Highlights of Beyond the Standard Model searches in the CMS detector

Małgorzata Kazana CMS Collaboration

NCBJ National Centre for Nuclear Research Poland

SFOF PTF: 5th Symposium of the Division for Physics of Fundamental Interactions of the Polish Physical Society 21 – 23 Oct 2022

Katowice, Poland

Beyond the Standard Model

- CMS has a very **rich program** for searching for a wide range of BSM signals
 - At this talk, only several highlights from the full LHC Run 2 (~140/fb) data

The **Standard Model**:

- the most rigorous theory of the Nature of particle physics
- incredibly precise and accurate in its predictions
- Higgs boson (very SM-like) has been found!
- But what about?
 - **Dark matter** candidate...
 - Matter/antimatter asymmetry...
 - Neutrino masses....
 - **Hierarchy** problem, **force unification**...

Experimental search recipe

- LHC continues its operating providing quality big data, Run 3 ongoing!
 - 13 years of data taking ©
 - 10 years since the **Higgs boson** discovery!
 - Dozens of **exclusion limits** only...
 - No hints for New Physics... NO SUSY!
 - Where New Physics is hiding?

Experimental search recipe

- To continue searches we may need to change the approach since we are almost on the limit of high mass reach with simplified models:
 - Shift to more complicated signatures
 - Shift to low masses and small couplings
 - Go towards long lifetimes
- Can new particles live in hidden sectors or be long-lived?

- Use of new triggers not available earlier in the LHC running
 - Triggers optimized for long-lived particles
 - Triggers based initial state radiation and jet sub-structure and tagging
 - Data scouting use for trigger level analysis
- Novel approaches with machine learning (BDT, NN, DNN etc) techniques

Elaborate search for complicated BSM scenario

Search for resonant production of strongly coupled Dark Matter (DM)

Generic simple signature of DM (WIMPs)
 missing (transverse) momentum (MET)
 and back-to-back SM object

Jet from the initial state radiation (ISR)

Elaborate search for complicated BSM scenario

Search for resonant production of strongly coupled dark matter

Visible Sector
SM

Visible Sector
SM

SM-DM
mediator

Portal between SM and hidden sector

Z'

Dark Sector

- New SU_{dark}(N) force: Dark QCD Hadronization in the dark sector
- Connected to SM by weakly-coupled mediators: S,V Prompt decay of unstable dark hadrons to visible SM hadrons
- Signature with semivisible jets (SVJets) and non-SM behavior

- Stable dark hadrons remain invisible
 - Can be considered as DM candidates

Dark QCD – semivisible jets

Analysis strategy:

- Resonance dijet search: 2 jets with pT > 200 GeV and |η| < 2.4
- Discrimination variable: **transverse mass m**_T of dijet system and MET
- QCD background rejected with cut on $R_T = MET/m_T > 0.15$
 - Bkg normalization extracted in fit
 - **Jet-level BDT** with dedicated SVJ tagger reduces bkg by ~O(100)

Dark QCD – results

- No structure (~ resonance peak) in the SVJ dijet transverse mass spectra is observed
- Present results for two conditions:
 - Inclusive, signal-independent cut-based approach (most conservative), R_T = MET/m_T > 0.15
 - BDT-based, improved by almost a factor 10 (most aggressive), R_T > 0.15 + BDT

Inclusive analysis excludes the mediator masses in range 1.5 < $m_{7'}$ < 4.0 TeV

When the BDT is employed to identify each jet in the dijet system as semivisible, the mediator mass exclusion increases to **5.1 TeV**

Long-lived- low mass displaced di-muons

Dark Photons Z_D: 0.5 GeV \leq m(Z_D) \leq 50 GeV 0.1 mm \leq CT_o(Z_D) \lesssim 1 m

Signature: very low mass displaced dimuons

- At least 2 opposite sign muons ($p_T > 3 \text{ GeV}$, $|\eta| < 2.4$)
 - with masses down to ~2m_u
 - with displaces vertex (DV) shifted (Lxy) up to 11 cm

Search conditioned by **high rate triggers (scouting):**

- CMS newly use for the analysis
- Allow sensitivities to otherwise inaccessible low-mass events
- Bypass the high-level trigger (HLT) thresholds by directly sending HLT objects to disk instead of saving raw data
- Reduced event info compared to offline reconstructed objects

