzeev, Levin '17

We perform Schmidt decomposition



Entanglement entropy in DIS



Kharzeev, Levin '17

$$S = -\sum_{n} p_n \ln p_n$$

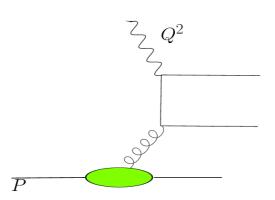
entropy results from the entanglement between the regions A and B, and can thus be interpreted as the entanglement entropy. Entropy of region A is the same as entropy in region B.

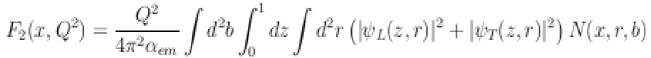
Proton structure function and dipole cross section

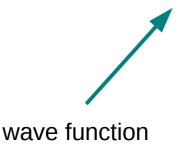
$$F_2(x, Q^2) = \frac{Q^2}{4\pi^2} \alpha_s \sum_q e_q^2 \int d^2k \, \mathcal{F}(x, k^2) \left(S_L(k^2, Q^2, m_q^2) + S_T(k^2, Q^2, m_q^2) \right)$$

Enters also into inclusive gluon production in adjoint representation recently called dipole gluon density Impact factors from Feynman diagrams in momentum space

In the kt factorization

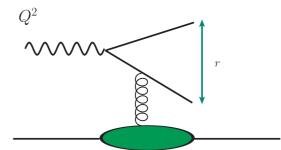






Dipole cross section

In the dipole formalism

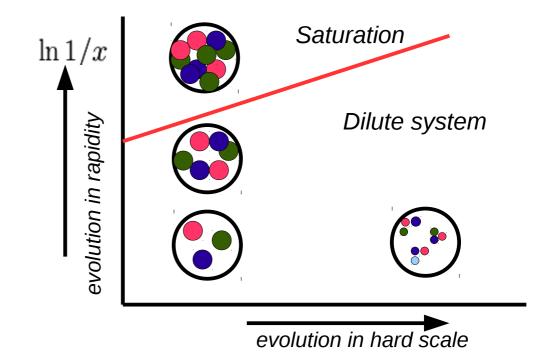


Gluons at high energies

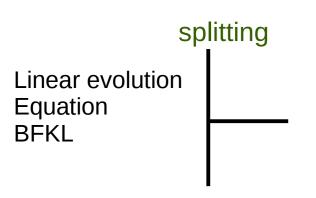
Saturation – state where number of gluons stops growing due to high occupation number. Way to fulfill unitarity requirements in high energy limit of QCD.

L.V. Gribov, E.M. Levin, M.G. Ryskin Phys.Rept. 100 (1983) 1-150

Larry D. McLerran, Raju Venugopalan Phys.Rev. D49 (1994) 3352-3355



On microscopic level it means that gluon apart splitting recombine



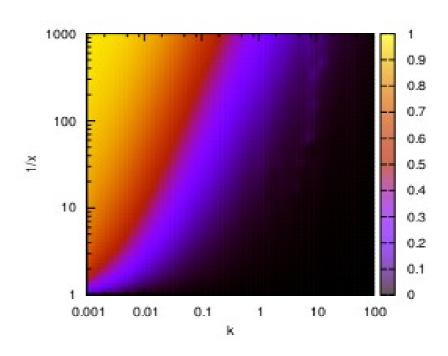
Nonlinear evolution
equations
BK, JIMWLK
Balitcky-Kovchegov,
Jailian-Marian,lancu
McLerran,Weigert,Leonidov,Kovner

Gluons at high energies

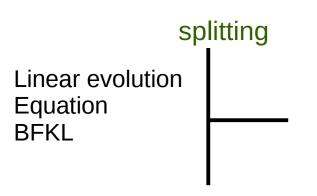
Saturation – state where number of gluons stops growing due to high occupation number. Way to fulfill unitarity requirements in high energy limit of QCD.

L.V. Gribov, E.M. Levin, M.G. Ryskin Phys.Rept. 100 (1983) 1-150

Larry D. McLerran, Raju Venugopalan Phys.Rev. D49 (1994) 3352-3355

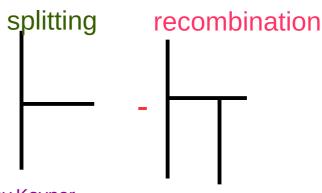


On microscopic level it means that gluon apart splitting recombine



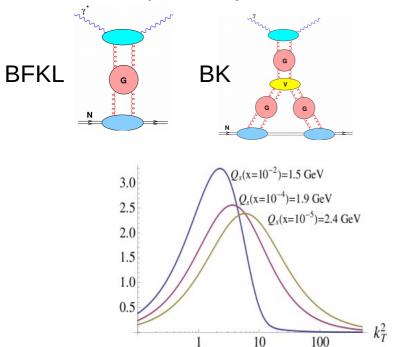
Nonlinear evolution equations BK, JIMWLK Balitcky-Kovchegov,

