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|QCD evolution, dilute vs. dense, forward jets|
art by Piotr Kotko

A dilute system carries a few
high-x partons contributing to the
hard scattering.

A dense system carries many
low-x partons.

At high density, gluons are imag-
ined to undergo recombination,
and to saturate.

This is modeled with non-linear
evolution equations, involving
explicit non-vanishing kT .
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Saturation implies the turnover of the gluon density, stopping
it from growing indefinitely for small x.

Forward jets have large rapidities, and trigger events in which
partons from the nucleus have small x.
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|Color Glass Condensate (CGC)| McLerran, Venugopalan
1994

introduction from
Morreale, Salazar 2021The CGC is an effective field theory for high energy QCD.

Partons carrying large hadron momentum fraction x are treated as static color sources ρ.

Their color charge distribution is non-perturbative and is dictated by a gauge invariant
weight functional Wx0 [ρ]. The sources generate a current Jµ,a.

The partons carrying small x are treated as a dynamical classical field Aµ,a.

Sources and fields are related by the Yang-Mills equations [Dµ, Fµν] = Jν.

The expectation value ⟨O⟩x0 of an observable O is calculated as the path integral O[ρ] in
the presence of sources from Wx0[ρ], averaged over all possible configurations ρ.

The interaction of a highly energetic color charged particle with the classical field A in the
eikonal approximation is encoded in the light-like Wilson lines

U(xT) = Pexp

{
ig

∫∞
−∞ dx+A−,a(x+, xT)t

a

}

Evolution in x of Wx[ρ] implies an infinite hierarchy (known as the B-JIMWLK hierarchy)
of non-linear coupled equations dictating the evolution of n-point Wilson line correlators.

Cross section calculations involve particle wave functions and Wilson line correlators.

Balitsky, Jalilian-Marian, Iancu, McLerran, Weigert, Leonidov, Kovner
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|Collinear factorization in QCD|
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|ITMD Factorization| For forward dijet production
in dilute-dense hadronic collisions

Generalized TMD factorization (Dominguez, Marquet, Xiao, Yuan 2011)

dσAB→X =

∫
dk2

T

∫
dxA

∑
i

∫
dxB

∑
b

ϕ
(i)
gb(xA, kT , µ) fb/B(xB, µ)dσ̂

(i)
gb→X(xA, xB, µ)

For xA ≪ 1 and PT ≫ kT ∼ Qs (jets almost back-to-back).

TMD gluon distributions ϕ
(i)
gb(xA, kT , µ) satisfy non-linear evolution equations.

Partonic cross section dσ̂
(i)
gb is on-shell, but depends on color-structure i.

Improved TMD factorization (Kotko, Kutak, Marquet, Petreska, Sapeta, AvH 2015)

dσAB→X =

∫
dk2

T

∫
dxA

∑
i

∫
dxB

∑
b

ϕ
(i)
gb(xA, kT , µ) fb/B(xB, µ)dσ̂

(i)
gb→X(xA, xB, kT , µ)

Originally a model interpolating between High Energy Factorization and Generalized TMD
factorization: PT ≳ kT ≳ Qs.

Partonic cross section dσ̂
(i)
gb is off-shell and depends on color-structure i.

ITMD formalism is obtained from the CGC formalism, by including so-called kinematic
twist corrections (Antinoluk, Boussarie, Kotko 2019).
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|ITMD for 2 jets (or ITMD∗ for more)|
Schematic hybrid (non-ITMD) factorization fomula

dσ =
∑

y=g,u,d,...

∫
dx1d

2kT

∫
dx2 dΦg∗y→n

1

fluxgy
Fg(x1, kT , µ) fy(x2, µ)

∑
color

∣∣∣M(color)
g∗y→n

∣∣∣2

Fg

∑
color

∣∣∣M(color)
∣∣∣2 = Fg

∑
i1,i2,...,in+2

∑
j1,j2,...,jn+2

(
M̃

i1i2...in+2

j1j2...jn+2

)∗(
M̃

i1i2...in+2

j1j2...jn+2

)
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|ITMD for 2 jets (or ITMD∗ for more)|
Schematic hybrid (non-ITMD) factorization fomula

dσ =
∑

y=g,u,d,...

