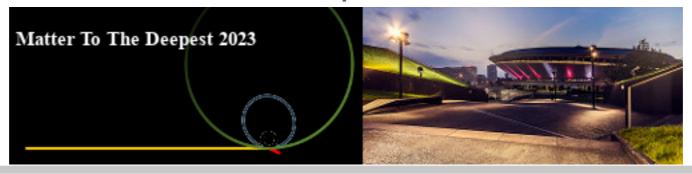


Zoltán Trócsányi



STATUS OF THE SUPERWEAK EXTENSION OF THE STANDARD MODEL AND MUON g-2

based on

arXiv:1812.11189 (Symmetry), 1911.07082 (PRD), 2104.11248 (JCAP), 2104.14571 (PRD), 2105.13360 (J.Phys.G), 2204.07100 (PRD), 2301.07961 (JHEP), 2301.06621 (PRD), 2305.11931 (PRDL) and correspondence with BMW collaboration with S. Iwamoto, T.J. Kärkkäinen, I. Nándori, Z. Péli, K. Seller, Zs. Szép

Ustron, 18 September, 2023

OUTLINE

- 1. Motivation: status of particle physics
 - Colliders
 - Cosmology
 - Muon anomalous magnetic moment (on request by Janusz)
- 2. Superweak $U(1)_z$ extension of SM (SWSM)
- 3. Neutrino masses and dark matter candidate
- 4. Vacuum stability and scalar sector constraints
- 5. Contribution to M_W (see talk by Zoltán Péli)
- 6. Constraints from non-standard interactions
- 7. Conclusions

MOTTO

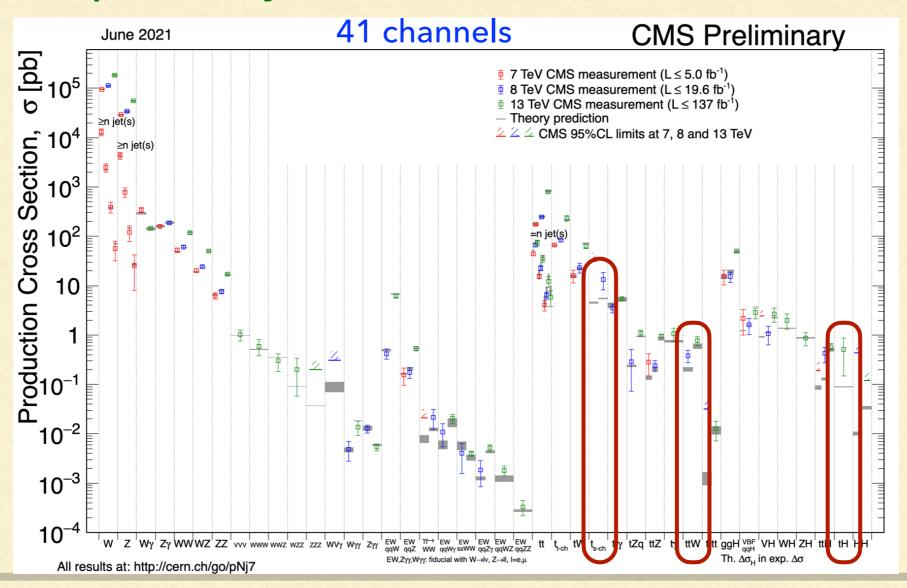
Rough estimates of BSM effects can easily be deceptive

example: discovery of the Higgs particle came much faster than expected at the time of construction of the LHC because the

detector performance was

underestimated

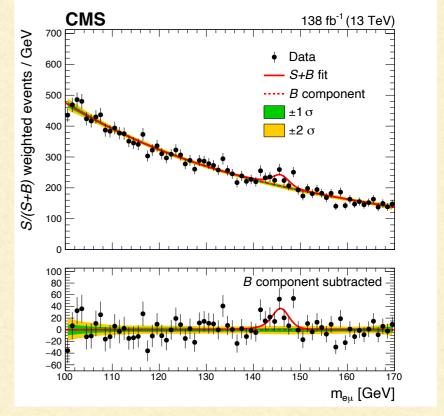
MOTTO


Rough estimates of BSM effects can easily be deceptive

example: discovery of the Higgs particle came much faster than expected at the time of construction of the LHC because the

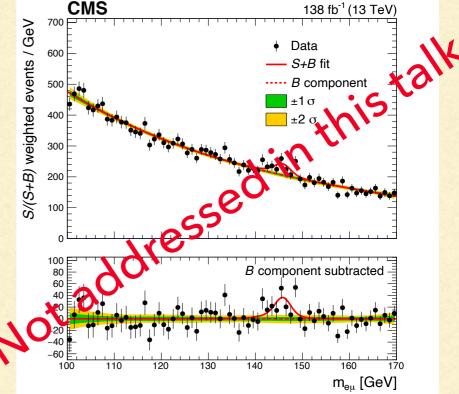
- detector performance was
- theoretical prediction for Higgs production was significantly

underestimated


 Colliders: SM describes final states of particle collisions precisely

- Colliders: SM describes final states of particle collisions precisely
- No proven sign of new physics beyond SM at colliders

- Colliders: SM describes final states of particle collisions precisely
- No proven sign of new physics beyond SM at colliders*


pp \rightarrow X(= new Higgs boson) \rightarrow e[±] μ [∓] [CMS preprint]

*Exciting news keep pupping up, all below discovery significance yet

- Colliders: SM describes final states of particle collisions precisely
- No proven sign of new physics beyond SM at colliders*

pp
$$\rightarrow$$
 X(= new Higgs boson) \rightarrow e[±] μ [∓] [CMS preprint]

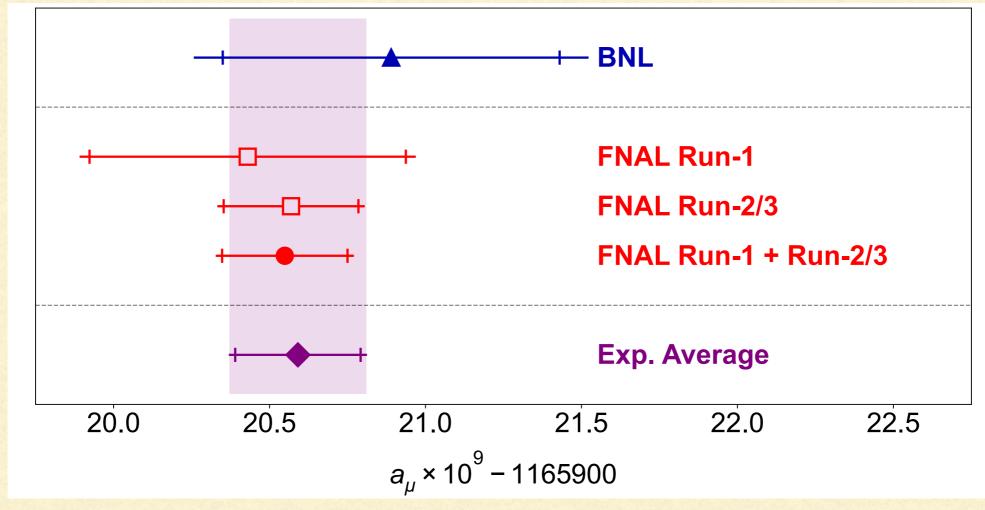
*Exciting news keep pupping up, all below discovery significance yet

- Colliders: SM describes final states of particle collisions precisely
- No proven sign of new physics beyond SM at colliders
- SM vacuum is metastable

[Bezrukov et al, arXiv:1205.2893; Degrassi et al, arXiv:1205.6497]

Status of particle physics: cosmic and intensity frontiers

- Universe at large scale described precisely by cosmological SM: Λ CDM (Ω_m = 0.3)
- Neutrino flavours oscillate
- Existing baryon asymmetry cannot be explained by CP asymmetry in SM
- Inflation of the early, accelerated expansion of the present Universe
 [https://pdg.lbl.gov]


Established observations require physics beyond SM, but do not suggest rich BSM physics

Phenomenological approach to new physics

Can we explain these observations, but not more, by the same model?