Jailian-Marian, Iancu McLerran, Weigert, Leonidov, Kovner

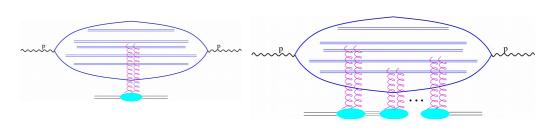


Momentum space vs coordinate space

momentum space - Bjorken frame



position space - Mueller frame



gluon ~ color dipole

1
0.8
0.6
0.4

from A. Stasto Acta Phys.Polon. B35 (2004) 3069-3102

$$\mathcal{F}(x,k) = \mathcal{F} + K_{ms} \otimes \mathcal{F}(x,k) - \frac{1}{R^2} TPV \otimes \mathcal{F}(x,k)^2 \quad N(x,r,b) = N_0 + K_{ps} \otimes (N(x,r,b) - N(x,r,b)^2)$$

dipole unintegrated gluon density

Evolved with BK dipole amplitude – expectation value of product of Wilson lines in fundamental representation

The dipole cross section and integrated gluon

$$\sigma(x,r) = \frac{4\pi^2}{N_c} \int \frac{dk^2}{k^2} (1 - J_0(kr)) \mathcal{F}(x,k^2)$$

$$\sigma(x,r) \approx \frac{4\pi^2}{N_c} \int \frac{dk^2}{k^2} \left(1 - \left(1 - \frac{k^2 r^2}{4}\right)\right) \mathcal{F}(x,k^2)$$

$$\sigma(x,r) \approx \frac{\pi^2}{N_c} r^2 x g(x,1/r^2)$$

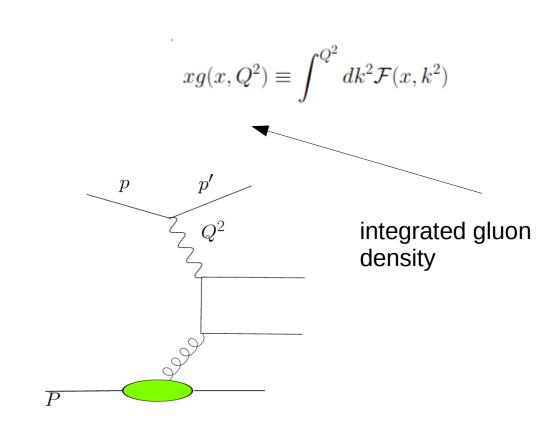
$$\sigma(x,r) = \sigma_0 N(x,r)$$

$$N(x,r) \approx xg(x,1/r^2)$$

For fixed dipole size one has.

$$N(x) = 1 - Z(x)$$

$$Z(x) \propto \sum_{n} P_n$$



In the context of the scale dependent GBW model this approximation is viewed as linear approximation

generating function for dipoles

Partonic, dipole cascade

$$p_n = P_n$$
 $Z(x) \propto \sum_n P_n$

$$\frac{dP_n(Y)}{dY} = -\lambda n P_n(Y) + (n-1)\lambda P_{n-1}(Y)$$
 set of partons is described by set of dipole with fixed sizes ,Y is rapidity and is related energy Lublinsky, Levin '03' depletion of the probability to find n dipoles due to the splitting into (n + 1) dipoles.
$$S = -\sum_n p_n \ln p_n$$
 the growth due to the splitting of (n - 1) dipoles into n dipoles.
$$S(Y) = \ln \left(e^{\lambda Y} - 1\right) + e^{\lambda Y} \ln \left(\frac{1}{1 - e^{-\lambda Y}}\right)$$

set of partons is described by set of dipoles with fixed sizes ,Y is rapidity and is related to Lublinsky, Levin '03

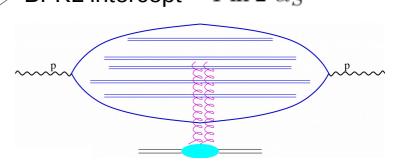
due to the splitting into (n + 1) dipoles.

the growth due to the splitting of (n - 1)dipoles into n dipoles.

$$S(Y) pprox \lambda Y \quad \text{ where } \quad Y = \ln 1/x$$

$$\langle n \rangle = \sum_{n} n P_n(Y) = \left(\frac{1}{x}\right)^{\lambda}$$

BFKL intercept = $4 \ln 2 \bar{\alpha}_S$



Kharzeev, Levin '17

Assumption $xg(x) = \langle n \rangle$

$$S(x) = \ln(xg(x))$$

The model can be generalized within 3+1 BK and one can argue how to account for hard scale dependence dependence.

$$S(x,Q) = \ln(xg(x,Q))$$

KL entropy formula - interpretation

At low x partonic microstates have equal probabilities

$$P_n(Y) = e^{-\lambda Y} \left(1 - e^{-\lambda Y}\right)^{n-1}$$

In this equipartitioned state the entropy is maximal – the partonic state at small x is maximally entangled.

