

RSAW UNIVERSITY OF TECHNOLOGY

Advances in Relativistic **Heavy-Ion Physics**

a personal selection of recent experimental results

Łukasz Graczykowski

5th Symposium of the Division for Physics of Fundamental Interactions of the Polish Physical Society Katowice, Poland 21 October 2022

- This talk is based on two excellent (and longer) overviews by:
 - Catalin Ristea (<u>link</u>)
 - Gian Michele Innocenti (<u>link</u>)
 - …+ additional material
- Great overview of the current status of the field can be found by looking at the material from two major conferences:
 - O Quark Matter (QM 2022) in Kraków (link)
 - Strangeness in Quark Matter (SQM 2022) in Busan (<u>link</u>)

- QCD predicts at high temperature/density the quark-gluon plasma (QGP): a deconfined system of quarks and gluons
- QGP might have existed in the expanding Universe in the first µs after the Big Bang
 - Achieved in the laboratory by colliding heavy ions

Heavy ion collisions and QGP

- QCD predicts at high temperature/density the quark-gluon plasma (QGP): a deconfined system of quarks and gluons
- QGP might have existed in the expanding Universe in the first µs after the Big Bang
 - Achieved in the laboratory by colliding heavy ions

21 Oct. 2022, 5th SFOF PTF

Anisotropic flow

Anisotropic flow: the transfer of initial spatial anisotropy into the final anisotropy in momentum space via collective interactions

$$E\frac{d^{3}N}{d^{3}p} = \frac{1}{2\pi} \frac{d^{2}N}{p_{T}dp_{T}dy} (1 + \sum_{n=1}^{\infty} 2v_{n} \cos[n(\phi - \Psi_{n})])$$

Ł. Graczykowski

WI

Anisotropic flow

Anisotropic flow: the transfer of initial spatial anisotropy into the final anisotropy in momentum space via collective interactions

$$E\frac{d^{3}N}{d^{3}p} = \frac{1}{2\pi} \frac{d^{2}N}{p_{T}dp_{T}dy} (1 + \sum_{n=1}^{\infty} 2v_{n} \cos[n(\phi - \Psi_{n})])$$

Sensitive to the system evolution

- Constrain initial conditions, equation-of-state, transport properties
- Stronger constraints are obtained from measurements of identified particles

21 Oct. 2022, 5th SFOF PTF

Ł. Graczykowski

 $\tau=0.4$ fm/c

10

5

y [fm]

-5

-10

τ=6.0 fm/c, ideal

0

x [fm]

5

10

5

-5

-10 -10

-5

y [fm]

-10

-5

12

10

6

2

10

x [fm]

600

500

400

100

0

τ=6.0 fm/c, η/s=0.16

12

10

10

5

10

5

300 (<u>j</u>) 200

Nuclear modification factor – R_{AA}

 $R_{AA} < 1$ at high p_T – nuclear effects suppress the particle production $R_{AA} \sim 1$ at high p_T (binary scaling) – no nuclear effects

Heavy quarks are produced early in the evolution, before QGP is formed, therefore are an excellend probe

Charmonium suppresion in QGP

Phys.Lett.B 178 (1986) 416-422

21 Oct. 2022, $5^{\rm th}$ SFOF PTF

Charmonium suppresion in QGP

J/ψ and $\psi(2S)$

Inclusive J/Ψ, Ψ(2S)

- Stronger suppression at high-p_T and increasing trend of R_{AA} towards low-p_T for both charmonium states → hint of regeneration
- Good agreement between CMS and ALICE in the common $p_{\rm T}$ range

21 Oct. 2022, $5^{\rm th}\,SFOF\,PTF$

Effects of recombination:

- overall enhancement of the RAA at low pT
- more J/ψ at central rapidities than at forward rapidities:

J/ψ and $\psi(2S)$

ALI-PREL-511196

Inclusive J/Ψ, Ψ(2S)

