

Standard Model and Beyond

21-23 October 2022 Katowice Europe/Warsaw timezone

Short-baseline program at Fermilab

Jaroslaw Nowak for the SBN Collaborations

Short-baseline results

The 3-(active)v oscillation parameters have been measured with excellent precision by many experiments.

But questions remains un-answered:

- Are these active neutrinos their own anti-particle (Majorana)?
 - Jointly with δ_{CP} they could answer the matter/anti-matter asymmetry.
- Do more exotic right-handle neutrinos (sterile) exist ?

300

250

200

150

100

50

Events

Observed experimental anomalies motivate the search of sterile neutrinos.

MiniBooNE

E_v^{QE} [MeV]

PHYS. REV. D 103, 052002 (2021)

Other

Dirt

 $\Delta \rightarrow N\gamma$

 π^0 misid

Best-fit

Data

1000

, from K⁰

 ν_{e} from K^{+/}

102

Δm²₄₁ (eV²)

10

10-4

 10^{-3}

 10^{-2}

sin²20...

LSND 90% CL (allowed)

LSND 99% CL (allowed)

MiniBooNE 90% CL (allowed

MiniBooNE 95% CL (allowed

MiniBooNE 99% CL (allowed)

10⁻¹

If interpreted as ve appearance through a two-flavour neutrino oscillation, best fit ∆m² = 0.04 eV²

1200

0.8

LSND

Beam Excess

17.5

12.5

10

7.5

5

2.5

0.4

0.6

15

Phys. Rev. D 64, 112007

Beam Excess

 $p(\bar{v}_{\mu} \rightarrow \bar{v}_{\rho}, e^{\dagger})n$

othe

1.2

L/E. (meters/MeV)

1.4

The Short Baseline Neutrino Program at Fermilab

Finished taking data

The role of SBN is to perform a robust measurement in the search of sterile neutrinos,

while also provides a broad spectrum of other new physics beyond the standard model.

Our strategy to reduce uncertainties:

- Three detectors sampling the same neutrino beam at different distances (BNB)
- Same nuclear target (Ar) and detector technology (LArTPC: liquid argon time projection chambers)

Two Neutrino fluxes

• All SBN detectors are on-axis for the Booster Neutrino Beam

- Each of the detector is at different off-axis angle for the NuMI beam
 - Different compositions of the beam (ν_{μ}/ν_{e})
 - Different energies of neutrinos

Fermilab

LArTPC at work

•3D reconstruction with **mm** resolution.

•Excellent particle identification with dE/dx information. •Low energy thresholds, sub-MeV to GeV.

J.Nowak-SBN Program@Fermilab

Near Detector: SBND

Short-Baseline Near Detector being assembled at Fermilab

Two TPCs

112 tons of LAr

HV feedthrough

Data taking in 2023!

16 field shaping panels

Cathode fitted w/ reflectors

High light collection eff

11k wires across two planes

Cold electronics reduce noise

MicroBooNE detector

Proposal: 2007 (addendum, 2008)

Construction: 2010-2012	within the last 5 years
Installation & Commissioning: 2012-2015	More than 75 public notes sharing with the community as we go
MicroBooNE being lowered into LATTF Operations: 2015-2020	More than 50 PhDs traning experts in LArTPC
R&D Phase: 2021	technology
MicroBooNE sees first neutrinos Detector	shutdown: 2022
Physics da	ata analysis continues
2015	

More than 50 publications

Far Detector: ICARUS

TPC and PMTs

Cosmic Taggers

3 m Overburden

- ICARUS was originally deployed in Gran Sasso and exposed to the LGNS beam before moving to CERN to be refurbished for its run at Fermilab.
- Data taking started fall 2020, with stable noise & electron lifetime (>3 ms)

Commissioning

Calibrations

Data-to-MC Comparisons

The MiniBooNE low-energy excess (LEE)

ve expectation

4.8σ excess of measured ve and ve over prediction, focused at low energy

Consistent with prior results from the LSND experiment: combined significance of 6.1σ

□ Source of excess not known:

could be ve

- photons look identical to electrons in MiniBooNE detector
- or something else?

LArTPC STRENGTH: electrons and photons

- Electrons and photons produce showers in LArTPCs
- Distinguish using dE/dx at start of shower and start point

J.Nowak-SBN Program@Fermilab

MicroBooNE first investigation of the MiniBooNE low-energy excess

First investigation of the MiniBooNE low-energy excess

$NC-\Delta$ single photon search

$v_e SEARCH$

Three high-purity analyses reject v_e interactions as sole source of excess at >97% CL

ve SEARCH

e⁻

e⁻

arXiv:2210.10216

Both initial hypotheses rejected

- Single photon from $\Delta \rightarrow N\gamma$:
- Single electrons

The future searches will include

- > Other 1y events
- > e⁺e⁻ events

Oscillation hypothesis

- □ What does this mean for the sterile neutrino hypothesis?
- $\hfill \begin{tabular}{ll} \hline \begin{tabula$

Upcoming BNB + NuMI analysis will be sensitive to full LSND allowed regions

SBN Sterile Neutrinos Sensitivities

In two/three sterile oscillation channels, SBN will be sensitive to the parameter space favored by previous measurements at the 5σ confidence level.

Complementary measurements in different modes: important for interpretation in terms of sterile neutrino oscillation.

