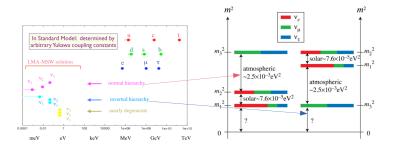
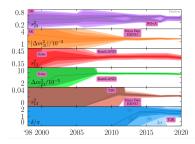
Phenomenological Aspects of Discrete Flavor Symmetries

Biswajit Karmakar University of Silesia Katowice, Poland


Based on 2203.08185, 2209.08610


Co-authors: G. Chauhan, P. S. Bhupal Dev, B. Dziewit, W. Flieger, J. Ganguly, J. Gluza, K. Grzanka, J.

Vergeest, S. Zieba

Standar Model and Beyond, Katowice, Oct. 22, 2022

Parameters and the known unknowns : morning session talks, Ewa Rondio & others

	Normal Ordering (best fit)		Inverted Ordering $(\Delta \chi^2 = 2.6)$	
	bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range
$\sin^2 \theta_{12}$	$0.304^{+0.013}_{-0.012}$	$0.269 \rightarrow 0.343$	$0.304^{+0.012}_{-0.012}$	$0.269 \rightarrow 0.343$
$\theta_{12}/^{\circ}$	$33.44^{+0.77}_{-0.74}$	$31.27 \rightarrow 35.86$	$33.45_{-0.74}^{+0.77}$	$31.27 \rightarrow 35.87$
$\sin^2 \theta_{23}$	$0.573^{+0.018}_{-0.023}$	$0.405 \rightarrow 0.620$	$0.578^{+0.017}_{-0.021}$	$0.410 \rightarrow 0.623$
θ_{23}/\circ	$49.2^{+1.0}_{-1.3}$	$39.5 \rightarrow 52.0$	$49.5^{+1.0}_{-1.2}$	$39.8 \rightarrow 52.1$
$\sin^2 \theta_{13}$	$0.02220\substack{+0.00068\\-0.00062}$	$0.02034 \to 0.02430$	$0.02238\substack{+0.00064\\-0.00062}$	$0.02053 \to 0.02434$
$\theta_{13}/^{\circ}$	$8.57^{+0.13}_{-0.12}$	$8.20 \rightarrow 8.97$	$8.60^{+0.12}_{-0.12}$	$8.24 \rightarrow 8.98$
$\delta_{CP}/^{\circ}$	194^{+52}_{-25}	$105 \to 405$	287^{+27}_{-32}	$192 \to 361$
$\frac{\Delta m^2_{21}}{10^{-5}~{\rm eV}^2}$	$7.42^{+0.21}_{-0.20}$	$6.82 \rightarrow 8.04$	$7.42\substack{+0.21 \\ -0.20}$	$6.82 \rightarrow 8.04$
$\frac{\Delta m^2_{3\ell}}{10^{-3}~{\rm eV}^2}$	$+2.515\substack{+0.028\\-0.028}$	$+2.431 \rightarrow +2.599$	$-2.498\substack{+0.028\\-0.029}$	$-2.584 \rightarrow -2.413$

イロト イボト イヨト イヨト

э

Biswajit Karmakar

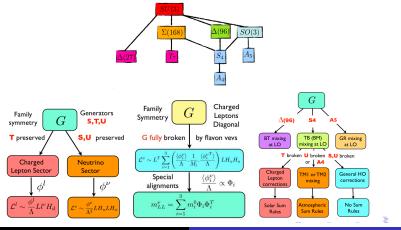
Neutrinos and Flavor Symmetries

Flavor symmetries, why?

· Using the diagonalization relation

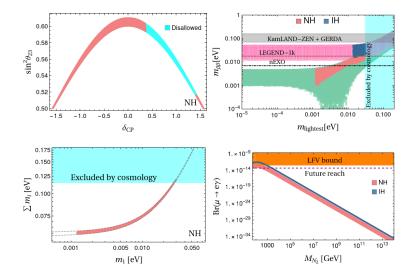
$$m_{\nu} = U_0^{\star} \operatorname{diag}(m_1, m_2, m_3) U_0^{\dagger},$$

such a mixing matrices can easily diagonalize a $\mu - \tau$ symmetric (transformations $\nu_e \rightarrow \nu_e$, $\nu_\mu \rightarrow \nu_\tau$, $\nu_\tau \rightarrow \nu_\mu$ under which the neutrino mass term remains unchanged) neutrino mass matrix of the form


$$m_{\nu} = \left(\begin{array}{ccc} A & B & B \\ B & C & D \\ B & D & C \end{array}\right),$$

With A + B = C + D this matrix yields tribimaximal mixing pattern where $s_{12} = 1/\sqrt{3}$ i.e., $\theta_{12} = 35.26^{\circ}$

э


General Framework

- Fundamental symmetry in the lepton sector can easily explain the origin of neutrino mixing which is considerably different from quark mixing.
- Incidentally, both Abelian or non-Abelian family symmetries have potential to shade light on the Yukawa couplings.
- The Abelian symmetries (such as Froggatt-Nielsen symmetry) only points towards a hierarchical structure of the Yukawa couplings.
- Non-Abelian symmetries are more equipped to explain the non-hierarchical structures of the observed lepton mixing as observed by the oscillation experiments. S. F. King *et.al.* 1301.1340

Biswajit Karmakar

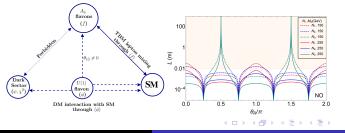
Neutrinos and Flavor Symmetries

-

э

.⊒ →

Flavor Symmetries in Various Frontiers:


\Rightarrow Leptogenesis :

 The CP-violating out-of-equilibrium decay of RH neutrinos into lepton and Higgs doublets in the early universe produces a net lepton asymmetry
Fukugita, Yanagida, 1986; Covi, Roulet, Vissani 9605319

$$\begin{split} \epsilon_i^{\alpha} &= \frac{\Gamma(N_i \to \ell_{\alpha} H) - \Gamma(N_i \to \overline{\ell_{\alpha}} \overline{H})}{\Gamma(N_i \to \ell_{\alpha} H) + \Gamma(N_i \to \overline{\ell_{\alpha}} \overline{H})} = \frac{1}{8\pi} \sum_{j \neq i} \frac{\operatorname{Im} \left[\left((\hat{Y}_{\nu}^{\dagger} \hat{Y}_{\nu})_{ij} \right)^2 \right]}{(\hat{Y}_{\nu}^{\dagger} \hat{Y}_{\nu})_{ii}} f\left(\frac{m_i^2}{m_j^2} \right) \\ f(x) &= \sqrt{x} \left[\frac{2-x}{1-x} - (1-x) \ln \left(1 + \frac{1}{x} \right) \right] \text{ with } x = m_i^2 / m_j^2 \end{split}$$

 \Rightarrow Dark Matter, Collider Physics :

- Can we extend flavor symmetry to the dark sector as well?, Can discrete symmetry play any role to ensure the stability of dark matter?
- Eexperiments are sensitive to the low-energy CP phases connected with flavor symmetry

Biswajit Karmakar Neutrinos and Flavor Symmetries

- Is there any guiding principle behind observed pattern of lepton mixing ?
- (Discrete) flavor symmetry is one such potential candidate.
- What additional role they can play?
- How to falsify these plethora of models?
- If flavor symmetry is not the guiding principle, what else?

* 3 > < 3</p>

Thank you for your attention!!

Biswajit Karmakar Neutrinos and Flavor Symmetries