- Stronger suppression at high- p_{T} and increasing trend of R_{AA} towards low- p_T for both charmonium states \rightarrow hint of regeneration
- Good agreement between CMS and ALICE in the common p_{τ} range

Prompt J/Ψ

- Significant v_2 up to high- p_{T}
- $b \rightarrow J/\Psi$ has lower v_2 and decreases faster $\Psi(2S) v_2 \gtrsim 0.1 > J/\Psi v_2$
- Hint of different regeneration contribution for ground and excited states

Phys. Rev. C 95 (2017) 034908

21 Oct. 2022, 5th SFOF PTF

Bottomonium suppresion in QGP

Bottomonia less affected by recombination due to lower b-bbar cross section!

different radii/binding energies → different suppression

Dissociation:

Bottomonia melt inside the medium (colour screening)

21 Oct. 2022, 5th SFOF PTF

 $p_{-}^{\mu\mu} < 30 \text{ GeV}$

 $|v^{\mu\mu}| < 2.4$

 $p_{-}^{\mu} > 4 \text{ GeV}$

 $|m^{\mu}| < 2.4$

 Strong suppression w.r.t. to pp collisions in PbPb collisions!

Loosely bound states more suppressed

11

• (Milder)Υ suppression of loosely bound states

 Need for final state effects in pPb collisions (e.g. hadronic rescattering)

How much of the PbPb suppression can be explained by "cold" final state processes?

21 Oct. 2022, 5th SFOF PTF

10

×10³

6F

8

(I S

9

Events / (0.1 GeV)

Ł. Graczykowski

JHEP10 (2018) 094

14/34

14

13

pPb

Y(3S), first time observation in PbPb

21 Oct. 2022, 5th SFOF PTF

Y(1S) $R_{AA} >> Y(2S) R_{AA} \gtrsim Y(3S) R_{AA}$

Sequential melting of Y(ns) states See also ATLAS: arXiv:2205.03042

21 Oct. 2022, 5th SFOF PTF

CMS-PAS-HIN-21-001 CMS-PAS-HIN-21-007 CMS, PLB 819 (2021) 136385 PbPb 1.6 nb⁻¹, pp 300 pb⁻¹ (5.02 TeV) PbPb 1.7 nb⁻¹ (5.02 TeV) CMS Preliminary pPb 186 nb⁻¹ (8.16 TeV) 0.2 0.15 $p_{T}^{\mu} > 3.5 \text{ GeV/c}$ CMS 1.2 CMS $p_{-} < 30 \text{ GeV/c}$ • Y (1S), pPb 8.16 TeV (70 \leq N^{offline} < 300) Cent. 5-60 % 0.15 |y| < 2.4 Preliminary + Y (1S), PbPb 5.02 TeV (Cent. 10-90 %) 0. Inclusive J/w Cent. Y(1S) \bullet |y| < 2.4 ■ 2.5 < y < 4 (ALICE) 0-90 % 0.1 - 02.5 < y < 4 (ALICE) - Y(1S) (2015 PbPb/pp) 0.05 v_2^{sub} <0.8 0.05 ⊈ 0.6 -0.05 0.4 -0.05 15 20 25 5 10 30 0-3 3-6 6-15 0.2 p_{_} (GeV/c) p_ (GeV/c) 100 150 200 250 300 350 400 50 ⟨ÎN_{part}→

$Y(1S) R_{AA} >> Y(2S) R_{AA} \gtrsim Y(3S) R_{AA}$

Sequential melting of Y(ns) states See also ATLAS: arXiv:2205.03042

21 Oct. 2022, 5th SFOF PTF

 $0 \sim Y(1S) v_2^{HM p-Pb} \sim Y(1S) v_2^{Pb-Pb} < J/\Psi v_2$ Y's strong binding make itself less sensitive to initial geometry

Open heavy-flavour measurements

Ł. Graczykowski

WUT

Flavour dependence of parton energy loss in QCD

In-medium energy loss as a consequence of **radiative** and **collisional** processes.