∫
dx1d

2kT

∫
dx2 dΦg∗y→n

1

fluxgy
Fg(x1, kT , µ) fy(x2, µ)

∑
color

∣∣∣M(color)
g∗y→n

∣∣∣2
ITMD∗ formula: replace

Fg

∑
color

∣∣∣M(color)
∣∣∣2 = Fg

∑
i1,i2,...,in+2

∑
j1,j2,...,jn+2

(
M̃

i1i2...in+2

j1j2...jn+2

)∗(
M̃

i1i2...in+2

j1j2...jn+2

)
with (Bomhof, Mulders, Pijlman 2006; Bury, Kotko, Kutak 2018)

(N2
c − 1)

∑
i1,...,in

∑
j1,...,jn+2

∑
ı̄1,...,̄ın+2

∑
ȷ̄1,...,̄ȷn+2

(
M̃

i1i2···in+2

j1j2···jn+2

)∗ (
M̃

ı̄1 ı̄2···̄ın+2

ȷ̄1 ȷ̄2···̄ȷn+2

)
× 2

∫
d4ξ

(2π)3P+
δ(ξ+) e

ik·ξ
〈
P
∣∣∣(F̂+(ξ))j1

i1

(
F̂+(0)

)ȷ̄1

ı̄1

(
U[λ2]

)
i2 ı̄2

(
U[λ2]†

)j2 ȷ̄2
· · ·

· · ·
(
U[λn+2]

)
in+2 ı̄n+2

(
U[λn+2]†

)jn+2 ȷ̄n+2
∣∣∣P〉

where P is the light-like momentum of the hadron (with P− = 0), and kµ = xPµ + kµ
T ,

where F̂ is the field strenght,
and U± is a Wilson line from 0 to ξ via a “staple-like detour” to ±∞ depending on the
type and state (initial/final) of parton. 9997



|ITMD for 2 jets (or ITMD∗ for more)|
Schematic hybrid (non-ITMD) factorization fomula

dσ =
∑

y=g,u,d,...

∫
dx1d

2kT

∫
dx2 dΦg∗y→n

1

fluxgy
Fg(x1, kT , µ) fy(x2, µ)

∑
color

∣∣∣M(color)
g∗y→n

∣∣∣2
ITMD∗ formula: replace

Fg

∑
color

∣∣∣M(color)
∣∣∣2 = Fg

∑
i1,i2,...,in+2

∑
j1,j2,...,jn+2

(
M̃

i1i2...in+2

j1j2...jn+2

)∗(
M̃

i1i2...in+2

j1j2...jn+2

)
with (Bomhof, Mulders, Pijlman 2006; Bury, Kotko, Kutak 2018)

(N2
c − 1)

∑
i1,...,in

∑
j1,...,jn+2

∑
ı̄1,...,̄ın+2

∑
ȷ̄1,...,̄ȷn+2

(
M̃

i1i2···in+2

j1j2···jn+2

)∗ (
M̃

ı̄1 ı̄2···̄ın+2

ȷ̄1 ȷ̄2···̄ȷn+2

)
× 2

∫
d4ξ

(2π)3P+
δ(ξ+) e

ik·ξ
〈
P
∣∣∣(F̂+(ξ))j1

i1

(
F̂+(0)

)ȷ̄1

ı̄1

(
U[λ2]

)
i2 ı̄2

(
U[λ2]†

)j2 ȷ̄2
· · ·

· · ·
(
U[λn+2]

)
in+2 ı̄n+2

(
U[λn+2]†

)jn+2 ȷ̄n+2
∣∣∣P〉

where P is the light-like momentum of the hadron (with P− = 0), and kµ = xPµ + kµ
T ,

where F̂ is the field strenght,
and U± is a Wilson line from 0 to ξ via a “staple-like detour” to ±∞ depending on the
type and state (initial/final) of parton.

x

M̃
i1i2...in+2

j1j2...jn+2
=

∑
σ∈Sn+2

δi1jσ(1)δ
i2
jσ(2)

· · · δin+2

jσ(n+2)
Aσ
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|ITMD for 2 jets (or ITMD∗ for more)|
Schematic hybrid (non-ITMD) factorization fomula

dσ =
∑

y=g,u,d,...