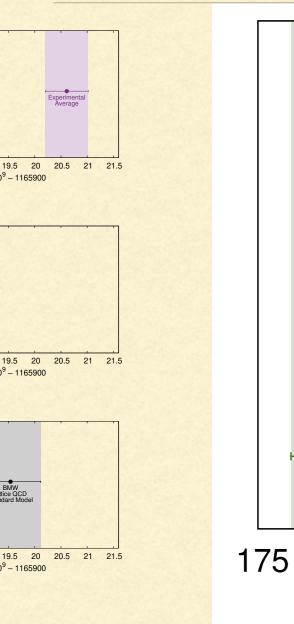
Status of the muon anomalous magnetic moment: experiment

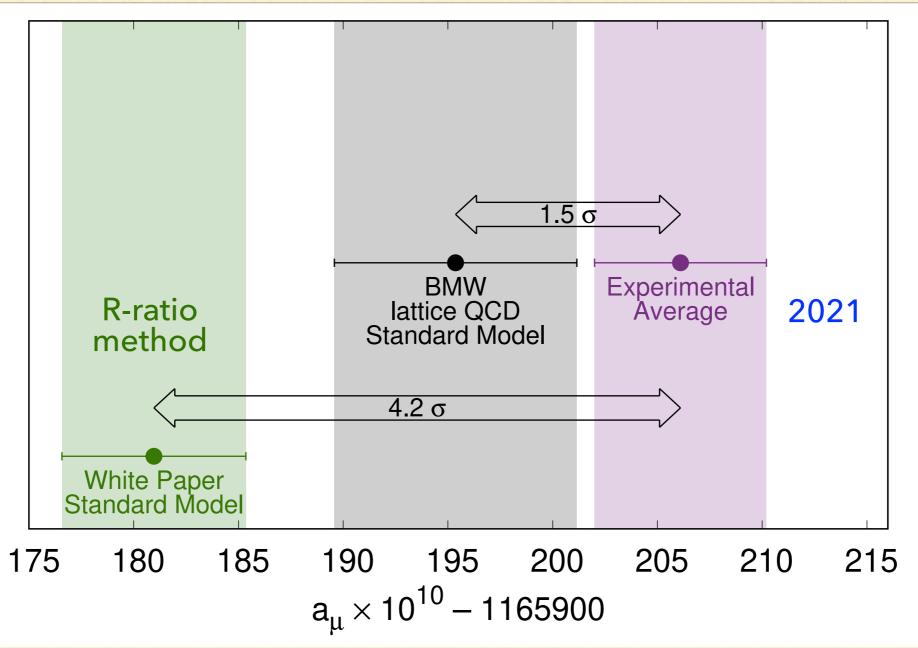
The muon g-2 has been a smoking gun for new physics for many years, more recently:

[https://muon-g-2.fnal.gov/result2023.pdf]

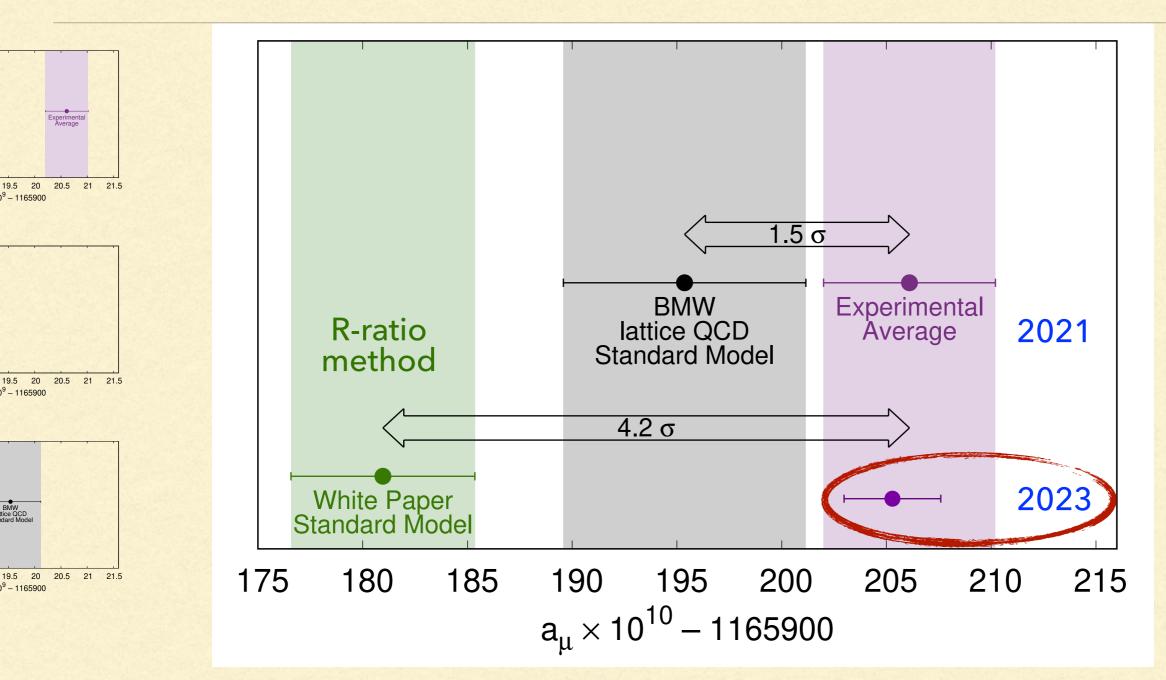
Status of the muon anomalous magnetic moment: experiment

- The muon g-2 has been a smoking gun for new physics for many years
- The most precise experimental value is from FNAL


(2023): $a_{\mu} = \frac{g-2}{2} = 116592055(24) \cdot 10^{-11}$ (0.20 ppm)

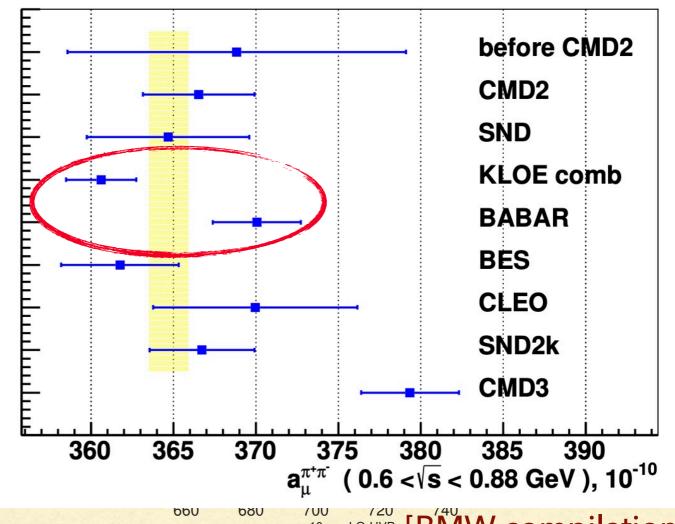

• ...equivalent to a bathroom scale sensitive to a single

eyelash:



Status of the muon anomalous magnetic moment: experiment vs. theory

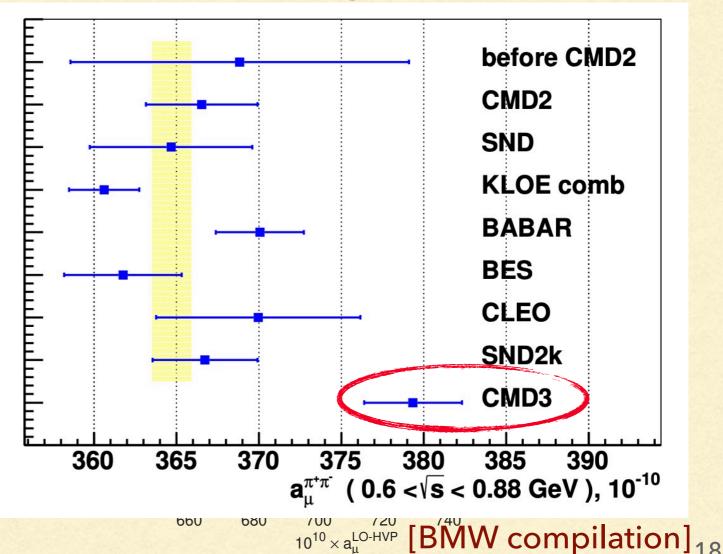
Status of the muon anomalous magnetic moment: experiment vs. theory



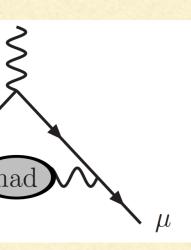
Status of the muon anomalous magnetic moment: theory with R-ratio

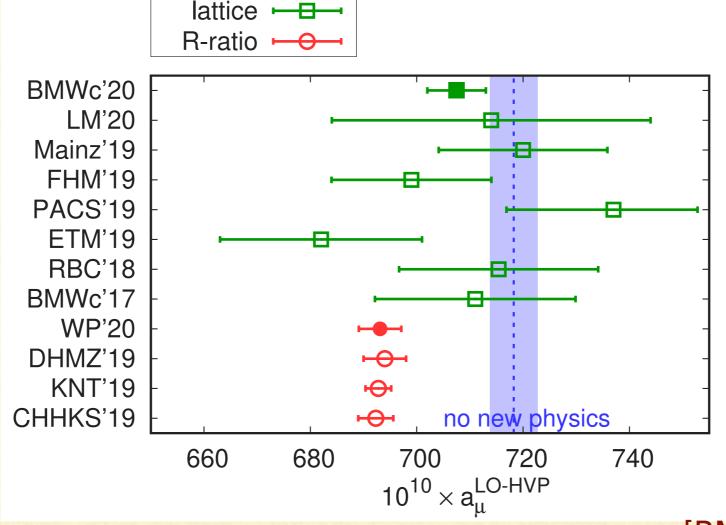
 The muon g-2 has been a smoking gun for new physics for many years, but tension already in earlier

data used for theory prediction:

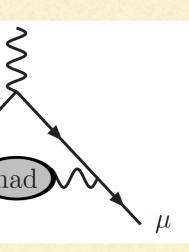

 $\sigma(e^+e^- \to \pi^+\pi^-)$ cross section in this energy range gives more than 50% to total HVP contribution to a_μ

