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Abstract
We discuss neutrino mass and mixing models based on discrete fla-
vor symmetries. These models can include a variety of new interac-
tions and non-standard particles such as sterile neutrinos, scalar Higgs
singlets and multiplets. We point at connections of the models with
leptogenesis and dark matter and the ways to detect the corresponding
non-standard particles at intensity and energy frontier experiments.

Introducti0n|

e Almost twenty-five years ago SNO and Super-Kamiokande

experiments proved that neutrinos have mass and mixing.

e The theory behind the observed neutrino masses and mixing

still remains a puzzle to us.

e Parameters involved in three flavor neutrino oscillation are:

atmospheric mixing angle 653, solar mixing angle 912, reactor

mixing angle #13, solar mass-squared difference Am?2 |, atmo-

sol’

spheric mass-squared difference Amatm and Dirac CP phase
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Figure 1: Possible ways the neutrino flavors v., v, v, mix to form three mas-
sive neutrinos. Left : Normal Hierarchy, Right : Inverted Hierarchy (Image:
cerncourier.com).

Evolution and preset status of oscillation parameters
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From talk by Peter B. Denton at Neutrino 2022

e Standard Model is unable to dictate the flavor structure of the
Yukawa couplings.

e The mixing in the lepton sector exhibits a completely different

pattern compared to the quark sector.

e Can discrete symmetry play any role here?

Neutrino mixing schemes prior 2010
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e Example: A ;/ — 7 symmetric neutrino mass matrix can be
diagonalized using m,, = Ugdiag (my, ma, m3)U] of the form

A B B
m,=| B C D |,
B DC

where the elements A, B,C' and D in Eq. (1) are in general
complex. With A+ B = C'+ D this matrix yields Tribimaximal
mixing pattern where 693 = 45°, 613 = 0.

Images taken from Reno, Doube Chooz and Daya Bay webpages

e Finite non-Abelian discrete groups such as S3, A4, Sy, As,
T', A(27), Dy, T+, A(6n?) have been extensively used to explain
various fixed mixing schemes.

e How to go beyond fixed mixing schemes? What implication
do they have in cosmology, collider physics, etc?

General Framework|

Figure 2: Examples of subgroups of SU (3) with triplet representations [3]

e Let G be the underlying flavor symmetry where the group
elements are generated by the generators (say) S, 1T', and U.
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Figure 3: Direct vs indirect vs semi-direct model building [3]

e Surviving schemes with ;3 # 0: Trimaximal, Cobimaxial
mixings
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e Example : Let us consider GG F=
and U satisfies the relation

S4. The generators S, T

S?=T°=U*=1 and ST® = (SU)* = (TU)* =

In their irreducible triplet representations, these three generators
can be written as

(-1 22 1 0 0 100
S:§ 2 -1 2 | T=|0w? 0] andU=F[001
2 2 —1 00 w 010

If S4 1s considered to be broken spontaneously into Z3 =

{1,T,T%} (for the charged lepton sector) Zo = {1, SU} (for
the neutrino sector) such that it satisfies

[T, MM, = [SU, M,) = 0,

where M, and M), are charged lepton and neutrino mass matrix,
and the effective mixing matrix can be written as
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where cy = cos and sy = sin 6.

A, flavor Symmetric Scoto-Seesaw:

e Type-I Seesaw Contribution:

YN, , = ~ UN, , = ~ 1 _ 1 .
Ly = —1(L¢S)HN31 + T2(L¢G>HNR2 + §MN1NR1N31 + §MN2NR2NRQ

A

e The scotogenic contribution with the fermion f and scalar
field n :

Lg= L¢S)£ZUQ77 f + 1Mff f + h.c.,

AQ(

o Effective mass matrix reads:

M, = (M,)rreE + (M,)LooP
—B+C —B —-B-C
= -B —(A+B) A-B
-B—-C A-B —-A-B+(C

 After rotation by tribimaximal mixing matrix

M = UigM,Urp
3C 0 —/3C
= — 0 —6B

. —V/3C 0 —4A+C

e The full diagonalization relation of the mass matrix M, can
be written as

T - ; ; i
(UrpUs3)" M,UisUrp = diag(mqe'™, moe'™?, mge'?),

e Effective mixing matrix takes 1My form
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Flavor symmetry and dark matter

e Discrete flavor symmetric constructions can explain neutrino
masses and mixing as well as can ensure the stability of dark
matter.
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Leptogenesis and collider physics

e Discrete flavor symmetry dictates the structures of fermion
mass matrices hence leaves an imprint on leptogenesis.

e Flavor symmetries can be probed in collider experiments
with a distinctive signature.
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Conclusions and Future Directionsl

 Discrete flavor symmetries may be crucial in understanding
the puzzle associated with Standard Model flavor.

* A key challenge lies 1n distinguishing the wide variety of fla-
vor symmetric models.

 Discrete flavor symmetries may also have consequential 1m-
plications in intensity, collider, and cosmic frontiers.

e Non-Abelian discrete symmetries can emerge from extra di-
mensions, as a subgroup of the symmetry of the extra di-
mensional lattice vectors, commonly referred to as modular
symmetry. Neutrino masses might be of modular forms, with
constraints on the Yukawa couplings, which lead to various
phenomenological possibilities.
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