In terms of information theory as Shanon entropy:

- equipartitioning in the maximally entangled state means that all "signals" with different number of partons are equally likely
- it is impossible to predict how many partons will be detected in a give event.
- structure function at small x should become universal for all hadrons.

From strict bounds on entanglement entropy (from conformal field theory) one can obtain that at low x (in conformal regime) one has

$$xg(x) \le \operatorname{const} x^{-1/3}$$

Kharzeev, Levin '17

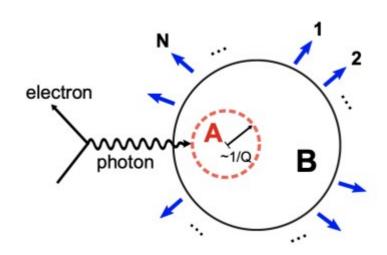
Furthermore entropy of the final state hadrons can not be smaller than entropy of partons.

Entanglement entropy – calculation and measurement

For DIS at high energies, this entanglement entropy can be calculated using

$$S(x,Q^2) = \ln \left\langle n \left(\ln \frac{1}{x}, Q \right) \right\rangle$$

$$S_{hadron} = \sum P(N) \ln P(N)$$



The charged particle multiplicity distribution measured in either the current fragmentation region or the target fragmentation region.

Fraction of events with charged hadron

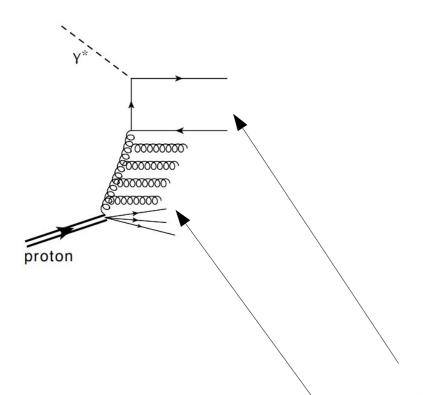
Extension of KL entropy formula

Hentschinski, Kutak '21

$$\left\langle n\left(\ln\frac{1}{x},Q\right)\right\rangle = xg(x,Q) + x\Sigma(x,Q)$$

To get the entropy of system of partons one needs to account for both quarks and gluons. One can view this as a higher order correction to KL formula. Furthermore it is impossible to isolate quarks from gluons therefore the compete entropy formula should receive contributions from quarks and gluons

Gluon and quark distribution



In the linear regime obeys BFKL equation. In our calculations we use NLO BFKL with kinematical improvements and running coupling. The gluon density has been fitted to F_2 data (exact kinematics was used)

Hentschinski, Sabio-Vera, Salas. Phys.Rev.D 87 (2013) 7, 076005 Phys.Rev.Lett. 110 (2013) 4, 041601

We calculate the sea quarks distribution using

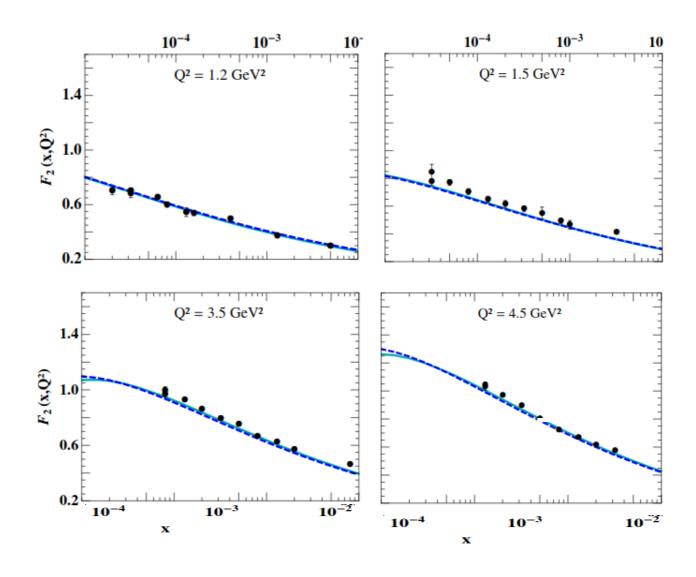
$$x\Sigma(x,Q) = P_{qg}(Q,\mathbf{k}) \otimes \mathcal{F}(x,\mathbf{k}^2)$$