Displaced di-muon search

Strategy:

- Search for a narrow peak
 in dimuon invariant mass spectrum
 - SM resonances are masked $(\pm 5\sigma_{\rm res.}$ window) for the result

Background:

- controlled with a set of kinematical cuts
- estimated directly from data
- Events are categorized in bins of muon isolation (2,1,0 iso-mu) di-mu momentum p_T(μμ) and displacement I_{xy}

Displaced di-muon – results

- No significant excess is observed
- The CMS most stringent constraints to date in a wide range of signal low-mass and lifetime hypotheses

 CMS reached sensitivity comparable with LHCb especially at higher mass and higher lifetime

11

Where New Physics is hiding?

Any hints from LHC Run 2?

13

Run 2 excitements: H/Y (bb) H(yy) search

- Search for new resonances X decaying to Higgs bosons $X \rightarrow H/Y$ (bb) $H(\gamma\gamma)$
- Several excesses but the largest excess is 3.8 σ local and 2.8 σ global

for m_x = 650 GeV and m_y = 90 GeV:

- MVA and BDT categorization applied
- The HH limits are compared with predictions in the warped extra dimensional model
- The HY limits are interpreted with the N-MSSM and the two-real-scalarsinglet model

Run 2 excitements: H(WW) search

- Search for **new resonances X** produced in gluon-gluon (ggF) or vector-boson fusion (VBF) decaying to Higgs bosons $X \rightarrow H$ (WW) where W is fully leptonic final state (eµ, µµ, ee)
- Curiously, observed excess for m_{χ} = 650 GeV is 3.8 σ local and 2.6 σ global

Exclusion limits are oalso derived on various twohiggs-doublet models and MSSM scenarios

Run 2 excitements: H(ττ) search

Search for MSSM Higgs bosons decaying into the $\tau\tau$ final state

Two ~3σ excesses are seen in the ditau mass distributions ~ 100 GeV and 1.2 TeV

BSM at CMS summary

- CMS experiment builds up a rich program of BSM searches:
 - Large variety of signatures:
 - Complex searches for hypothetical resonances
 - Signals with heavy flavours
 - Higgs giving light to New Physics / dark sector / matter
 - Distinctive signatures of long-lived particle
 optimized to be model independent for a wide range of model types
- Experimental techniques evolves to more sophisticated approaches
- Use of machine learning brings substantial improvements
- More improvements and analyses with full Run 2 data expected while new Run 3 data will be available soon
 - There are several excesses in Run 2 data to cross check with Run 3

 Attention! There were false excitements already in the past (e.g.: 750GeV in H(γγ))

Thank you!

http://cms-results.web.cern.ch/cms-results/public-results/publications/EXO

https://twiki.cern.ch/twiki/bin/view/CMSPublic/SummaryPlotsEXO13TeV

Granted by the Polish Ministry of Education and Science, project 2022/WK/14

Backup slides

Dark QCD – BTD limits

■ BDT-based, improved by almost a factor 10 (most aggressive), $R_T > 0.15 + BDT$

Assuming the Z' boson has a universal coupling of 0.25 to the SM quarks:

- 1:5 < m_Z < 5 TeV excluded for r_{lnv} = 0.3
- $0.02 < r_{lnv} < 0.77$ excluded for $m_{dark} = 20$ GeV

Small excess around m_z, ~ 3.5 TeV w/ small ~2σ local significance weakened exclusion limit

These limits exclude a wide range of strongly coupled hidden sector models for the first time

Dark Matter: Mono-Jet results

- Limits are set on DM particle production in the context of Simplified Models for spin-1 Vector (Axial) Mediator
- Comparison to direct detection (DD) experiments

CMS compatible with DD at low mass

CMS competitive with DD up to 600 GeV

LQ

Run 2 excitements: LQ3 search

- Search for a third-generation leptoquark (LQ3) in non-resonant $\tau\tau$ and b-quark final state
- B-tagger: DeepCVS: DNN extension of combined secondary vertex algo

Discriminators: S_T^{MET} (scalar sum of pt $\tau 1 \tau 2$ b-jet +MET) and angular separation between two tau jet

3.4\sigma local excess for non-resonant production at large LQ3 masses and couplings; no excess is seen for resonant production