Cross section program

ve CC inclusive

ICARUS is exposed to the off-axis (6°) NuMI neutrino beam

- This leads to a strong enhancement in the ve content of the beam
- 5% in NuMI vs. 0.5% in BNB

High-statistics measurements of exclusive final states,rare processes, and tests of v-Ar models

Uncertainties in neutrino scattering modelling drives uncertainties for oscillation measurement

More exotic searches

SBN can search for a very broad of physics simultaneously

A non-exhaustive list of new physics BSM searches at SBN

Image credit to Marco del Tutto and Pedro Machado

J.Nowak - SBN Program@Fermilab

$\hfill \label{eq:search}$ Search for heavy neutral lepton (HNL) decays to $\mu^{\pm}\pi^{\pm}$

\Box Search for Higgs portal scalar (HPS) decays to $\mu^+\mu^-$

arXiv:2207.03840 [hep-ex]

Summary

- MicroBooNE detailed initial investigations into MiniBooNE anomaly show no evidence for an excess in pure ve and NC∆ 1γ channels → the answer is more complicated
- SBND is finishing detector assembly, and ICARUS has started its physics running
- Stay tuned as the ICARUS and SBND join MicroBooNE in results for world-leading v-Ar cross-section measurements and searches for New Physics.

ICARUS Collaboration

MicroBooNE Collaboration

SBND Collaboration

Backup slides

More exotic searches

Topological (detectable) signatures:

J.Nowak - SBN Program@Fermilab

Charged-current Inclusive measurements

ve CC inclusive

- first measurement on argon as a function of scattering angle and electron energy
- > excellent overall test of neutrino-nucleus generator

v_{μ} CC inclusive

- first measurement on argon as a function of neutrino energy and energy transfer
- > enabled by extensive validation of missing energy model
- stringent test of hadronic part of the interaction
 More to come: higher statistics, multi-differential

Exclusive channels, differential cross-sections

$v_{\mu} \ \textbf{CC0} \boldsymbol{\pi 1} \textbf{p} \ \textbf{Transverse} \ \textbf{Variables}$

- first double-differential cross section in these variables on argon
- > especially sensitive to nuclear effects

ν_μ **CC0π2**p

- first ever direct measurement of 2-proton cross section
- dominated by 2p2h/MEC processes

Neutral current neutral pion production

Important background to ve searches in LArTPCs (MicroBooNE and future experiments: DUNE, SBN) $\succ \pi^0 \rightarrow \gamma\gamma$ looks like ve if one photon missed

First NC π^0 measurement on argon with <E ν >~1 GeV

- separated into Op and 1p channels
- deficit observed compared to all models

Differential cross-section measurement well under way

current result limited by statistics (only few % of available data used)

 $CC\pi^0$ measurement in progress, along with more rare searches e.g. hyperon production

arXiv:2205.07943 [hep-ex]

Searching for new physics

SEARCHING FOR OTHER NEW PHYSICS SIGNATURES

- Search for heavy neutral lepton (HNL) decays to μ[±]π[±]
 - similar sensitivity to NA62
 - order of magnitude improvement on previous MicroBooNE results
- Search for Higgs portal scalar (HPS) decays to µ⁺µ⁻
 - complementary to previous e⁺e⁻ MicroBooNE search
 - First constraints on scalar-Higgs mixing angle θ in this mass range from a dedicated experimental search

HPS mass [MeV]

Oscillation parameter degeneracy

Cancellation if sin²\theta_{24} = R_{ve/v\mu} (ratio of v_e to v_{\mu} in beam) \rightarrow about 0.005 in BNB \rightarrow about 0.04 in NuMI

1µ1p disappearance exclusion limits

Use 1µ1p sample (98% pure v_{μ}) to search for v_{μ} disappearance in BNB

□Data consistent with no oscillation → set Feldman-Cousins exclusion limits

MICROBOONE-NOTE-1106-PUB

Future 3+1 1e1p and 1µ1p oscillation

analysis

Full 3+1 analysis (as done for inclusive selection) also in progress using 1e1p and 1µ1p samples

Exclusion sensitivity (assuming no oscillation) using Wilks' theorem has been found

Feldman-Cousins treatment in progress for full oscillation results- coming soon!

What does this mean?

P. Machado, Fermilab PAC, November 2021

What does this mean?

■ Further investigations will expand photon-like searches and investigate e⁺e⁻ final statessome preliminary results shown below:

Further investigation of NC Δ model: independent reconstruction, more sensitivity to potential excess in 1_xOp channel

NC-Coherent 1y targeted search: forward-going photons with no visible hadronic energy
 Inclusive 1y search: generic test of single photon production

Even more on the way!

Further investigation into NC Δ 1 γ model:

Independent reconstruction

Larger phase space (including charged pions and multiple protons)

□ More sensitive to potential excess in 1y0p channel

MICROBOONE-NOTE-1104-PUB MICROBOONE-NOTE-1103-PUB

Coherent-like single y search:

- Focus on forward-going photons with no visible hadronic energy
- More sensitive to potential excess in forward-going and 1y0p channel

Inclusive single y selection

\square Broader search beyond specific NC \triangle model

- Inclusive signal definition: no electrons and exactly one photon with KE>20 MeV. No muons with KE>100 MeV, but any number of hadrons allowed
- Generic test of Standard Model prediction for single-photon events

Single photon search

Simple hypothesis test: use combined Neyman-Pearson χ² as test statistic

Data consistent with nominal $\Delta \rightarrow Ny$ prediction

Data rejects LEE model hypothesis in favour of nominal prediction at 94.8% CL arXiv:2110.00409 [hep-ex]

single photon search

Slide credit: Mark R-L

1e0p

1eX

60

80

20