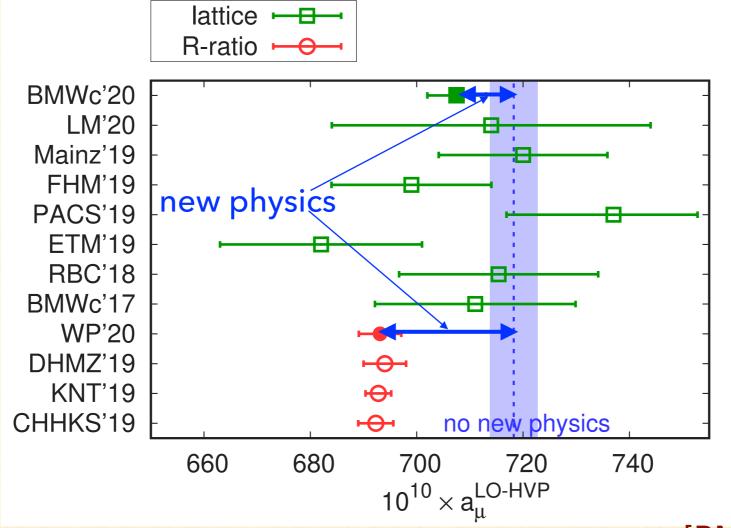
Status of the muon anomalous magnetic moment: theory with R-ratio


New CMD3 data show a ~15 unit increase in central value and 4.4σ tension with old average:


 $\sigma(e^+e^- \to \pi^+\pi^-)$ cross section in this energy range gives more than 50% to total HVP contribution to a_{μ}

Status of the muon anomalous magnetic moment: lattice vs. R-ratio


- Lattice: $a_{\mu}^{\text{HVP@LO}} = 707.5(2.3)_{\text{stat}}(5.0)_{\text{sys}}[5.5]_{\text{tot}}$
- \sim 15 units above the R-ratio white paper value (a 2.1 σ tension)



Message of the muon anomalous magnetic moment

- We are certain that there is new physics beyond the SM
- lacktriangle "Final word" on a_μ will tell how BSM should affect the muon g-2

[BMW compilation]₂₀

- We are certain that there is new physics beyond the SM
- Current main question:

How large is the new physics contribution to a_{μ} really?

- We are certain that there is new physics beyond the SM
- Current main question:

How large is the new physics contribution to a_{μ} really?

- "large" (almost 5σ R-ratio result)
- "small" (almost insignificant lattice result)

- We are certain that there is new physics beyond the SM
- Current main question:

How large is the new physics contribution to a_{μ} really?

- "large" (almost 5σ R-ratio result)
- "small" (almost insignificant lattice result)
- The experimental result appears robust, only its uncertainty will reduce further

- We are certain that there is new physics beyond the SM
- Current main question:

How large is the new physics contribution to a_{μ} really?

- "large" (almost 5σ R-ratio result)
- "small" (almost insignificant lattice result)
- The experimental result appears robust, only its uncertainty will reduce further
- Main task:

Resolve discrepancy between theory predictions

- We are certain that there is new physics beyond the SM
- Current main question:

How large is the new physics contribution to a_{μ} really?

- "large" (almost 5σ R-ratio result)
- "small" (almost insignificant lattice result)
- The experimental result appears robust, only its uncertainty will reduce further
- Main task:

Resolve discrepancy between theory predictions

Until then

everything else is speculation

Muon anomalous magnetic moment: speculations with R-ratio result

Generally large

$$\Delta a_{\mu}^{\rm BSM} = C_{\rm BSM} \frac{m_{\mu}^2}{M_{\rm BSM}^2} \lesssim {\rm O}(1) \frac{m_{\mu}^2}{M_{\rm BSM}^2} \Longrightarrow M_{\rm BSM} \lesssim 2 \, {\rm TeV}$$

[Czarneczki, Marciano hep-ph/0102122]

can only be explained by rather small masses and/or large couplings and enhanced chirality flips

(the QFT operator corresponding to a_{μ} connects left and right chirality muons), which can lead to

conflicts with limits from LHC and dark matter experiments

 Exhaustive study of single-, two- and three-field extensions shows that most of these are excluded

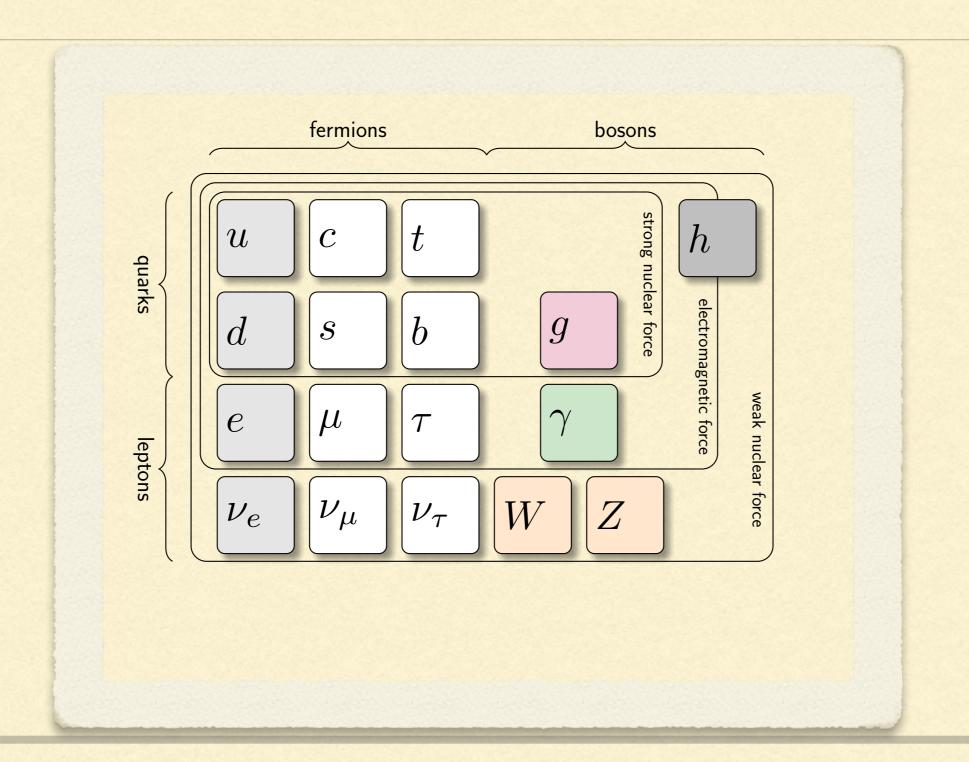
[Athron et al., arXiv:2104.03691]

 Some specific incomplete three-field models (2F1S, 2S1F) with large couplings
 [Athron et al., arXiv:2104.03691]

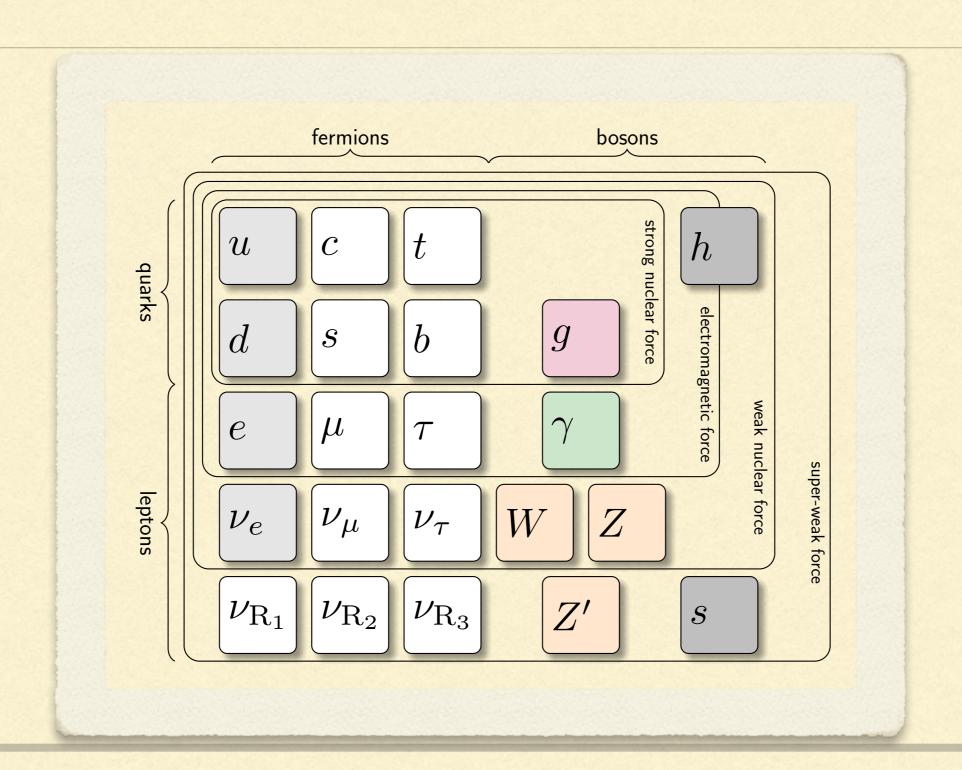
- Some specific incomplete three-field models (2F1S, 2S1F) with large couplings
 [Athron et al., arXiv:2104.03691]
- MSSM with [Iwamoto et al., arXiv:2104.03217, 2104.03223]
 - Bino-like LSP and either slepton or chargino coannihilation
 - Wino-like LSP, but additional dark matter