<u>QCD predicts modifications in the</u> presence of QGP due to:

- different Casimir factors for quarks vs gluons
 dead cone effect:

ALICE direct observation of dead cone Nature 605, 440-446 (2022)

 \rightarrow E_{loss} (gluon) > E_{loss} (charm) > E_{loss} (beauty)

Precise D meson measurements down to low p_T

21 Oct. 2022, $5^{\rm th}$ SFOF PTF

- Precise D meson measurements down to low p_{T}
 - Additional constraints from Λ_c measurements
 - Theory suggests enhancement of Λ_c /D ratio in Pb-Pb over pp
 - Enhancement due to hadronization by recombination + increase in the intermediate p_T from collective expansion

Open charm - prompt D⁰ meson

- Precise D meson measurements down to low p_T
- Additional constraints from Λ_c measurements
 - Theory suggests enhancement of Λ_c /D ratio in Pb-Pb over pp
 - Enhancement due to hadronization by recombination + increase in the intermediate p_T from collective expansion
- The elliptic flow of prompt D⁰ has similar pattern to that of charged hadrons
 - \rightarrow D mesons acquire additional flow via c and light quark recombination
- Charm production suppressed in heavy-ion collisions and charm quark flows

- Energy loss predicted to depend on QGP density, but also on quark mass
 - "Dead cone" effect reduces small-angle gluon radiation for high-mass quarks
- Less suppression for (non-prompt) D⁰ mesons from B decays than prompt D⁰ mesons

 $R_{AA}(b) > R_{AA}(c) \Rightarrow E_{loss}(b) < E_{loss}(c)$

21 Oct. 2022, 5th SFOF PTF

- Energy loss predicted to depend on QGP density, but also on quark mass
 - Dead cone" effect reduces small-angle gluon radiation for high-mass quarks
- Less suppression for (non-prompt) D⁰ mesons from B decays than prompt D⁰ mesons

$$R_{AA}(b) > R_{AA}(c) \Rightarrow E_{loss}(b) < E_{loss}(c)$$

- Non-zero v_2 observed \rightarrow b-quarks partially thermalise in the medium or recombine with light quarks
- Significant non-zero v_3 for b \rightarrow D⁰ for all centrality bins \rightarrow b hadron collectivity is sensitive to fluctuation of initial geometry

21 Oct. 2022, 5th SFOF PTF

CMS-PAS-HIN-21-008

- Comprehensive picture of elliptic flow in Pb-Pb collisions
- Low *p*_T: step increase following mass hierarchy hydrodynamic regime

light quarks > charm > beauty

• Maximum v_2 reached at 3 < p_T < 6 GeV/c:

light quarks \gtrsim **prompt D**⁰ > **prompt J/** Ψ > **b** \rightarrow **hadrons** \rightarrow coalescence of heavy quarks with light quarks at play

• High $p_{\rm T}$: convergence toward non-zero v_2

Elliptic flow in small systems

Light flavors: p-Pb model comparison indicates partonic flow + coalescence

 \rightarrow baryon - meson grouping in both pp and p-Pb

 \rightarrow quark-level flow + recombination in high-multiplicity p-Pb (and pp)

21 Oct. 2022, 5th SFOF PTF

Elliptic flow in small systems

21 Oct. 2022, 5th SFOF PTF

Ł. Graczykowski

-0.15

ALI-PREL-514634

 p_{τ} (GeV/c

Elliptic flow in small systems

More small systems measurements:

ATLAS, PRC 104 (2021) 014903; CMS, arXiv:2204.13486

21 Oct. 2022, 5th SFOF PTF

Ł. Graczykowski

-0.1

-0.15

ALI-PREL-514634

 p_{\perp} (GeV/c

Chiral Magnetic Effect – what is it?