$$xg(x, Q) = \int_0^{Q^2} d\mathbf{k}^2 \mathcal{F}(x, \mathbf{k}^2)$$

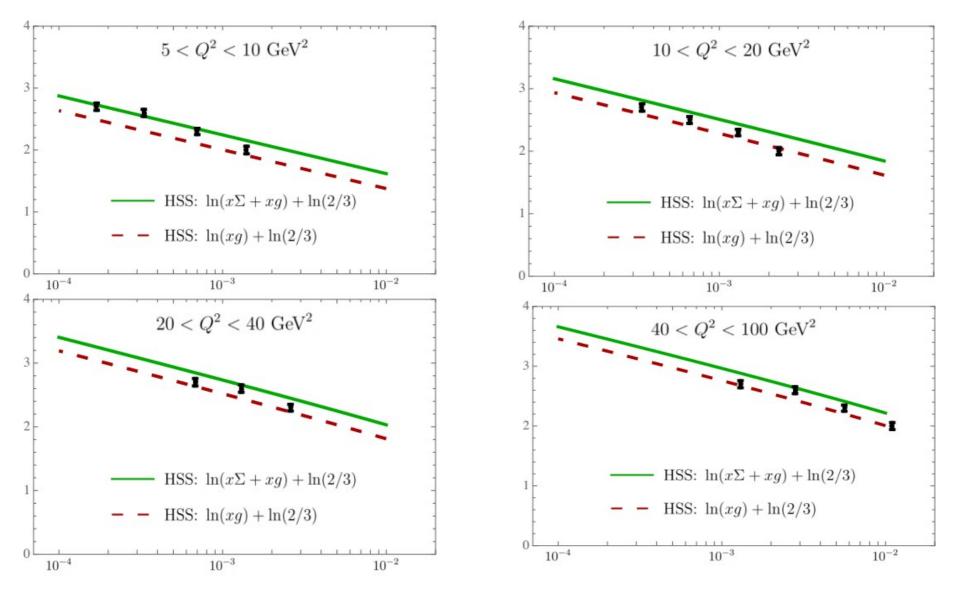
Other methods for resummation: KMS (Kwiecinski, Martin, Stasto); CCSS (Colferai, Ciafaloni, Stasto, Salam) Transverse momentum dependent splitting function Catani, Hautmann Nucl.Phys. B427 (1994) 475-524

Proton structure function from HSS fit

F₂ data description

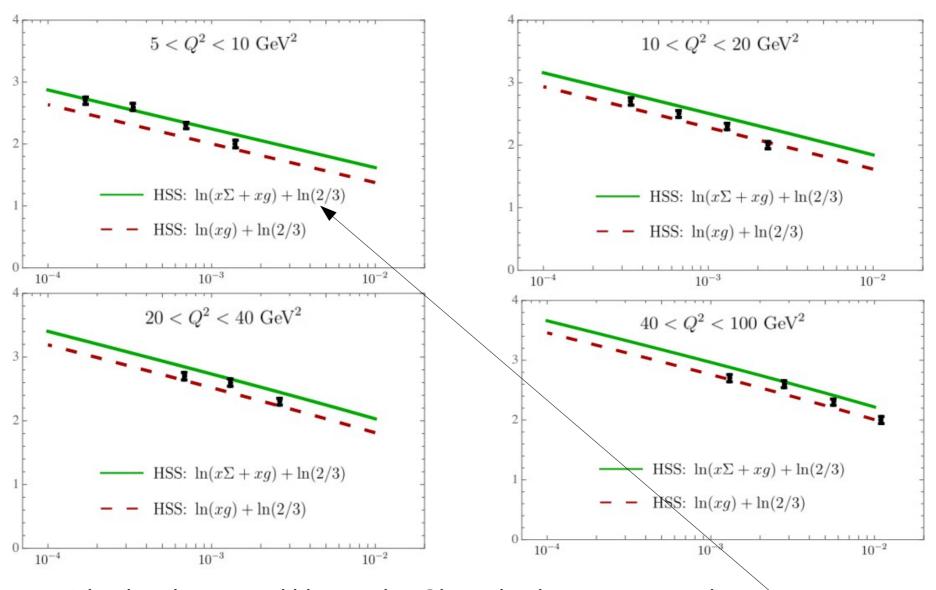


Results



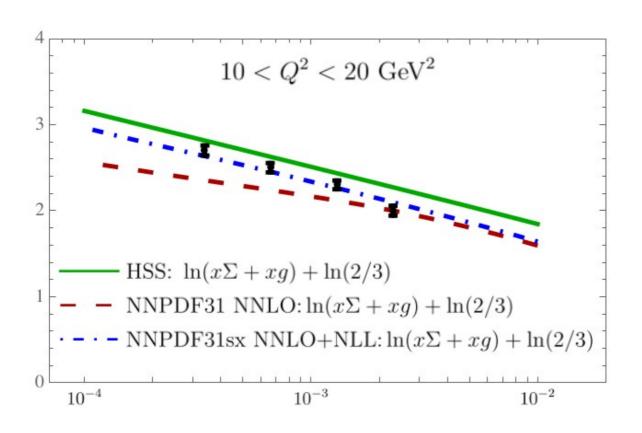
Hint that the general idea works. Gluon dominates over quarks. One has to also take into account that only charged hadrons were measured.