- Some specific incomplete three-field models (2F1S, 2S1F) with large couplings
 [Athron et al., arXiv:2104.03691]
- MSSM with [Iwamoto et al., arXiv:2104.03217, 2104.03223]
 - Bino-like LSP and either slepton or chargino coannihilation
 - Wino-like LSP, but additional dark matter
- Muon chirality flip enhancements are related to the mass generation mechanism for the muon, so the measurement of the Higgs-muon coupling at LHC or FCC can (will) provide further tests

- Some specific incomplete three-field models (2F1S, 2S1F) with large couplings
 [Athron et al., arXiv:2104.03691]
- MSSM with [Iwamoto et al., arXiv:2104.03217, 2104.03223]
 - Bino-like LSP and either slepton or chargino coannihilation
 - Wino-like LSP, but additional dark matter
- Muon chirality flip enhancements are related to the mass generation mechanism for the muon, so the measurement of the Higgs-muon coupling at LHC or FCC can (will) provide further tests
- Planned JPARC g 2 experiment and progress on theory prediction using results from the MUonE initiative should be decisive


Muon anomalous magnetic moment: complying with lattice result

- New physics should have a small (smaller then EW) contribution to a_u
- May constrain the available parameter space, but unlikely to exclude a model compatible with ElectroWeak Precision Observables (EWPOs)


Extension of SM: three alternatives with different strength and weaknesses

- Effective field theory, such as SMEFT: general but highly complex (2499 dim 6 operators), focuses on new physics at high scales
- Simplified models, such as dark photon, extended scalar sector or right-handed neutrinos: "easily accessible" phenomenology, but focus on specific aspect of new physics, so cannot explain all BSM phenomena
- UV complete extension with potential of explaining BSM phenomena within a single model such as Superweak extension of the Standard Model: SWSM

Particle content of SM

Particle content of SWSM (take-home picture)

Superweak extension of SM (SWSM)

Symmetry of the Lagrangian: local $G=G_{SM}\times U(1)_z$ with $G_{SM}=SU(3)_c\times SU(2)_L\times U(1)_Y$

renormalizable gauge theory, including all dim 4 operators allowed by G

Superweak extension of SM (SWSM)

Symmetry of the Lagrangian: local $G=G_{SM}\times U(1)_z$ with $G_{SM}=SU(3)_c\times SU(2)_L\times U(1)_Y$

renormalizable gauge theory, including all dim 4 operators allowed by G

- z-charges fixed by requirement of
 - gauge and gravity anomaly cancellation and
 - gauge invariant Yukawa terms for neutrino mass generation

Mixing in the neutral gauge sector

$$egin{pmatrix} \left(egin{array}{c} B_{\mu} \ W_{\mu}^{3} \ B_{\mu}' \end{array}
ight) = \left(egin{array}{c} c_{W} & -s_{W} & 0 \ s_{W} & c_{W} & 0 \ 0 & 0 & 1 \end{array}
ight) \left(egin{array}{c} 1 & 0 & 0 \ 0 & c_{Z} & -s_{Z} \ 0 & s_{Z} & c_{Z} \end{array}
ight) \left(egin{array}{c} A_{\mu} \ Z_{\mu} \ Z_{\mu} \end{array}
ight) & c_{X} = \cos heta_{X} \ s_{X} = \sin heta_{X} \end{array}$$

where θ_W is the weak mixing angle & θ_Z is the Z-Z' mixing, implicitly:

$$\tan(2\theta_Z) = -2\kappa / (1 - \kappa^2 - \tau^2)$$
, with κ and τ effective couplings,

functions of the Lagrangian couplings

Mixing in the neutral gauge sector

$$egin{pmatrix} \left(egin{array}{c} B_{\mu} \ W_{\mu}^{3} \ B_{\mu}' \end{array}
ight) = \left(egin{array}{c} c_{W} & -s_{W} & 0 \ s_{W} & c_{W} & 0 \ 0 & 0 & 1 \end{array}
ight) \left(egin{array}{c} 1 & 0 & 0 \ 0 & c_{Z} & -s_{Z} \ 0 & s_{Z} & c_{Z} \end{array}
ight) \left(egin{array}{c} A_{\mu} \ Z_{\mu} \ Z_{\mu} \end{array}
ight) & c_{X} = \cos heta_{X} \ s_{X} = \sin heta_{X} \end{array}$$

where θ_W is the weak mixing angle & θ_Z is the Z-Z' mixing, implicitly:

$$\tan(2\theta_{\rm Z}) = -2\kappa / \left(1 - \kappa^2 - \tau^2\right)$$
, with κ and τ effective couplings,

functions of the Lagrangian couplings

The expressions for the neutral gauge boson masses are somewhat cumbersome, but exists a nice, compact generalization of the SM

mass-relation formula:
$$\frac{M_W^2}{c_W^2} = c_Z^2 M_Z^2 + s_Z^2 M_{Z'}^2$$

Scalars in the SWSM

• Standard ϕ complex SU(2)_L doublet and new χ complex singlet:

$$\mathcal{L}_{\phi,\chi} = [D_{\mu}^{(\phi)}\phi]^* D^{(\phi)\mu}\phi + [D_{\mu}^{(\chi)}\chi]^* D^{(\chi)\mu}\chi - V(\phi,\chi)$$

with scalar potential

$$V(\phi, \chi) = V_0 - \mu_{\phi}^2 |\phi|^2 - \mu_{\chi}^2 |\chi|^2 + (|\phi|^2, |\chi|^2) \begin{pmatrix} \lambda_{\phi} & \frac{\lambda}{2} \\ \frac{\lambda}{2} & \lambda_{\chi} \end{pmatrix} \begin{pmatrix} |\phi|^2 \\ |\chi|^2 \end{pmatrix}$$

Scalars in the SWSM

• Standard ϕ complex SU(2)_L doublet and new χ complex singlet:

$$\mathcal{L}_{\phi,\chi} = [D_{\mu}^{(\phi)}\phi]^* D^{(\phi)\mu}\phi + [D_{\mu}^{(\chi)}\chi]^* D^{(\chi)\mu}\chi - V(\phi,\chi)$$

with scalar potential

$$V(\phi, \chi) = V_0 - \mu_{\phi}^2 |\phi|^2 - \mu_{\chi}^2 |\chi|^2 + (|\phi|^2, |\chi|^2) \begin{pmatrix} \lambda_{\phi} & \frac{\lambda}{2} \\ \frac{\lambda}{2} & \lambda_{\chi} \end{pmatrix} \begin{pmatrix} |\phi|^2 \\ |\chi|^2 \end{pmatrix}$$

■ After SSB, G \rightarrow SU(3)_c×U(1)_{QED} in R_{ξ} gauge

$$\phi = \frac{1}{\sqrt{2}} \begin{pmatrix} -i\sqrt{2}\sigma^+ \\ v + h' + i\sigma_\phi \end{pmatrix} \quad \& \quad \chi = \frac{1}{\sqrt{2}} (w + s' + i\sigma_\chi)$$

Mixing in the scalar sector

$$\begin{pmatrix} h' \\ s' \end{pmatrix} = \begin{pmatrix} c_S & s_S \\ -s_S & c_S \end{pmatrix} \begin{pmatrix} h \\ s \end{pmatrix}$$

where θ_S is the scalar mixing angle implicitly:

$$\tan(2\theta_S) = \lambda vw / \left(\lambda_{\chi} w^2 - \lambda_{\phi} v^2\right)$$
, with v and w VEVs

Mixing in the scalar sector

$$\begin{pmatrix} h' \\ s' \end{pmatrix} = \begin{pmatrix} c_S & s_S \\ -s_S & c_S \end{pmatrix} \begin{pmatrix} h \\ s \end{pmatrix}$$

where θ_S is the scalar mixing angle implicitly:

$$\tan(2\theta_S) = \lambda vw / \left(\lambda_{\chi} w^2 - \lambda_{\phi} v^2\right)$$
, with v and w VEVs

5 (+1 less important) new parameters:

- in gauge sector: $\{\kappa \text{ and } \tau\}$ or $\{\theta_Z \text{ and } M_{Z'}\}$ (+a mixing coupling)
- in scalar sector: $\{w, \lambda_{\chi} \text{ and } \lambda\}$ or $\{M_S, \theta_S \text{ and } \lambda\}$

$$-\mathcal{L}_Y^\ell = \frac{w + s' + \mathrm{i}\sigma_\chi}{2\sqrt{2}} \overline{\nu_R^c} \, \mathbf{Y}_N \, \nu_R + \frac{v + h' - \mathrm{i}\sigma_\phi}{\sqrt{2}} \overline{\nu_L} \, \mathbf{Y}_\nu \, \nu_R + \mathrm{h.c.}$$

$$\mathbf{M}_N = \frac{w}{\sqrt{2}} \mathbf{Y}_N \qquad \mathbf{M}_D = \frac{v}{\sqrt{2}} \mathbf{Y}_\nu$$
 In flavour basis the full 6×6 mass matrix reads
$$\mathbf{M}' = \begin{pmatrix} \mathbf{0}_3 & \mathbf{M}_D^T \\ \mathbf{M}_D & \mathbf{M}_N \end{pmatrix}$$

$$-\mathcal{L}_Y^\ell = \frac{w + s' + \mathrm{i}\sigma_\chi}{2\sqrt{2}} \overline{\nu_R^c} \, \mathbf{Y}_N \, \nu_R + \frac{v + h' - \mathrm{i}\sigma_\phi}{\sqrt{2}} \overline{\nu_L} \, \mathbf{Y}_\nu \, \nu_R + \mathrm{h.c.}$$

$$\mathbf{M}_N = \frac{w}{\sqrt{2}} \mathbf{Y}_N \qquad \mathbf{M}_D = \frac{v}{\sqrt{2}} \mathbf{Y}_\nu$$
 • In flavour basis the full 6×6 mass matrix reads
$$\mathbf{M}' = \begin{pmatrix} \mathbf{0}_3 & \mathbf{M}_D^T \\ \mathbf{M}_D & \mathbf{M}_N \end{pmatrix}$$

- v_L and v_R have the same q-numbers, can mix, leading to type-I see-saw

$$-\mathcal{L}_Y^\ell = \frac{w + s' + \mathrm{i}\sigma_\chi}{2\sqrt{2}}\overline{\nu_R^c}\,\mathbf{Y}_N\,\nu_R + \frac{v + h' - \mathrm{i}\sigma_\phi}{\sqrt{2}}\overline{\nu_L}\,\mathbf{Y}_\nu\,\nu_R + \mathrm{h.c.}$$

$$\mathbf{M}_N = \frac{w}{\sqrt{2}}\mathbf{Y}_N \qquad \mathbf{M}_D = \frac{v}{\sqrt{2}}\mathbf{Y}_\nu$$
 • In flavour basis the full 6×6 mass matrix reads
$$\mathbf{M}' = \begin{pmatrix} \mathbf{0}_3 & \mathbf{M}_D^T \\ \mathbf{M}_D & \mathbf{M}_N \end{pmatrix}$$

- v_L and v_R have the same q-numbers, can mix, leading to type-I see-saw
- Dirac and Majorana mass terms appear already at tree level by SSB (not generated radiatively)

$$-\mathcal{L}_Y^\ell = \frac{w + s' + \mathrm{i}\sigma_\chi}{2\sqrt{2}} \overline{\nu_R^c} \, \mathbf{Y}_N \, \nu_R + \frac{v + h' - \mathrm{i}\sigma_\phi}{\sqrt{2}} \overline{\nu_L} \, \mathbf{Y}_\nu \, \nu_R + \mathrm{h.c.}$$

$$\mathbf{M}_N = \frac{w}{\sqrt{2}} \mathbf{Y}_N \qquad \mathbf{M}_D = \frac{v}{\sqrt{2}} \mathbf{Y}_\nu$$
 • In flavour basis the full 6×6 mass matrix reads
$$\mathbf{M}' = \begin{pmatrix} \mathbf{0}_3 & \mathbf{M}_D^T \\ \mathbf{M}_D & \mathbf{M}_N \end{pmatrix}$$

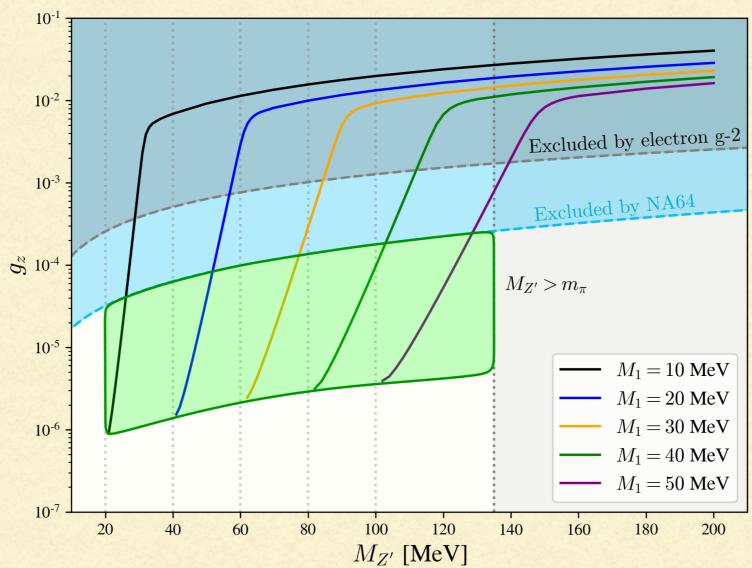
- v_L and v_R have the same q-numbers, can mix, leading to type-I see-saw
- Dirac and Majorana mass terms appear already at tree level by SSB (not generated radiatively)
- Quantum corrections to active neutrinos are not dangerous [Iwamoto et al, arXiv:2104.14571]

Expected consequences (take-home messages)

- Dirac and Majorana neutrino mass terms are generated by the SSB of the scalar fields, providing the origin of neutrino masses and oscillations [Iwamoto, Kärkäinnen, Péli, ZT, arXiv:2104.14571; Kärkkäinen and ZT, arXiv:2105.13360]
- The lightest new particle is a natural and viable candidate for WIMP dark matter if it is sufficiently stable [Seller, Iwamoto and ZT, arXiv:2104.11248]
- Diagonalization of neutrino mass terms leads to the PMNS matrix, which in turn can be the source of lepto-baryogenesis [Seller, Szép, ZT, arXiv:2301.07961 talk by Károly Seller on Sunday and under investigation]
- The second scalar together with the established BEH field can stabilize the vacuum and be related to the accelerated expansion now and inflation in the early universe [Péli, Nándori and ZT, arXiv:1911.07082; Péli and ZT, arXiv:2204.07100]

Expected consequences (take-home messages)

- Dirac and Majorana neutrino mass terms are generated by the SSB of the scalar fields, providing the origin of neutrino masses and oscillations [Iwamoto, Kärkäinnen, Péli, ZT, arXiv:2104.14571; Kärkkäinen and ZT, arXiv:2105.13360]
- The lightest new particle is a natural and viable candidate for WIMP dark matter if it is sufficiently stable [Seller, Iwamoto and ZT, arXiv:2104.11248]
- Diagonalization of neutrino mass terms leads to the PMNS matrix, which in turn can be the source of lepto-baryogenesis [Seller, Szép, ZT, arXiv:2301.07961 talk by Károly Seller on Friday and under investigation]
- The second scalar together with the established BEH field can stabilize the vacuum and be related to the accelerated expansion now and inflation in the early universe [Péli, Nándori and ZT, arXiv:1911.07082; Péli and ZT, arXiv:2204.07100]

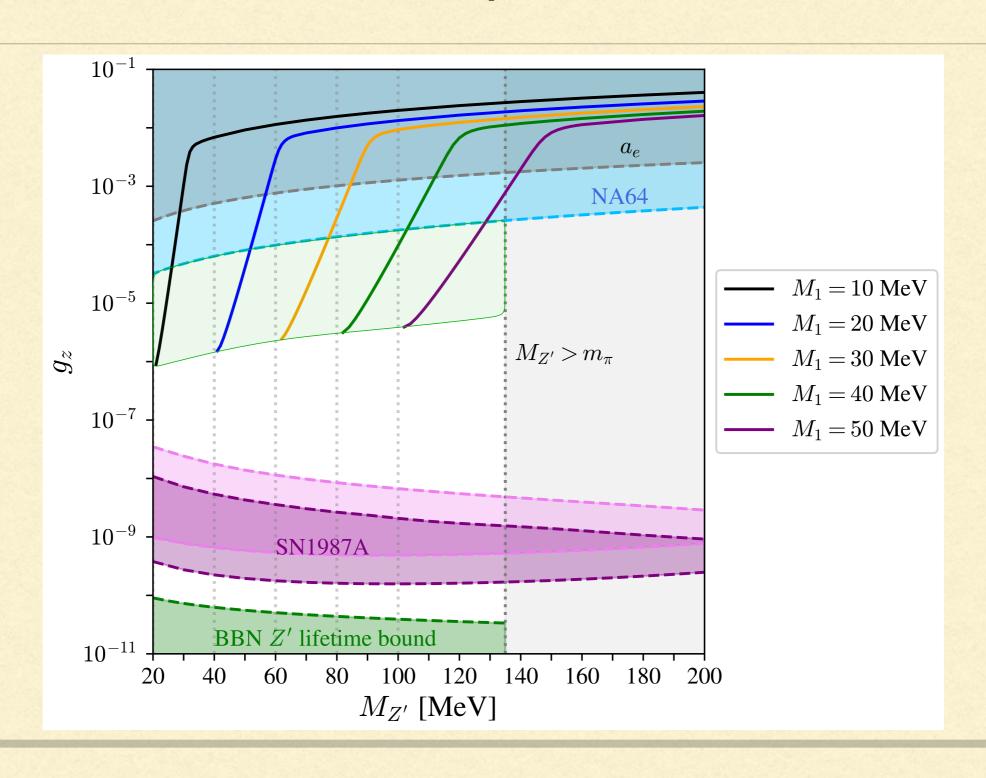

Dark matter candidate

- DM exists, but known evidence is based solely on the gravitational effect of the dark matter on the luminous astronomical objects and on the Hubble-expansion of the Universe
- Assume that the DM has particle origin