Imbalance of left-handed & right-handed quarks + B-field = electric current

Further reading:

Kharzeev, McLerran, Warringa, Nucl.Phys.A 803 (2008) 227-253 Kharzeev et al, Phys.Lett.B 545 (2002) 298-306, Mace et al, Phys. Rev. D 93, 074036 (2016), Muller et. al., Phys. Rev. Lett. 117, 142301 (2016) , Lappi et al, Phys. Rev. D 97, 034034 (2018), Skokov et al, Int.J.Mod.Phys.A 24 (2009) 5925-5932, McLerran et al Nucl.Phys.A 929 (2014) 184-190

21 Oct. 2022, 5th SFOF PTF

Chiral Magnetic Effect (CME) – imbalance of the right- and left-handed quarks – it arises from topological fluctuations in QCD, which are related to the local violation of P and CP

The magnetic fields in HI are on the order of 10¹⁷-10¹⁸ Gauss and are the strongest magnetic fields observed in nature

A charge current is induced along the magnetic field ${f j}={e^2\over 2\pi^2}\mu_5{f B}$

This leads to charge separation wrt reaction plane

CME at RHIC/STAR – isobar collisions

S. A. Voloshin, Phys. Rev. C70 (2004) 057901; S. A. Voloshin, Phys. Rev. Lett. 105 (2010) 172301; W.-T. Deng, et al Phys. Rev. C94 (2016) 041901; Khachatryan Vet al.(CMS) Phys. Rev. Lett.118 (2017) 122301; Adam J et al.(STAR) Phys. Lett. B 798 (2019) 134975 21 Oct. 2022, 5th SFOF PTF Ł. Graczykowski

1. γ measurement with full TPC ($|\eta| < 1$)

Pre-defined CME criteria:

$$\begin{aligned} &\frac{(\Delta \gamma_{112}/v_2)^{\text{Ru+Ru}}}{(\Delta \gamma_{112}/v_2)^{\text{Zr+Zr}}} > 1 \\ &\frac{(\Delta \gamma_{112}/v_2)^{\text{Ru+Ru}}}{(\Delta \gamma_{112}/v_2)^{\text{Zr+Zr}}} > \frac{(\Delta \gamma_{123}/v_3)^{\text{Ru+Ru}}}{(\Delta \gamma_{123}/v_3)^{\text{Zr+Zr}}} \\ &\frac{(\Delta \gamma_{112}/v_2)^{\text{Ru+Ru}}}{(\Delta \gamma_{112}/v_2)^{\text{Zr+Zr}}} > \frac{(\Delta \delta)^{\text{Ru+Ru}}}{(\Delta \delta)^{\text{Zr+Zr}}} \end{aligned}$$

Data not compatible with pre-defined CME criteria

CME results from RHIC/STAR

- CME criteria not met by the measurements
- No significant difference is observed for all the CME observables between two isobar systems
- $\Delta \gamma / v^2$ ratios are below unity mainly driven by the multiplicity difference between the two isobars
- Further non-flow background studies shown at QM2022
- The isobar data are consistent with the current estimate of non-flow background within error

21 Oct. 2022, 5th SFOF PTF

Instead of a summary – the future

Next generation HI detector at the LHC

Compact all-silicon tracker

 \rightarrow clean separation of signal and background

Vertex detector with excellent pointing resolution

 \rightarrow clean reconstruction of decay chains

Particle identification

 \rightarrow background suppression

Large acceptance

 \rightarrow statistics and correlations

Superconducting magnet system

 \rightarrow effective provision of required magnetic field

Continuous read-out and online processing

 \rightarrow large data sample to access rare signals

21 Oct. 2022, 5th SFOF PTF

Standard Model and Beyond

21-23 October 2022 Katowice Europe/Warsaw timezone

THANK YOU

BACKUP

Angular correlations of identified hadrons

21 Oct. 2022, 5th SFOF PTF

.4

.2
Angular correlations of identified hadrons - puzzle

Possible reasons:

- (mini)jet collimation
- resonances
- quantum statistics
- FSI (strong, Coulomb)
- conservation laws (charge, strangeness, baryon number)
- +momentum cons.

