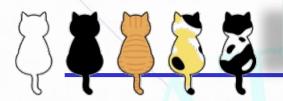
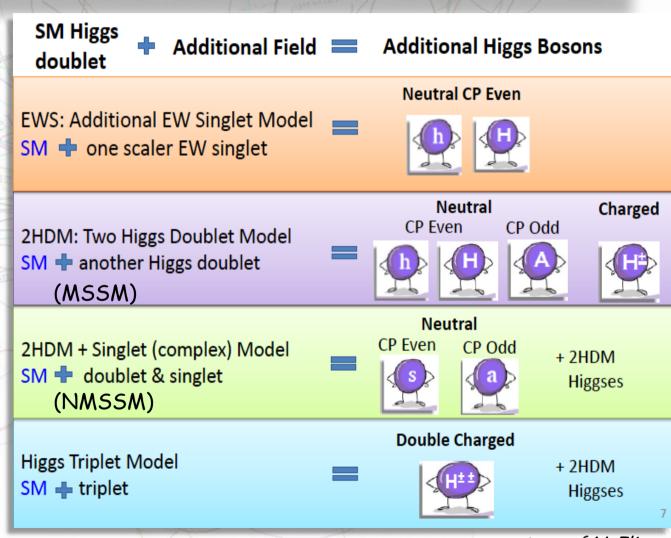


How to find a black cat in a dark room Especially when there is no cat

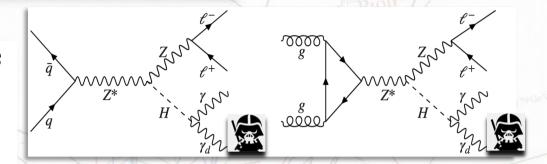

- Quest for new physics is not for wimps
 - A lot of searches performed by ATLAS so far, and all came empty-handed
 - A likelihood for any given search to find something interesting seems to be very small...
 - ... yet, the only way to find something is to keep looking!
- And we are quite well motivated
- The SM is our best tool to understand nature but it's not the ultimate one!
 - Hierarchy problem? Dark matter? Neutrino masses? Matter/anti-matter asymmetry....
 - Tention from SM predictions in B-physics measurements, muon g-2 anomaly etc.
- Shift of paradigm: from seraches of the highest masses, and low background to searches experimentally challenging, with low couplings, low masses etc.
- This talk will present a few of the most recent ATLAS results from the full Run-II data

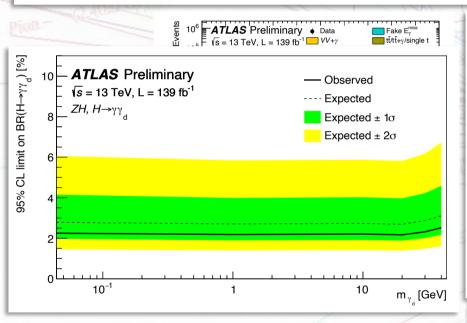


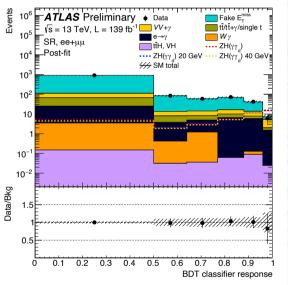
Extended scalar sector

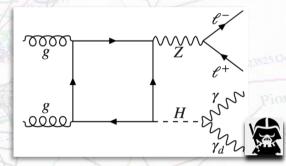
So far Higgs boson (125) looks like from SM, but consistent with SM ≠ incompatible with BSM

- Extended scalar sector appears in many extensions of the SM (e.g. SUSY)
- They allow for SM-like light Higgs phenomenology and bring additional Higgs bosons
- Searches often interpreted in the contest of 2HDM (MSSM)
- Rich phenomenology and final states -> also exotic Higgs decays
- Wide range of tested masses