Dark matter candidate

- DM exists, but known evidence is based solely on the gravitational effect of the dark matter on the luminous astronomical objects and on the Hubble-expansion of the Universe
- Assume that the DM has particle origin
- Only chance to observe such a particle if it interacts with the SM particles, which needs a portal In the superweak model the vector boson portal Z' with the lightest sterile neutrino v_4 as dark matter candidate is a natural scenario (Higgs portal exists, but negligible)

Parameter space for the freeze-out scenario of dark matter production in the SWSM

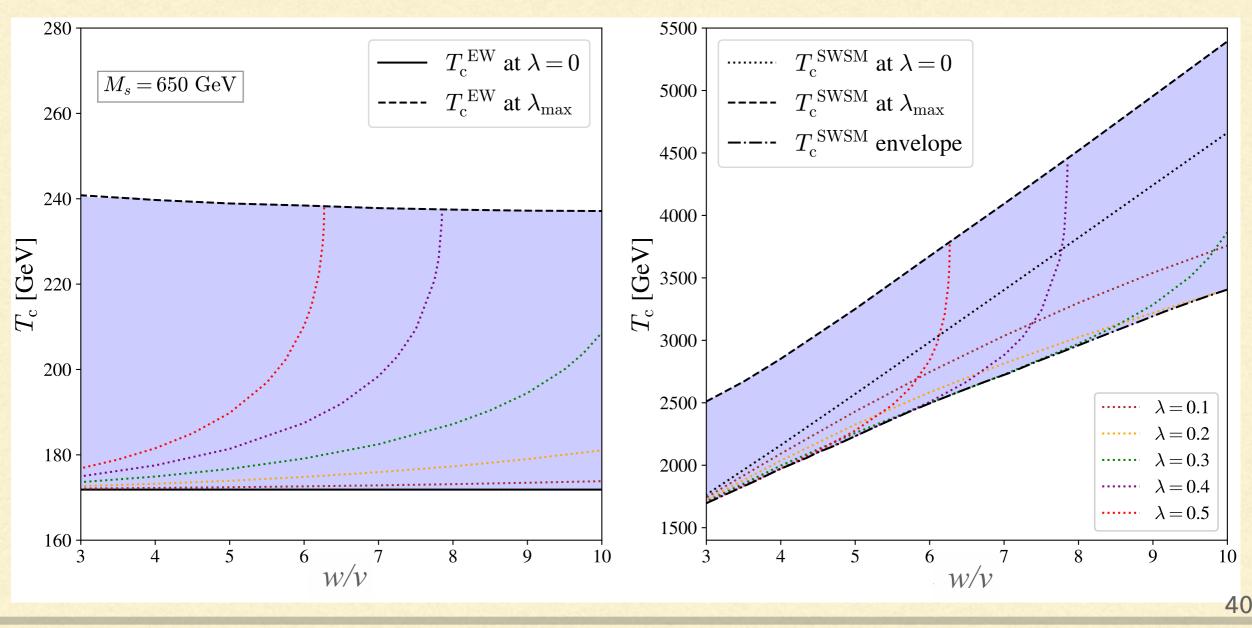


It is essential for the SWSM DM candidate that the resonance in $SM+SM \rightarrow Z' \rightarrow DM+DM$ can dominate the integral in the rate

Experimental constraints

- Anomalous magnetic moment of electron and muon
 - Z' couples to leptons modifying the magnetic moment
 - Constraints on (g-2) translate to upper bounds on the coupling $g_z(M_{Z'})$
- NA64 search for missing energy events
 - Strict upper bounds on $g_z(M_{Z'})$ for any U(1) extension (dark photons)
- Supernova constraints based on SN1987A
 - Constraints are based on comparing observed and calculated neutrino fluxes
- Big Bang Nucleosynthesis provides constraints on new particles
 - New particles should have negligible effects during BBN
 - Meson production can be dangerous close to BBN
- Further constraints are due to CMB, solar cooling, beam dump experiments etc.

Cosmological constraints on the freeze-out scenario of dark matter production in the SWSM



Expected consequences (take-home messages)

- Dirac and Majorana neutrino mass terms are generated by the SSB of the scalar fields, providing the origin of neutrino masses and oscillations [Iwamoto, Kärkäinnen, Péli, ZT, arXiv:2104.14571; Kärkkäinen and ZT, arXiv:2105.13360]
- The lightest new particle is a natural and viable candidate for WIMP dark matter if it is sufficiently stable [Seller, Iwamoto and ZT, arXiv:2104.11248]
- Diagonalization of neutrino mass terms leads to the PMNS matrix, which in turn can be the source of lepto-baryogenesis [Seller, Szép, ZT, arXiv:2301.07961, talk by Károly Seller on Friday and under investigation]
- The second scalar together with the established BEH field can stabilize the vacuum and be related to the accelerated expansion now and inflation in the early universe [Péli, Nándori and ZT, arXiv:1911.07082; Péli and ZT, arXiv:2204.07100]

Prerequisite: phase-transition temperatures in the SWSM (see Károly Seller's talk on Friday)

$U(1)_z$ is broken earlier than $SU(2)_L \times U(1)_Y$

Expected consequences (take-home messages)

- Dirac and Majorana neutrino mass terms are generated by the SSB of the scalar fields, providing the origin of neutrino masses and oscillations [Iwamoto, Kärkäinnen, Péli, ZT, arXiv:2104.14571; Kärkkäinen and ZT, arXiv:2105.13360]
- The lightest new particle is a natural and viable candidate for WIMP dark matter if it is sufficiently stable [Seller, Iwamoto and ZT, arXiv:2104.11248]
- Diagonalization of neutrino mass terms leads to the PMNS matrix, which in turn can be the source of lepto-baryogenesis [Seller, Szép, ZT, arXiv:2301.07961 talk by Károly Seller on Friday and under investigation]
- The second scalar together with the established BEH field can stabilize the vacuum and be related to the accelerated expansion now and inflation in the early universe

[Péli, Nándori and ZT, arXiv: 1911.07082; Péli and ZT, arXiv: 2204.07100]

Expected consequences (take-home messages)

- Dirac and Majorana neutrino mass terms are generated by the SSB of the scalar fields, providing the origin of neutrino masses and oscillations [Iwamoto, Kärkäinnen, Péli, ZT, arXiv:2104.14571; Kärkkäinen and ZT, arXiv:2105.13360]
- The lightest new particle is a natural and viable candidate for WIMP dark matter if it is sufficiently stable [Seller, Iwamoto and ZT, arXiv:2104.11248]
- Diagonalization of neutrino mass terms leads to the PMNS matrix, which in turn can be the source of lepto-baryogenesis [Seller, Szép, ZT, arXiv:2301.07961 and under investigation]
- The second scalar together with the established BEH field can stabilize the vacuum and be related to the accelerated expansion now and inflation in the early universe

[Péli, Nándori and ZT, arXiv:<u>1911.07082</u>; Péli and ZT, arXiv:<u>2204.07100</u>]

SWSM has the potential of explaining all known results beyond the SM

Main questions

Is there a non-empty region of the parameter space where all these promises are fulfilled?

Main questions

Is there a non-empty region of the parameter space where all these promises are fulfilled?

Can we predict any new phenomenon observable by present or future experiments?

Main questions

Present focus:

Is there a non-empty region of the parameter space where all these promises are fulfilled?

Can we predict any new phenomenon observable by present or future experiments?

Important test

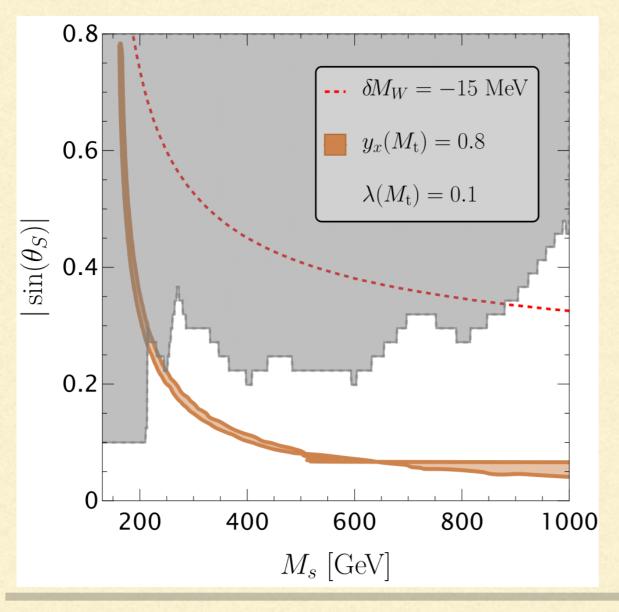
Once the allowed region of the parameter space for fulfilling the expectations is understood