Zhang et al., Phys. Rev. C 99, 054904 (2019) AMPT model new developments

Nuclear modification factor in p-Pb collisions

Complementary measurements in backward and forward η regions

Forward region

a suppression is observed, especially for low $p_{\rm T}$

Backward region

significant enhancement for high $p_{\rm T}$

Clear pseudorapidity dependence

 \rightarrow Differences with CGC calculations at the lowest p_{T}

 \rightarrow Multiple scattering calculations fail to describe the backward region

21 Oct. 2022, 5th SFOF PTF

Impact parameter b

Perpendicular to beam direction Connects centers of colliding nuclei *Not measured directly* \rightarrow estimated by centrality

21 Oct. 2022, $5^{\rm th}$ SFOF PTF

Collision system \rightarrow centrality

Impact parameter b

Perpendicular to beam direction Connects centers of colliding nuclei Not measured directly \rightarrow estimated by centrality

Centrality Determined from *particle multiplicities*

- Most central: 0-5% centrality
- Peripheral: 70-80% centrality (

21 Oct. 2022, 5th SFOF PTF

Event shape engineering

Select events with similar centralities and different shapes based on the event-by-event flow/eccentricity fluctuations

Event shape engineering

Select events with similar centralities and different shapes based on the event-by-event flow/eccentricity fluctuations

D mesons are sensitive to the light-hadron bulk collectivity and event-by-event fluctuations in the initial stage Ł. Graczykowski

21 Oct. 2022, 5th SFOF PTF

42/34

initial stage

Select events with similar centralities and different shapes based on the event-by-event flow/eccentricity fluctuations

21 Oct. 2022, 5th SFOF PTF

At intermediate photon energies, we can access higher-x partons Going higher in photon energy opens up the low-x shadowing region

21 Oct. 2022, $5^{\rm th}$ SFOF PTF

UPC: probing nPDF through photo-nuclear dijet productive

At intermediate photon energies, we can access higher-x partons Going higher in photon energy opens up the low-x shadowing region **Results are consistent with theoretical calculations**

21 Oct. 2022, 5th SFOF PTF

UPC: probing nPDF through photo-nuclear dijet producti

CMS, arXiv:2205.00045 ATLAS-CONF-2022-021 10¹⁸ PbPb 0.38 nb⁻¹ (5.02 TeV [ub/GeV] ΦD/Nb CMS p_{T.1} > 30 GeV 43 Ge\ ATLAS Preliminary 10¹⁵ 0.7 Resolved photon Direct photon 43 < H₇ < 53 GeV (×10⁻² Pb+Pb 5.02 TeV, 1.72 nb p_{T,2} > 20 GeV 🗕 Data 53 < H₊ < 66 GeV (×10⁻⁴ 0.008 < z., < 0.015 |η_{1,2}| < 2.4 Rapidity - RAPGAP 0.6 66 < H_T < 81 GeV (×10⁻⁶) UPC $\gamma + A \rightarrow iets$ Gap Q_ < 25 GeV 81 < H_T < 100 GeV (×10⁻⁸) anti-k. R=0.4 Jets N/N dzγ $P_T > Q_T$ 100 < H_T < 123 GeV (×10⁻¹⁰ 35 < M_{iete} < 185 GeV 123 < H₂ < 152 GeV (×10⁻¹² ⁶ م م م 0.4 dH_{T} 0.3 0.2 10-3 ATLAS $H_T \equiv \sum p_T^i$ 10° $p_{\tau^2} = 60 \text{ GeV}$ 10^{-9} Φ [radian] $x_A \equiv \frac{M_{jets}e^{-y_{jets}}}{}$ 10^{-12} Pythia 8 $\gamma N \rightarrow jets$, PbPb 0.38 nb⁻¹ (5.02 TeV) CTEQ PDFs with Pb photon flux cos(20); CMS p_ > 30 GeV p_{T.2} > 20 GeV Data 10^{-2} 10^{-1} |η_{1,2}| < 2.4 XΔ RAPGAP $z_{\gamma} \equiv \frac{M_{jets}e^{+y_{jets}}}{}$ Q', < 25 GeV Hatta et. al. 43 < H_T < 53 GeV P. > Q. Theory / Data $p_{\rm T}^{1} = 73 \, {\rm GeV}$ $\sqrt{S_{NN}}$ 0.8 HION-2015-001 Run: 286717 Event: 36935568 0.6 53 < H_T < 66 GeV 66 < H_T < 81 GeV 2015-11-26 09:36:37 CEST 1.5 Pb+Pb $\sqrt{s_{NN}}$ = 5.02 TeV 0.4 0.2