∫
dx1d

2kT

∫
dx2 dΦg∗y→n

1

fluxgy
Fg(x1, kT , µ) fy(x2, µ)

∑
color

∣∣∣M(color)
g∗y→n

∣∣∣2
ITMD∗ formula: replace

Fg

∑
color

∣∣∣M(color)
∣∣∣2 = Fg

∑
σ∈Sn+2

∑
τ∈Sn+2

A∗
σ Cστ Aτ , Cστ = Nλ(σ,τ)

c

with “TMD-valued color matrix”

(N2
c − 1)

∑
σ∈Sn+2

∑
τ∈Sn+2

A∗
σ C̃στ(x, |kT |)Aτ , C̃στ(x, |kT |) = Nλ̄(σ,τ)

c F̃στ(x, |kT |)

where each function F̃στ is one of 10 functions

F(1)
qg , F(2)

qg , F(3)
qg

F(1)
gg , F(2)

gg , F(3)
gg , F(4)

gg , F(5)
gg , F(6)

gg , F(7)
gg
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|ITMD for 2 jets (or ITMD∗ for more)|

F
(1)
qg (x, kT ) =

〈
Tr

[
F̂i+ (ξ)U[−]†F̂i+ (0)U[+]

]〉
,

〈
· · ·

〉
= 2

∫
d4ξ δ(ξ+)

(2π)3P+
eik·ξ

〈
P
∣∣∣ · · · ∣∣∣P〉

F
(2)
qg (x, kT ) =

〈
Tr

[
U[□]

]
Nc

Tr
[
F̂i+ (ξ)U[+]†F̂i+ (0)U[+]

]〉
F
(3)
qg (x, kT ) =

〈
Tr

[
F̂i+ (ξ)U[+]†F̂i+ (0)U[□]U[+]

]〉
F
(1)
gg (x, kT ) =

〈
Tr

[
U[□]†]
Nc

Tr
[
F̂i+ (ξ)U[−]†F̂i+ (0)U[+]

]〉

F
(2)
gg (x, kT ) =

1

Nc

〈
Tr

[
F̂i+ (ξ)U[□]†

]
Tr

[
F̂i+ (0)U[□]

]〉
F
(3)
gg (x, kT ) =

〈
Tr

[
F̂i+ (ξ)U[+]†F̂i+ (0)U[+]

]〉
F
(4)
gg (x, kT ) =

〈
Tr

[
F̂i+ (ξ)U[−]†F̂i+ (0)U[−]

]〉
F
(5)
gg (x, kT ) =

〈
Tr

[
F̂i+ (ξ)U[□]†U[+]†F̂i+ (0)U[□]U[+]

]〉
F
(6)
gg (x, kT ) =

〈
Tr

[
U[□]

]
Nc

Tr
[
U[□]†]
Nc

Tr
[
F̂i+ (ξ)U[+]†F̂i+ (0)U[+]

]〉

F
(7)
gg (x, kT ) =

〈
Tr

[
U[□]

]
Nc

Tr
[
F̂i+ (ξ)U[□]†U[+]†F̂i+ (0)U[+]

]〉

For 2 jets one only needs
F

(1)
qg ,F

(2)
qg ,F

(1)
gg ,F

(2)
gg ,F

(6)
gg ,

and the latter four can be
obtained from the first in
the mean-field and 1/Nc

approximation.
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|Augmented TMD evolution| Kwieciński, Martin, Staśto 1997

Kwieciński, Kutak 2003

ϕ(x, k2) = ϕ(0)(x, k2)

+
αs(k

2)Nc

π

∫ 1

x

dz

z

∫∞
k20

dl2

l2

{
l2ϕ(x

z
, l2)θ(k

2

z
− l2) − k2ϕ(x

z
, k2)

|l2 − k2|
+

k2ϕ(x
z
, k2))√

|4l4 + k4|

}

+
αs(k

2)

2πk2

∫ 1

x

dz

(
Pgg(z) −

2Nc

z

) ∫ k2

k20

dl2 ϕ

(
x

z
, l2

)
+

αs(k
2)

2π

∫ 1

x

dzPgq(z)Σ

(
x

z
, k2

)

−
2α2

s(k
2)

R2

[( ∫∞
k2

dl2

l2
ϕ(x, l2)

)2

+ ϕ(x, k2)

∫∞
k2

dl2

l2
ln

(
l2

k2

)
ϕ(x, l2)