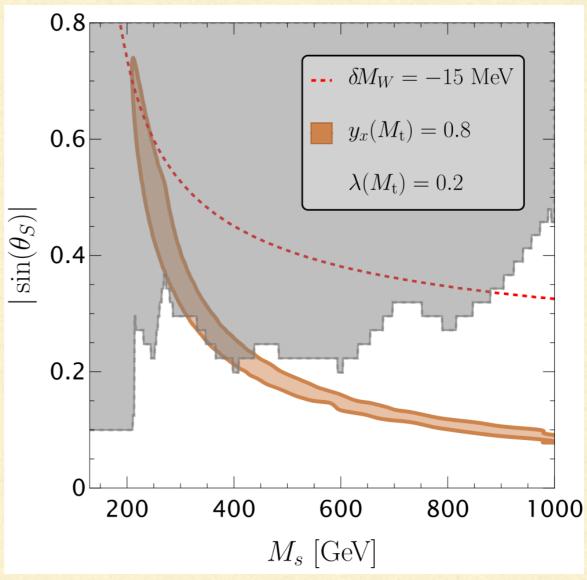
the observation of the Z' or S in the allowed region

Experimental constraints in the scalar sector from direct searches and M_{W}

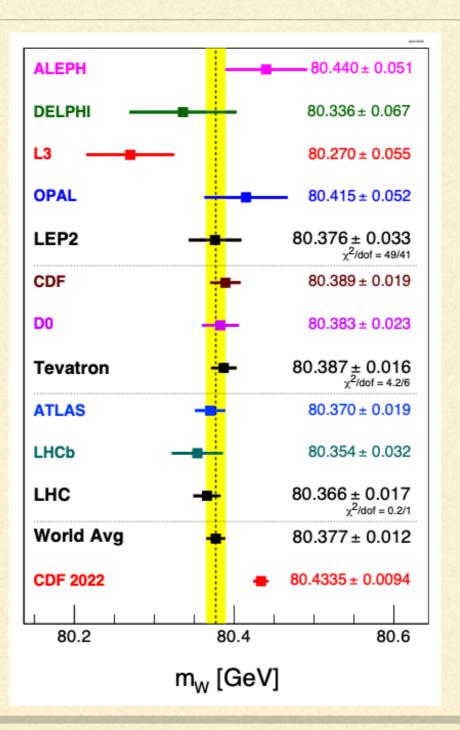
 $M_s > M_h:$

[Zoltán Péli and ZT, arXiv: 2204.07100]


47


 $y_x = 0$: scalar sector decouples 0.8 0.8 $\delta M_W = -15 \text{ MeV}$ $\delta M_W = -15 \text{ MeV}$ $y_x(M_t) = 0.$ $y_x(M_t) = 0.$ 0.6 0.6 $\lambda(M_{\rm t}) = 0.2$ $\lambda(M_{\rm t}) = 0.1$ $|\sin(\theta_S)|$ $\sin(\theta_S)$ 0.4 0.4 0.2 0.2 200 1000 400 600 800 1000 200 400 600 800 M_s [GeV] M_s [GeV]

Experimental constraints in the scalar sector from direct searches and ${\cal M}_{W}$


 $M_s > M_h:$

[Zoltán Péli and ZT, arXiv: 2204.07100]

M_W is measured and computed precisely (with per myriad precision)

Prediction of M_W in the SWSM

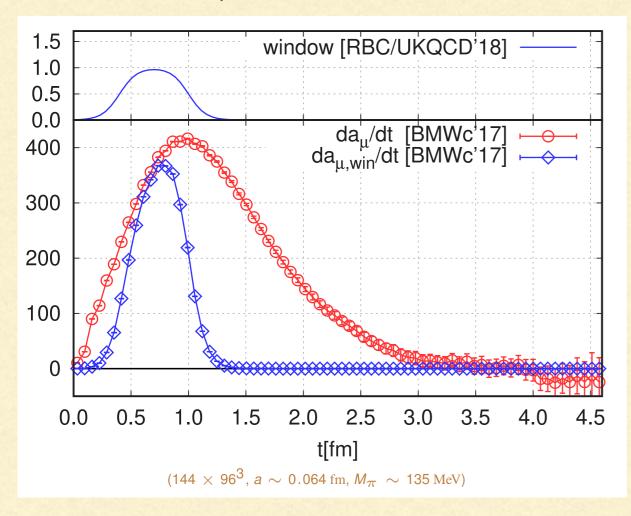
(see Zoltán Péli's talk, [Zoltán Péli and ZT, arXiv: 2305.11931])

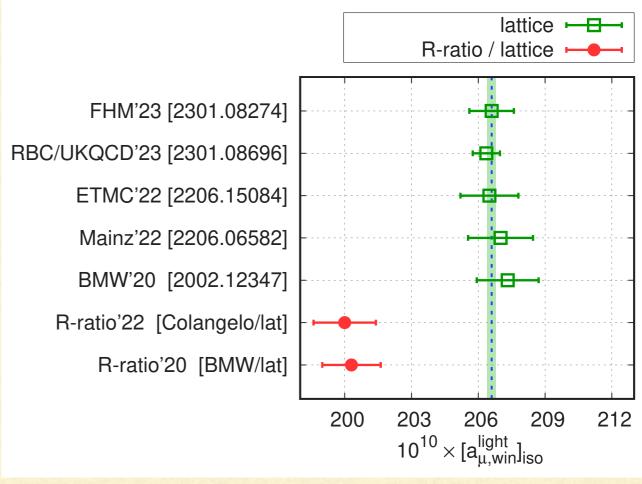
Can be determined from the decay width of the muon:

$$M_W^2 = \frac{\cos^2 \theta_Z M_Z^2 + \sin^2 \theta_Z M_{Z'}^2}{2} \left(1 + \sqrt{1 - \frac{4\pi\alpha / (\sqrt{2}G_F)}{\cos^2 \theta_Z M_Z^2 + \sin^2 \theta_Z M_{Z'}^2}} \frac{1}{1 - \Delta r_{SM} - (\Delta r_{BSM}^{(1)} + \Delta r_{BSM}^{(2)})} \right)$$

- Valid in MS
- θ_Z is the Z Z' mixing angle
- $lacktriangleright \Delta r_{SM}$ collects the SM quantum corrections (known completely at two loops and partially at three loops)
- $\Delta r_{BSM}^{(1)}$ collects the formally SM quantum corrections but with BSM loops
- $lacksquare \Delta r_{BSM}^{(2)}$ collects the BSM corrections to $M_{Z'}$ and $heta_Z$

Conclusions


- Established observations require physics beyond SM, but do not suggest rich BSM physics
- $U(1)_z$ superweak extension has the potential of explaining all known results beyond the SM
- Neutrino masses are generated by SSB at tree level
- One-loop corrections to the tree-level neutrino mass matrix computed and found to be small (below 1%) in the parameter space relevant in the SWSM
- Lightest sterile neutrino is a candidate DM particle in the [10,50] MeV mass range for freeze-out mechanism with resonant enhancement → predicts an approximate mass relation between vector boson and lightest sterile neutrino
- lacksquare In the scalar sector we find non-empty parameter space for $M_{\scriptscriptstyle S}>M_h$
- Contributions to EWPOs (e.g. M_W , lepton g-2) are negligible in the superweak region and a systematic exploration of the parameter space is ongoing


the end

Appendix

Status of the muon anomalous magnetic moment: window observable

- restrict correlation window to [0.4,1.0] fm:
- two orders of magnitude easier (less CPU, less manpower needed)
 lattice vs. R-ratio: 4.9σ tension:

Charge assignment from gauge invariant neutrino interactions

field	$SU(3)_{c}$	$SU(2)_{\rm L}$	y_j	$z_j^{\sf (a)}$	$z_j^{(b)}$	$r_j = z_j/z_\phi - y_j^{ ext{(c)}}$
$U_{ m L},D_{ m L}$	3	2	$\frac{1}{6}$	Z_1	$\frac{1}{6}$	0
$U_{ m R}$	3	1	$\frac{2}{3}$	Z_2	$\frac{7}{6}$	$\frac{1}{2}$
$D_{ m R}$	3	1	$-\frac{1}{3}$	$2Z_1 - Z_2$	$-\frac{5}{6}$	$-\frac{1}{2}$
$ u_{ m L},\ell_{ m L}$	1	2	$-\frac{1}{2}$	$-3Z_{1}$	$-\frac{1}{2}$	0
$ u_{ m R}$	1	1	0	$Z_2 - 4Z_1$	$\frac{1}{2}$	$\frac{1}{2}$
$\ell_{ m R}$	1	1	-1	$-2Z_1-Z_2$	$-\frac{3}{2}$	$-\frac{1}{2}$
ϕ	1	2	$\frac{1}{2}$	z_{ϕ}	1	$\frac{1}{2}$
χ	1	1	0	z_χ	$\begin{bmatrix} -1 \end{bmatrix}$	-1

[Timo J. Kärkäinen and ZT, arXiv: 2301.06621]

$$\mathcal{O}_{6a} = \frac{C_{6a}}{\Lambda^2} (\overline{L} \gamma^{\mu} P_{L} L) (\overline{f} \gamma_{\mu} P_{X} f)$$

where Λ is the scale of new physics, can be as low as few MeV, which can be probed in

Coherent Elastic Neutrino-Nucleus Scattering (CEvNS)