 10^{-2}

At intermediate photon energies, we can access higher-x partons Going higher in photon energy opens up the low-x shadowing region **Results are consistent with theoretical calculations**

21 Oct. 2022, 5th SFOF PTF

Ł. Graczykowski

 10^{-1}

10-1

 10^{-2}

Dijet azimuthal angular correlations \rightarrow gluon polarisation in nuclear targets 46/34

0

8

10 12 14 16 18 20 22 24

Q_T [GeV]

Investigating the initial stages with correlations

Study of the correlation between the shape of the fireball (v_2) and its size $([p_T])$ Access to the initial conditions through bulk observables No quantitative description of the data

Slightly better agreement with models using IP-Glasma initial conditions

```
21 Oct. 2022, 5th SFOF PTF
```

Accessing nuclear deformation through $v_n - p_T$ correlation

- Jet: high-p_T parton (quark, gluon) produced at early stage of the collision
- Jet: a collimated spray of particles produced by a high- $p_{\rm T}$ parton
- Informs about the medium properties due to parton energy loss (jet quenching)

 $\Delta E_{\text{gluon}} > \Delta E_{\text{light quarks}} > \Delta E_{\text{heavy quarks}}$

21 Oct. 2022, 5th SFOF PTF

Modification of jets as a probe of quark-gluon plasma

"baseline" jet properties

ATLAS, PLB 790 (2019) 108 AA AA ATLAS anti-k, R = 0.4 jets, $\sqrt{s_{NN}} = 5.02$ TeV R=0.4 0.5 |y| < 2.82015 data: Pb+Pb 0.49 nb⁻¹, pp 25 pb⁻¹ 50% And luminosity uncer. 60 -70% 200 300 500 900 60 100 p_{τ} [GeV]

 R_{AA} increases with jet p_T reaching a value of about 0.6 at $p_T = 1$ TeV in central Pb-Pb collisions for R=0.4

R↑ Energy loss recovered within jet "cone"?

21 Oct. 2022, 5th SFOF PTF

Inclusive jet suppression in medium

R↑ Energy loss recovered within jet "cone"?

21 Oct. 2022, 5th SFOF PTF

Inclusive jet suppression in medium

Vacuum:

Parton shower is a multi-scale process with a given momentum and angular/virtuality scale

Medium:

Angular/virtuality scale can be related to a "resolution scale" at which the jet probes the medium

Exploring angular dependence via groomed jet substruct

Vacuum:

Parton shower is a multi-scale process with a given momentum and angular/virtuality scale

Medium:

Angular/virtuality scale can be related to a "resolution scale" at which the jet probes the medium

P_{T,subleading}

 $p_{\rm T, leading} + p_{\rm T, subleading}$

See also ATLAS-CONF-2022-026

Suppression of large angles and enhancement of small angles. Medium has resolving power for splittings (promotes narrow splittings, filters out wider subjets)

21 Oct. 2022, 5^{th} SFOF PTF

Color charge dependence of jet energy loss

21 Oct. 2022, 5th SFOF PTF

Semi-inclusive "soft" jets deflected, acoplanarity

• Jets recoiling against a high- p_T hadron \rightarrow down to jet $p_T \sim 10 \text{ GeV}/c$

 Δ_{recoil} vs $\Delta \Phi$ broader in Pb-Pb than in pp

Angular deflection of soft large-R jets:

- Scattering on QGP constituents?
- Medium response to energy loss?