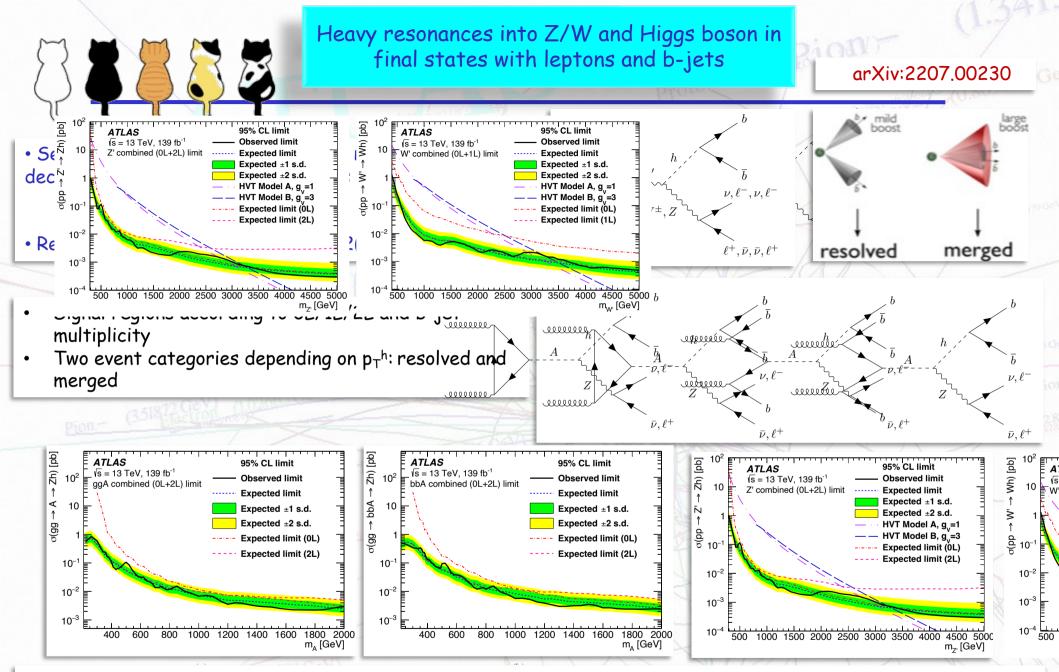

courtesy of N. Ilic




Dark photons from Higgs boson decays via ZH production


ATLAS-CONF-2022-064

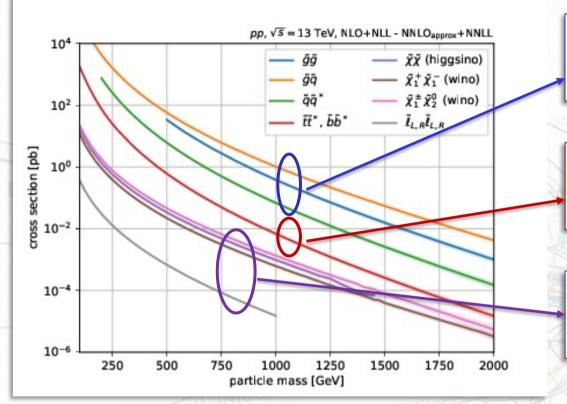
- Dark photon: predicted in hidden-sector models with an unbroken dark U(1) gauge symmetry
- Model independent analysis
- Clean final state: $| ^{+} | ^{-} \gamma \gamma_{dark}$ (MET)
- Massless and light dark-photon (up to 40 GeV)


The BDT classifier output is used as discriminant for the final statistical analysis

$$\sigma_{E_T^{miss}}, \ m_T(p_T^{\gamma}, E_T^{miss}), \ m_{\ell\ell}, \ m_{\ell\ell\gamma}, \ p_T^{\gamma}, \ \frac{|E_T^{miss} + \overrightarrow{p}_T^{\gamma}| - p_T^{\ell\ell}}{p_T^{\ell\ell}}$$

- No excess observed, limit set on BR(H $\rightarrow \gamma \gamma_{\text{dark}}$)
- For massless γ_{dark} , BR(H $\rightarrow \gamma \gamma_{\text{dark}}$) of (2.28%) at 95% CL

Improvement by factor 2 wrt previous (CMS) result


4/12

- No significant excess observed
- Largest deviation from the SM expectation found at 500 GeV in ggA and Z', corresponding to significance of 2.1σ (1.1 σ) local (global) (1.6 σ local for bbA)

SUSY searches strategy

Strong production

- Copious production
- · Large MET in final state

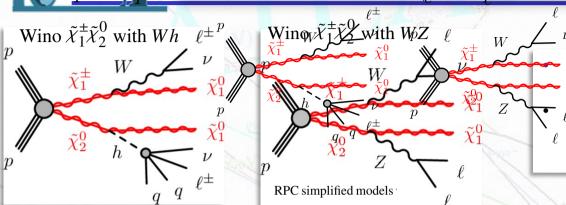
Third-generation sparticles

- Naturalness -> mass of ~O(TeV)
- Lighter than other squarks

Electroweak production

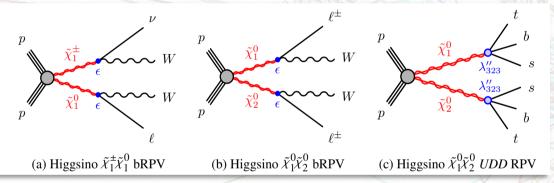
- Coloured spartners too heavy
- Direct gaugino/higgsino/slepton production

R-parity conservation vs RP violation

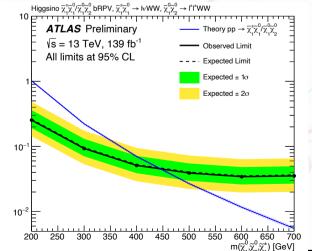

- RPC large MET from weakly interacting LSPs
- RPV more leptons/jets and less or no MET
- RPV prompt or delayed LSP decay

Long lived/metastable sparticles

- Supressed (effective) coupling
- Lack of phase space, e.g.mass degeneraces (compressed searches)
- May induce non-trivial signals in detectors
 - displaced vertices
 - · disappearing tracks etc.