Results



Hint that the general idea works. Gluon dominates over quarks.

One has to also take into account that only charged hadrons were measured i.e 2/3 of partons contribute



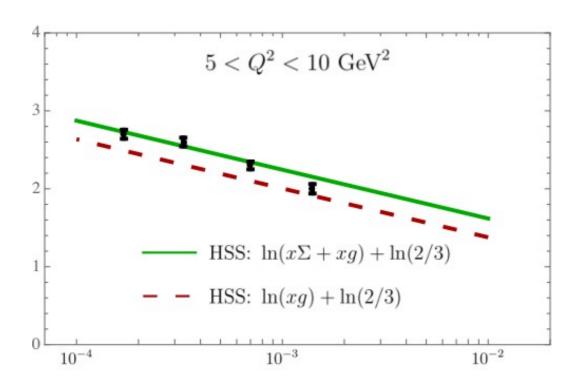
Low x resummation is essential

HSS gluon density used i.e. NLO BFKL + kinematical Improvements

Hentschinski, Sabio-Vera, Salas. Phys.Rev.D 87 (2013) 7, 076005 Phys.Rev.Lett. 110 (2013) 4, 041601

NNPDF 31 → DGLAP NNPDF 31sx → DGLAP + low x resummation Large uncertainities of pdfs. In this study we did not take them into account.

Dipoles and mechanism of entanglement



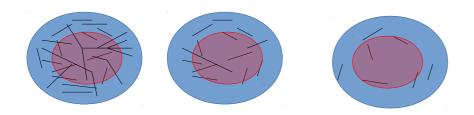
segments – dipoles, color singlets maximally entangled states

red circle – resolved area defined by photon

entanglement arises because of dipoles that are partially in the red circle and partially in blue.

The broken dipoles contribute to final state hadron multiplicity and entropy of proton

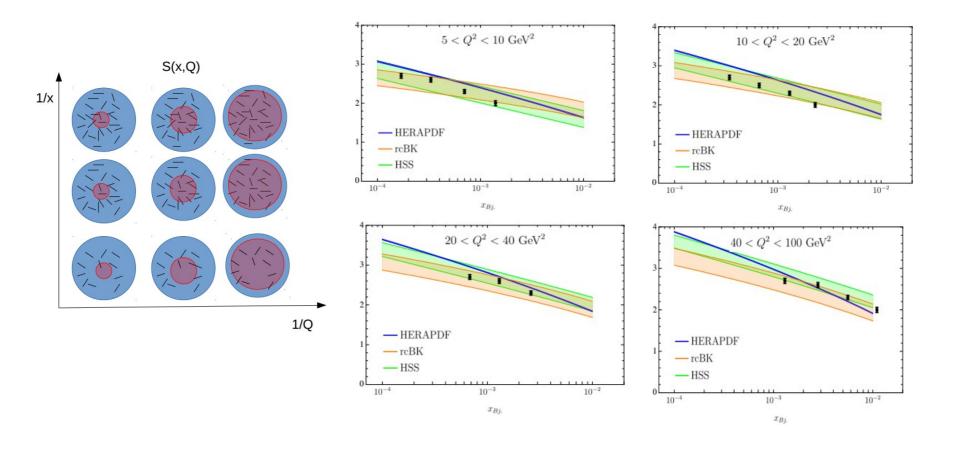
If we go to lower x we have more and more dipoles that cross the red line and entanglement grows



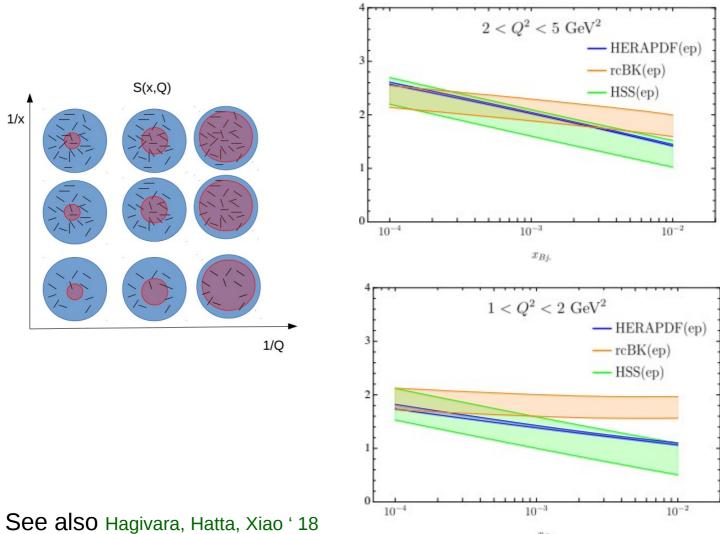
"Entanglement of predictions arises from the fact that the two bodies at some earlier time from in the true sense one system that is were interacting and have left behind choices on each other."