21 Oct. 2022, 5th SFOF PTF

Small to no modifications of hadron yields observed in central p-Pb collisions

- Modification of the jet fragmentation
- Strong constraints on E-loss scenarios

•

CME at RHIC/STAR – isobar collisions

systematics:

Details of blind analysis

M. S. Abdallah *et al.* (STAR) Phys. Rev. C, 105 (2022) 014901 J. Adam *et al.* (STAR) Nucl. Sci. Tech. 32 (2021) 48

$$F_{a}$$

$$F_{b}$$

$$k^{*} = \frac{|\mathbf{p}_{a}^{*} - \mathbf{p}_{b}^{*}|}{2}$$

21 Oct. 2022, 5th SFOF PTF

Ł. Graczykowski

60/34

WUT

Femtoscopy measurements

21 Oct. 2022, 5th SFOF PTF

Femtoscopy measurements

62/34

Femtoscopy measurements

21 Oct. 2022, 5th SFOF PTF

Femtoscopy measurements – source size

21 Oct. 2022, 5th SFOF PTF

Ł. Graczykowski

64/34

Femtoscopic correlation function carry information about the particle source $S(r^*)$ from which pairs emerge, as well as the interaction potential via the two-particle wave function $\psi(k^*,r^*)$.

- We constrain the source $S(r^*)$ from pairs where interaction is known
- We can use femtoscopy to measure the interactions $oldsymbol{\psi}$ between other particle species

21 Oct. 2022, 5th SFOF PTF

u d content

Scattering experiments

Exotic atoms and hypernuclei

Femtoscopy measurements – not only LHC!

Ł. Graczykowski

nature

Explore content - About the journal - Publish with us -

nature > articles > article

Article | Open Access | Published: 09 December 2020

Unveiling the strong interaction among hadrons at the LHC

ALICE Collaboration

Nature 588, 232-238 (2020) | Cite this article 9258 Accesses | 6 Citations | 231 Altmetric | Metrics

A Publisher Correction to this article was published on 15 January 2021

This article has been updated

Abstract

One of the key challenges for nuclear physics today is to understand from first principles the effective interaction between hadrons with different quark content. First successes have been achieved using techniques that solve the dynamics of guarks and gluons on discrete space-time lattices^{1,2}. Experimentally, the dynamics of the strong interaction have been studied by scattering hadrons off each other. Such scattering experiments are difficult or impossible for unstable hadrons^{3,4,5,6} and so high-quality measurements exist only for hadrons containing up and down quarks⁷. Here we demonstrate that measuring correlations in the momentum space between hadron pairs^{8,9,10,11,12} produced in ultrarelativistic proton-proton collisions at the CERN Large Hadron Collider (LHC) provides a precise method with which to obtain the missing information on the interaction dynamics between any pair of unstable hadrons. Specifically, we discuss the case of the interaction of baryons containing strange quarks (hyperons). We demonstrate how, using precision measurements of proton-omega baryon correlations, the effect of the strong interaction for this hadron-hadron pair can be studied with precision similar to, and compared with, predictions from lattice calculations^{13,14}. The large number of hyperons identified in proton-proton collisions at the LHC, together with accurate modelling¹⁵ of the small (approximately one femtometre) inter-particle distance and exact predictions for the correlation functions, enables a detailed determination of the short-range part of the nucleon-hyperon interaction.

68/34

21 Oct. 2022, 5th SFOF PTF

Multi-strange hadron interactions

arXiv:2204.10258

First measurement of the $\Lambda\Xi\text{-}$ interaction :

- three units of strangeness,
- constraints for lattice QCD calculations and chiral potentials,
- more precision needed.