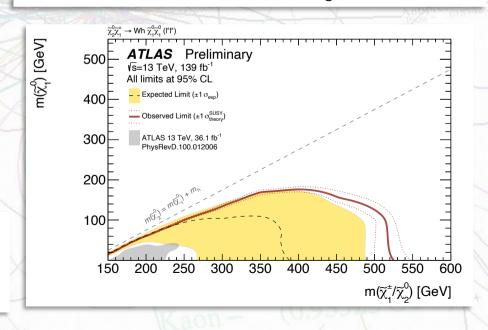

Same sign 21/31 from direct production of winos and higgsinos

ATLAS-CONF-2022-057



Birect production of winos and higgsinos in final states with 2L SS (e/μ) or 3L

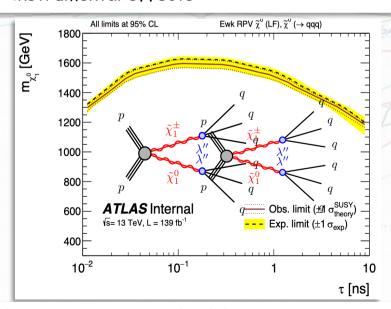
Models with and without R-parity conservation, and with different RPV origin (L or B violating terms)

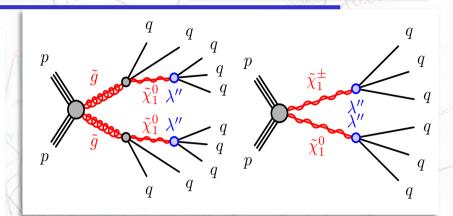


- No deviations from SM predictions were observed
- For intermediate states including Wh (WZ), wino masses up to 525 GeV (260 GeV) are excluded, for a bino of vanishing mass

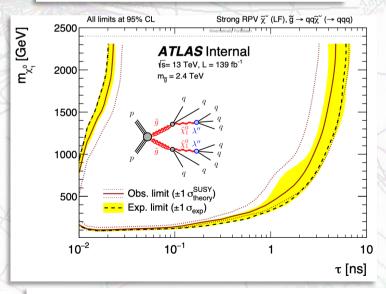
Higgsino masses smaller than 440 GeV are excluded in bRPV

First experimental constraint on bRPV models with degenerate higgsino masses.



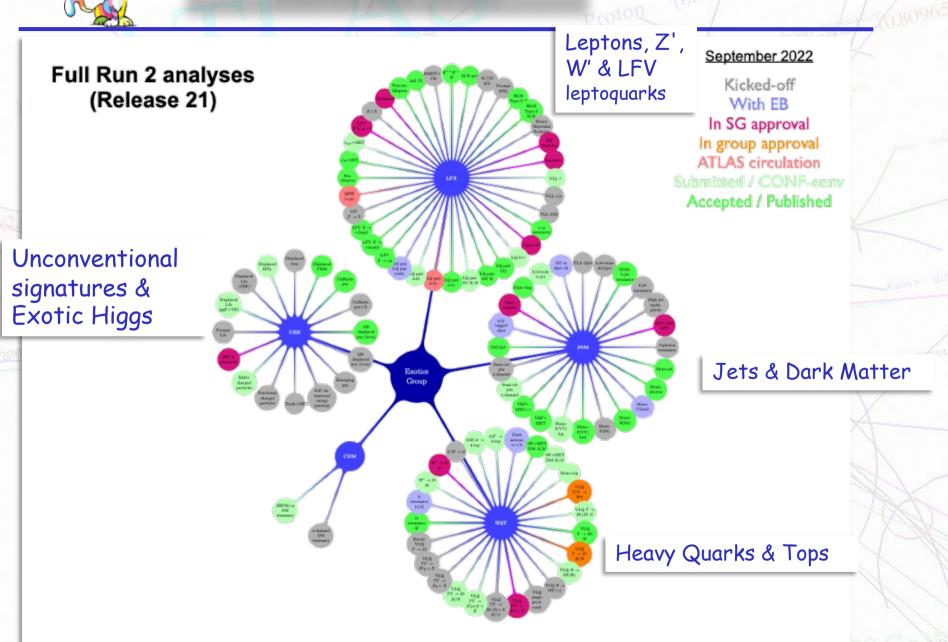


Displaced vertices + jets


ATLAS-CONF-2022-054

- General search for heavy LLPs decaying in hadrons
 - B-number violating RPV, gaugino->qqq
 - Lifetime O(10) ns decaying in the ID creating displaced verices (DV) with high mass and large track multiplicity
- DV reconstruction possible up to 300 mm thanks to dedicted track reconstruction - Large Radius Tracking
 - Uses left-over hits after standard tracking with looser impact parameters constrains
- Dedicated secondary-vertex reconstruction algorithm
- Nearly background-free search
 - Small backgrounds from hadronic interactions and instrumental effects