E. Schrodinger

Large scales - description

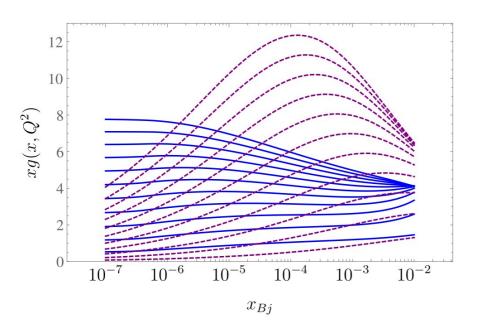


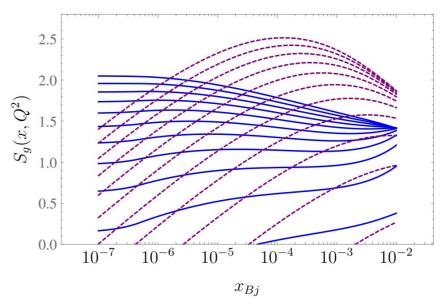
Small scales - prediction



The genaralized KL model is used and entropy saturates in this approach and Nowak, Liu, Zahed '22

Integrated gluon and entropy



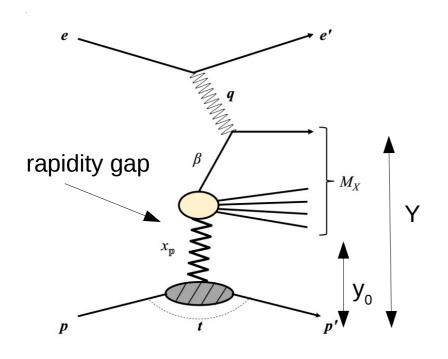


$$\lim_{Q^2 \gg Q_s^2} S(x, Q^2) = \ln\left(S_{\perp} Q_s^2(x)\right) + \ln\frac{N_c}{8\alpha_s \pi^2} = \lambda \ln\frac{1}{x} + \text{const}$$

$$\lim_{Q^2 \ll Q_s^2} S(x, Q^2) = \ln\left(\frac{S_{\perp} Q^4}{Q_s^2(x)}\right) + \ln\frac{N_c}{16\alpha_s \pi^2}$$

Photon can not resolve proton anymore therefore the EE vanishes.
But it might be that the formalism breaks down for low scales.
There might be another source of entropy that keep the total entropy not vanishing → generalized second law Bekenstein

EE in Diffractive Deep Inelastic Scattering



 $x_{\mathbb{P}}$ proton's momentum fraction carried by the Pomeron

denotes the Pomeron's momentum fraction carried by the quark interacting with the virtual photon

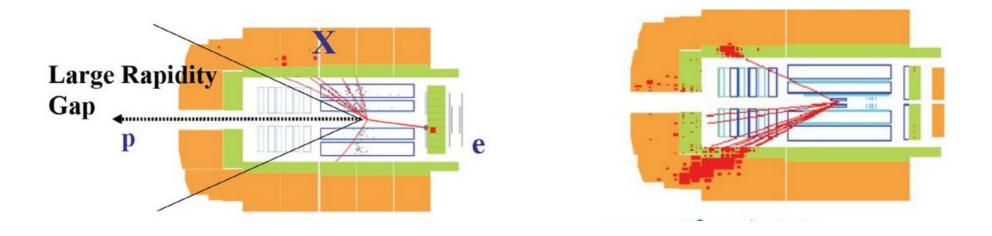
$$x=eta\cdot x_{\mathbb{P}}$$
 Bjorken x $y_0\simeq \ln 1/x_{\mathbb{P}}$ size of rpidity gap $Y=\ln 1/x$ $y_X=Y-y_0\simeq \ln 1/eta$

Analogous evolution equation as for non-diffractive case but Initial conditions are different and there is delay because of rapidity gap.