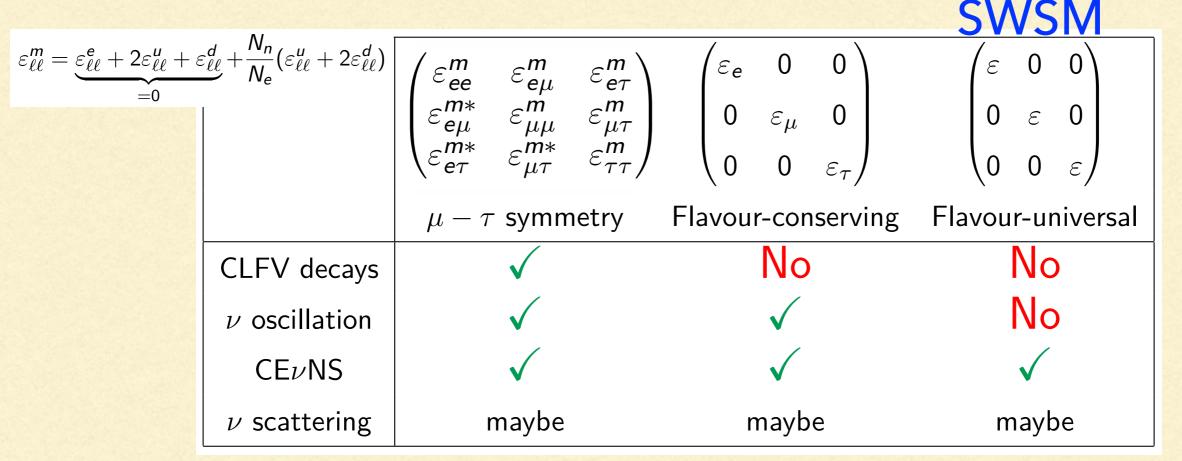
Standard parametrization of NSI:

$$\begin{split} \mathcal{L}_{\mathrm{NSI}} &= -2\sqrt{2}G_{\mathrm{F}} \sum_{\substack{f,X=\pm,\ell,\ell'\\\ell,\ell'}} \varepsilon_{\ell,\ell'}^{f,X} (\bar{\nu}_{\ell}\gamma^{\mu}P_{\mathrm{L}}\nu_{\ell'}) (\bar{f}\gamma_{\mu}P_{X}f) \\ \text{where} \quad \varepsilon_{\ell,\ell'}^{f,X} &\propto +\frac{1}{q^{2}} \text{ if } q^{2} \gg M^{2}, \qquad \text{"light NSI"} \quad \text{for a mediator} \\ \varepsilon_{\ell,\ell'}^{f,X} &\propto -\frac{1}{M^{2}} \text{ if } q^{2} \ll M^{2}, \qquad \text{"heavy NSI"}, \end{split}$$

assume M = 50 MeV, which is

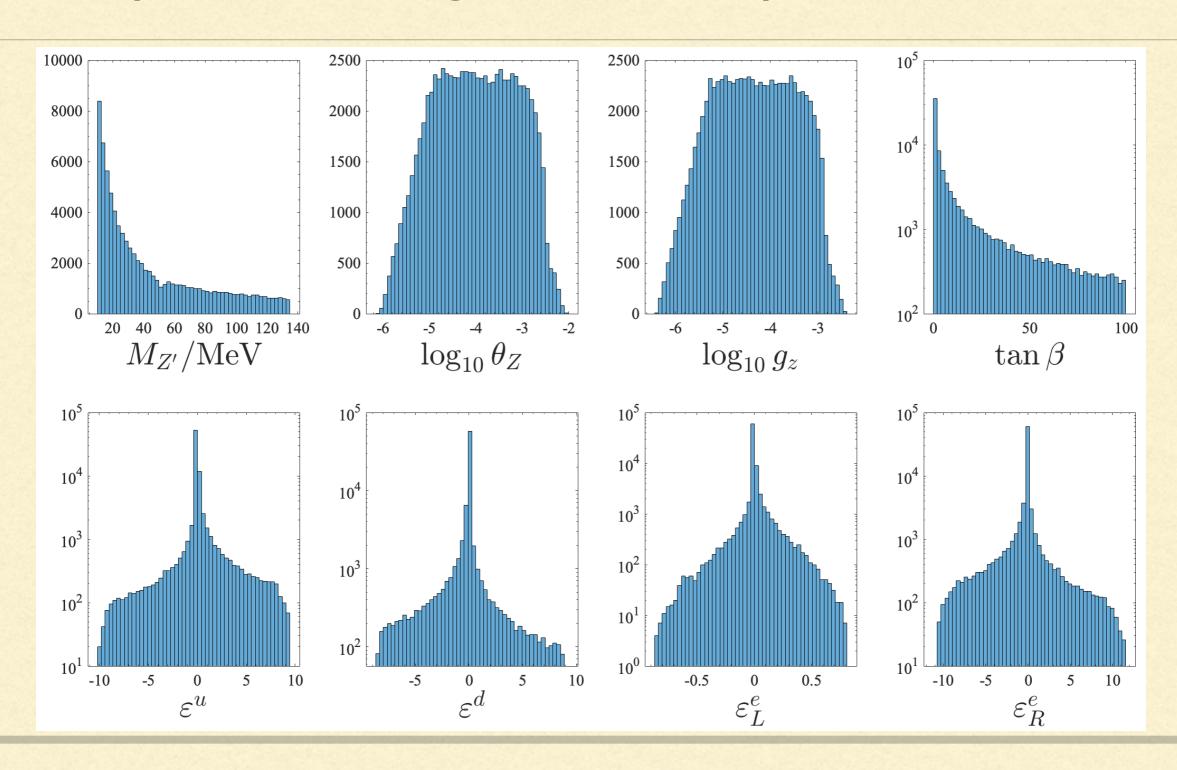
- light in CHARM or NuTEV $q^2 = O((20 \,\text{GeV})^2)$
- heavy in neutrino oscillation experiments $q^2 \approx 0$
- but $q^2 \approx M^2$ in CEvNS

We can still apply the NSI formalism using the full propagator with q^2 being the characteristic momentum transfer squared

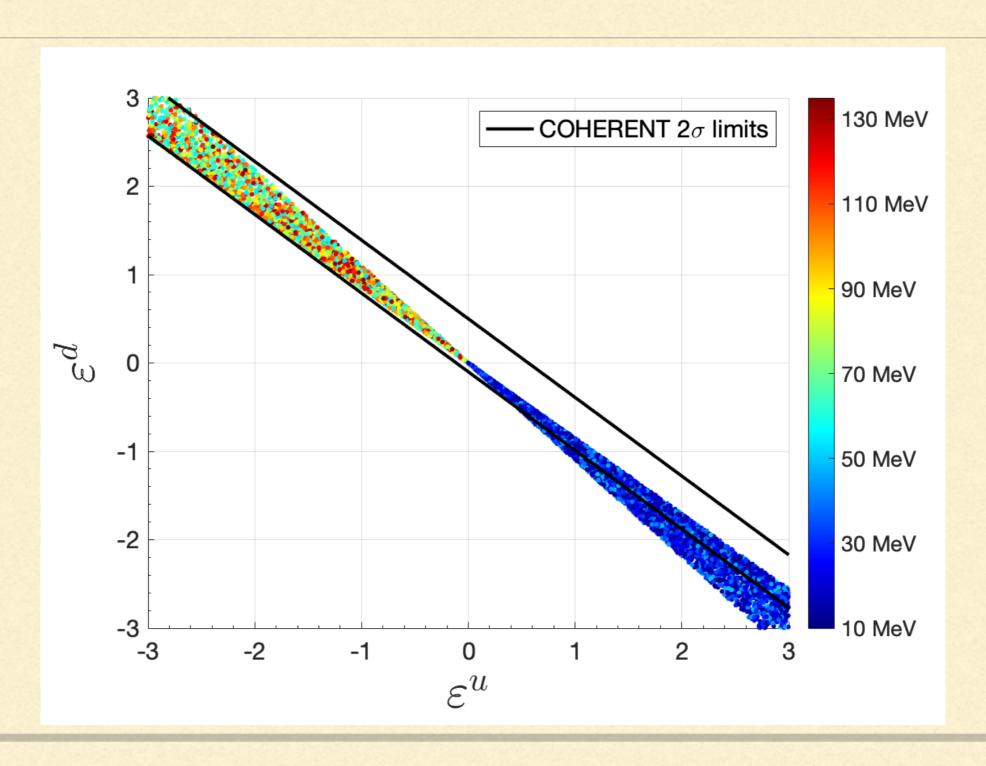

assume M = 50 MeV, which is

- light in CHARM or NuTEV $q^2 = O((20 \,\text{GeV})^2)$
- heavy in neutrino oscillation experiments $q^2 \approx 0$
- but $q^2 \approx M^2$ in CEvNS

We can still apply the NSI formalism using the full propagator with q^2 being the characteristic momentum transfer squared


- Can be used to [Timo J. Kärkäinen and ZT, arXiv: 2301.06621]
 - Constrain the parameter space of SWSM
 - Predict relations between NSI couplings assuming SWSM

High-energy theory enforces texture for NSI matrix:



 Existing limits on NSI constrain the parameters of the high-energy theory

Non-standard interactions and the SWSM: preferred regions of the parameters

Non-standard interactions and the SWSM: preferred regions of the parameters