]

linear BFKL with kinematic constraint

non-linear term from triple-pomeron vertex, with RA = RA1/3

DGLAP corrections
Kutak, Sapeta 2012:

Starting distribution ϕ(0)(x, k2) =
αs(k

2)

2πk2

∫ 1

x

dzPgg(z)
x

z
g
(x
z

)
, xg(x) = N(1−x)β(1−Dx)

fitted to combined HERA F2 data, and with ϕ(x, k2 < 1) = k2ϕ(x, 1).
99911



|ITMD gluons| Bury, AvH, Kotko, Kutak 2020

Dependence of F
(1)
qg on kT below 1GeV approximated by power-like fall-off. For higher

values of |kT | it is a solution to the BK equation.

TMDs decrease as 1/|kT | for increasing |kT |, except F
(2)
gg , which decreases faster (even

becomes negative, absolute value shown here).
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|Sudakov resummation for dijets|

S. Sapeta

Having hard jets in the final state, large
logarithms associated with the hard
scale have to be resummed. This re-
summation can be accounted for by in-
clusion of the Sudakov factor.

Within the small-x saturation formalism, Sudakov effects are most conveniently included
in b-space, via an “initial-state luminosity” (Mueller, Xiao, Yuan 2013)

L
ag→cd
g∗/B (xp, x, kT , µ) =

∫
dbT bT J0(bTkT) e

−S
ag→cd
Sud (µ,bT )

×fa/p(xp, µb)

∫
dk ′

T k
′
T J0(bTk

′
T)Fg∗/B(x, k

′
T)

with µb = 2e−γE/b∗ , b∗ = bT/

√
1+ b2

T/b
2
max. The scale choice µb eliminates threshold

logarithms, but “breaks” factorization between initial-state variables, which complicates
the Monte Carlo approach, or requires expensive 4-dim luminosity grids.
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|Sudakov resummation for dijets|

The Sudakov receives perturbative and non-perturbative contributions for each cannel

Sab→cd
Sud (µ, bT) =

∑
i=a,b,c,d

Si
p(µ, bT) +

∑
i=a,c,d

Si
np(µ, bT)

Perturbative part (Mueller, Xiao, Yuan 2013)

Si
p(Q,bT) =

αs

2π

∫Q2

µ2
b

dµ2

µ2

[
Ai ln

Q2

µ2
− Bi

]
{A,B}qg→qg =

{
2(CA + CF) , 3CF + 2CAβ0

}
, {A,B}gg→gg =

{
4CA , 6CAβ0

}
bmax = 0.5GeV−1

Non-perturbative contribution for small-x gluon already in TMD and should be omitted in
our application (Staśto, Wei, Xiao, Yuan 2018).
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|Dijet azimuthal correlations|
in p-p and p-Pb collisions at forward LHC calorimeters

Abdullah Al-Mashad, AvH, Kakkad,
Kotko, Kutak, van Mechelen, Sapeta

2022

FCAL ATLAS kinematics FoCal ALICE kinematics

Predictions for the azimuthal angle ∆Φ between the two hardest jets in p-p and p-Pb
collisions, in the kinematics of FCAL (ATLAS) and the planned FoCal (ALICE) detectors.

Saturation manifests itself as supression of p-Pb compared to p-p, especially near ∆Φ = π,
but Sudakov factors have the same effect.

Difference between “threshold-log correct” (dashed) and “factorized” (solid) calculation
is within accuracy of LO parton-level calculation.

99915



|Dijet azimuthal correlations|
in p-p and p-Pb collisions at forward LHC calorimeters

Abdullah Al-Mashad, AvH, Kakkad,
Kotko, Kutak, van Mechelen, Sapeta

2022

FCAL ATLAS kinematics FoCal ALICE kinematics

Predictions for the nuclear modification ratio Rp−pB =
(
dσp+Pb/d∆Φ

)
/
(
dσp+p/d∆Φ

)
as

function of the azimuthal angle ∆Φ between the two hardes jets p-p and p-Pb collisions.

Points with error bars are corrected with final-state shower effects using Pythia, and rep-
resent uncertainty both form statistics and scale dependence.

Sudakov factors, feared to wash out saturation effects, appear to cancel and the latter stay
manifest.
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