Munier, Mueller Phys. Rev. D 98, 034021 (2018)

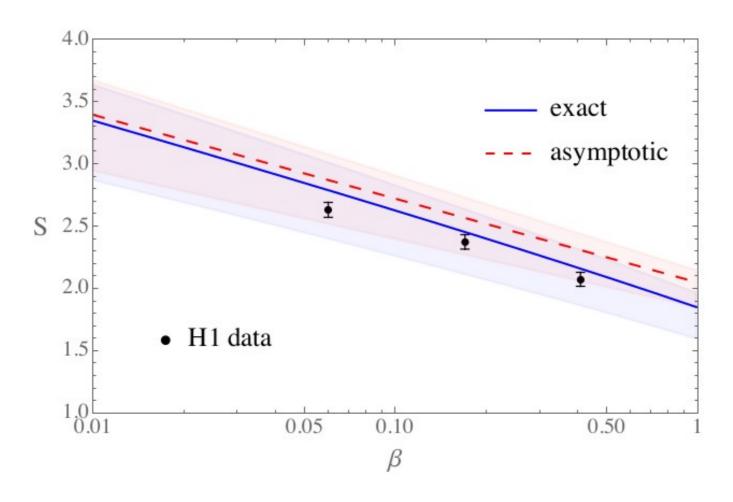
See also Peschanski, Seki'19 for entanglement in diffraction in p-p

Diffraction vs. nondiffraction

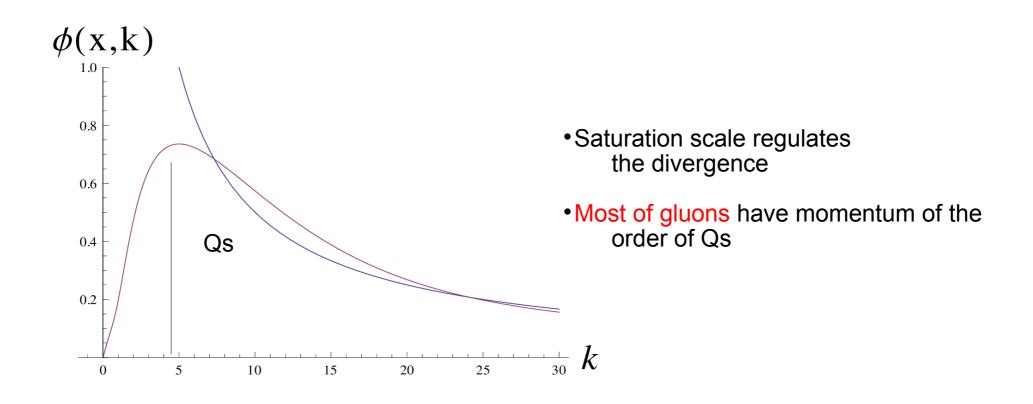


H1 detector

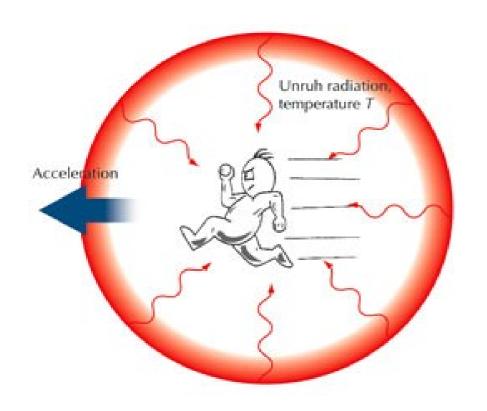
EE in DDIS



Saturation and gluon density



Unruh effect



Accelerated observer in its rest frame feels thermal radiation or Bose-Einstein distribution with temperature

$$T = \frac{|a|}{2\pi}$$

Entropy

$$T = \frac{Q_s(x)}{2\pi}$$

Can be understood in a generalized sense i.e. that saturation scale defines some temperature.

Equilibrium thermodynamics relations

Lower bound on produced entropy

It can be shown that the saturation line has an interpretation of a characteristics i.e. line along which the gluon density has a constant value.

dE = TdS

$$dM = TdS$$

$$\frac{dQ_s(x)}{Q_s(x)} = \frac{dS}{2\pi}$$

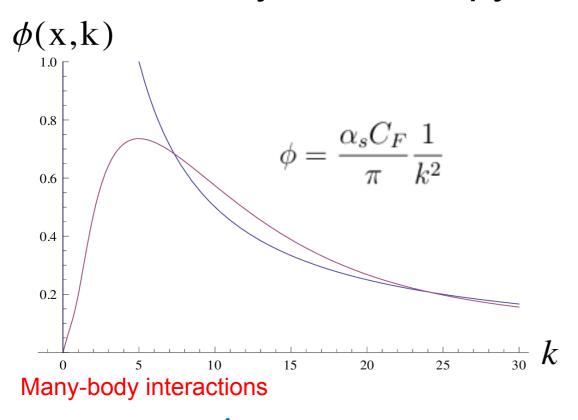
$$dE = dM$$

$$dM = dQ_s(x)$$

mass of system of gluons

Kutak 2011, arxiv v1 and v2

Kutak '11



$$\Delta S = \pi \lambda \Delta y$$

$$\Delta y = \ln(x_0/x)$$

$$Q_s^2 = Q_0^2 (x_0/x)^{\lambda}$$

Medium generated mass of gluon. Framework of Hard Thermal Loops.