21 Oct. 2022, 5th SFOF PTF

ALI-PUB-520807

D-meson and light hadrons interactions

ALI-PUB-502166

- First measurement of the charm-proton correlation function.
- Coulomb baseline production, with models including attractive and repulsive interaction.

- Shallow interaction between charm mesons and nucleons
- We extracted with one sigma uncertainty confidence level value of scattering length Formation of a bound state is not excluded!

21 Oct. 2022, 5th SFOF PTF

D-meson and light hadrons interactions

First studies show a shallow interaction between D mesons and light mesons

21 Oct. 2022, 5th SFOF PTF

Scattering parameters

Correlation function:

$$C(k^{*}) = 1 + \sum_{S} \rho_{S} \left[\frac{1}{2} \left| \frac{f^{S}(k^{*})}{R} \right|^{2} \left(1 - \frac{d_{0}^{S}}{2\sqrt{\pi}R} \right) + \frac{2\Re f^{S}(k^{*})}{\sqrt{\pi}R} F_{1}(2k^{*}R) - \frac{\Im f^{S}(k^{*})}{R} F_{2}(2k^{*}R) \right]$$

 $\mathbf{f_0}$ and $\mathbf{d_0}$ - two important parameters of strong interaction between two particles:

- **d**₀ effective range of strong interaction between two particles; it corresponds to the range of the potential in an simplified scenario - the square well potential.
- **f**₀ scattering length, determines low-energy scattering (complex number)

Elastic cross section (at low k*) is determined by the scattering length: $\lim_{k o 0} \sigma_e = 4\pi f_0^2$

21 Oct. 2022, 5th SFOF PTF

Baryon-antibaryon correlations in Pb-Pb

- **d**₀ effective range of strong interaction between two particles; it corresponds to the range of the potential in an simplified scenario the square well potential.
- f₀ scattering length, determines low-energy scattering (complex number)

Conclusions from the study:

- Scattering parameters for all baryonantibaryon pairs are similar to each other
- We observe a negative real part of scattering length → repulsive strong interaction or creation of a bound state (existence of baryonantibaryon bound states?)
- Significant **positive imaginary part of scattering length** – presence of a non-elastic channel – annihilation

Baryon-antibaryon correlations in pp

PRC 99 (2019) 024001

75/34

For details see CERN-LHC Seminar 25 Sep 2018 https://indico.cern.ch/event/749074/

- Interaction of nucleons and different hyperons – constraining neutron stars EoS
- Constraining lambda-lambda scattering parameters and bound states (H-dibaryon)

3-body interactions

 $Q_3 = \sqrt{-q_{12}^2 - q_{23}^2 - q_{31}^2}$

21 Oct. 2022, 5th SFOF PTF

cumulants

arXiv:2107.10227

Ł. Graczykowski

 Q_3 (GeV/c)

normalised mixed moment (before subtraction)

3-body interactions

Experimental hint to the presence of an effect beyond the two-body interaction in the p-p-p system

pp∧ no significant deviation observed from the null hypothesis

21 Oct. 2022, 5th SFOF PTF

Ł. Graczykowski

77/43 77/34

0.8

Upgrade of experiments

Upgrade of experiments

Next generation heavy-ion detector: ALICE3

Compact all-silicon tracker

 \rightarrow clean separation of signal and background Vertex detector with excellent pointing resolution \rightarrow clean reconstruction of decay chains

Particle identification

 \rightarrow background suppression

Large acceptance

 \rightarrow statistics and correlations

Superconducting magnet system

- \rightarrow effective provision of required magnetic field
- Continuous read-out and online processing
- \rightarrow large data sample to access rare signals

21 Oct. 2022, 5th SFOF PTF

pp collisions @ 13.6 TeV!

21 Oct. 2022, 5th SFOF PTF

NVUT