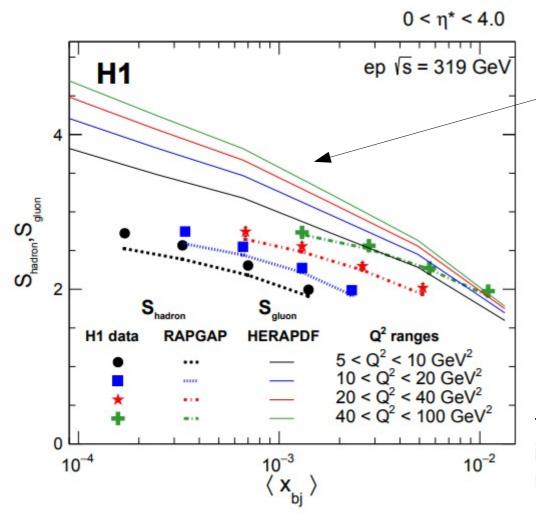
Similarly in QED. Cut on photon's kt Is equivalent to introducing mass.

Conclusions and outlook

- We show evidences for the proposal for low x maximal entanglement entropy of proton constituents .
- It can be systematically improved (quark contributions, NLO BFKL, rc BK) and can describe successfully H1 data.
- We obtain saturation of entropy at small resolution scales.
- We demonstrate that the proposal works for DDIS and that it can be used to study onset of maximal entanglement
- The thermodynamic based approach agrees with KL approach

Backup

Monte Carlo, KL formula, and data



HERA pdf used

$$S(x,Q) = \ln(xg(x,Q))$$

Also attempt by Kharzeev and Levin to use quarks instead of gluons Phys. Rev. D 104, 031503 (2021)

$$S(x,Q) = \ln(x\Sigma(x,Q))$$

This argument is however based on incorrect formula...but it is a illuminating mistake

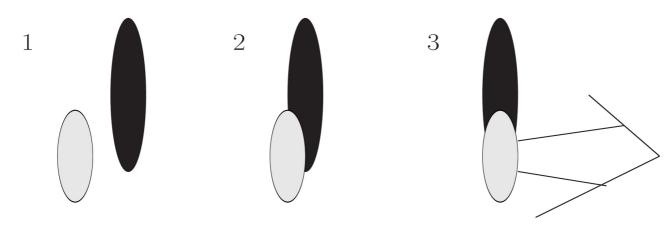
H1 Eur.Phys.J.C 81 (2021) 3, 212

See also Z. Tu, D. Kharzeev, T. Ulrich '20 for calculations of EE in p-p.

Colliding hadrons and Unruh effect

Stages of collision

Kharzeev, Tuchin '05



$$P(M \leftarrow m) = 2\pi |\mathcal{T}(M \leftarrow m)|^2 \rho(M)$$

$$\int dM P(M \leftarrow m)$$
 density of states determined by typical momentum. Qs emerge

Probability for transition to final state

momentum. Qs emerges

$$\frac{a}{2\pi} \equiv T \le \frac{\sqrt{6}}{4\pi} \, \frac{1}{\sqrt{b}} \equiv T_{Hag}$$

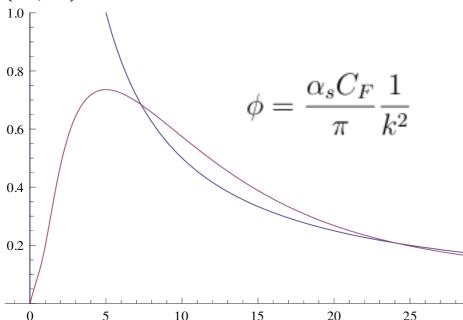
$$T = \frac{Q_s(x)}{2\pi}$$

transition amplitude

 $|\mathcal{T}(M \leftarrow m)|^2 \sim \exp(-2\pi M/a)$

Gluon production and entropy – another assumptions

 $\phi(\mathbf{x},\mathbf{k})^{ ext{Bialas; Janik; Fialkowski, Wit; Iancu, Blaizot, Peschanski,...}}$



$$M_G(x) = Q_s(x)$$

energy dependent gluon's mass

$$M(x) = N_G(x)M_G(x)$$
 mass of system of gluons

$$N_G(x) \equiv \frac{dN}{dy} = \frac{1}{S_\perp} \frac{d\sigma}{dy} \qquad \text{number of gluons}$$

$$dE = TdS$$

dM = TdS

$$d\left[N_G(x) M_G(x)\right] = \frac{Q_s(x)}{2\pi} dS$$

Medium generated mass of gluon. Framework of Hard Thermal Loops.

Many-body interactions

Entropy due to less dense hadron

$$S = \frac{6C_F A_\perp}{\pi \alpha_s} Q_s^2(x) + S_0$$

$$S = 3\pi \left[N_G(x) + N_{G0} \right]$$

Similarly in QED. Cut on photon's kt Is equivalent to introducing mass.