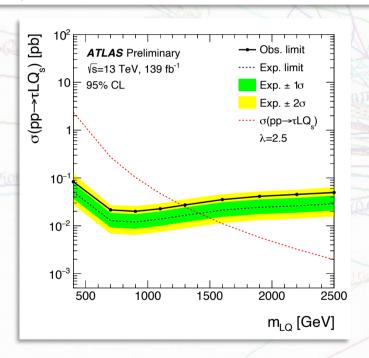
Signal Region	Observed	Expected
$\overline{\text{High-}p_{\mathrm{T}}\text{ jet SR}}$	1	$0.46^{+0.27}_{-0.30}$
Trackless jet SR	0	$0.83^{+0.51}_{-0.53}$

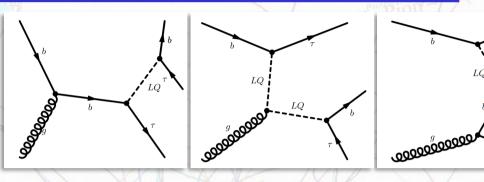


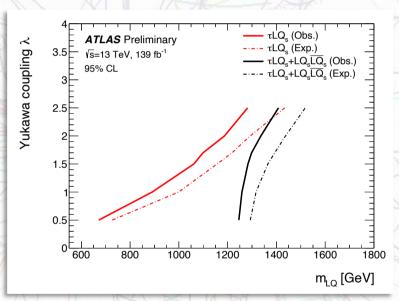
d 1 ns

Stronger limits in strong production model

Exotics (non-SUSY)

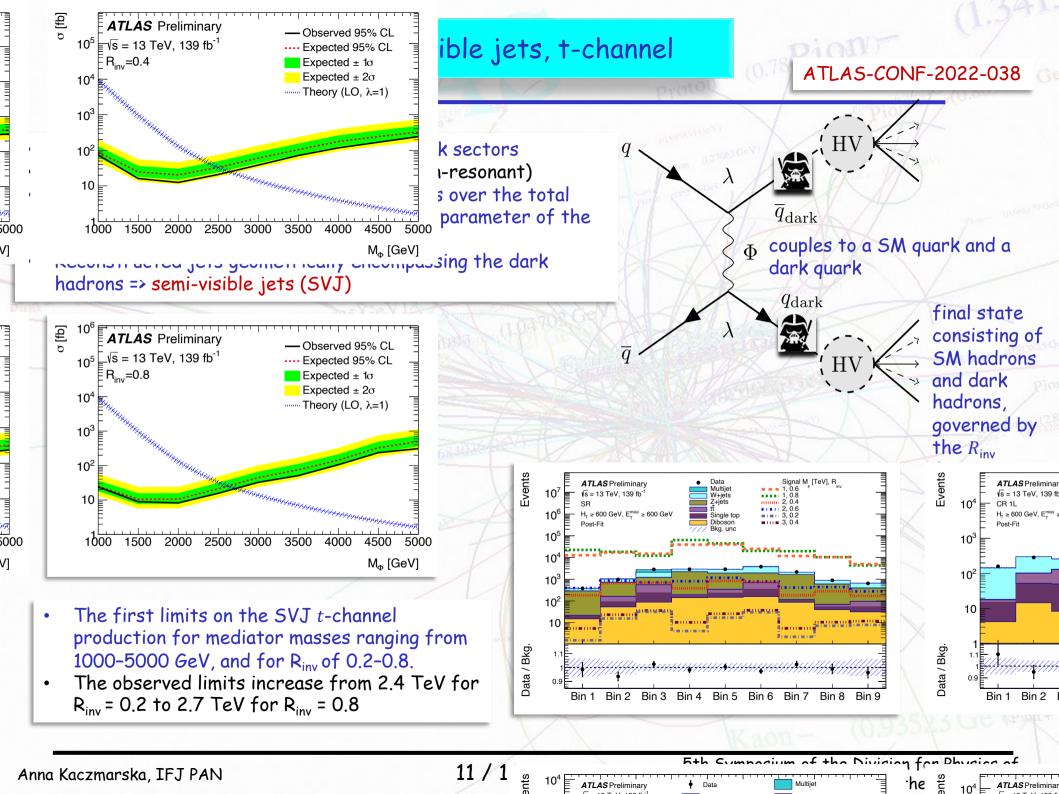


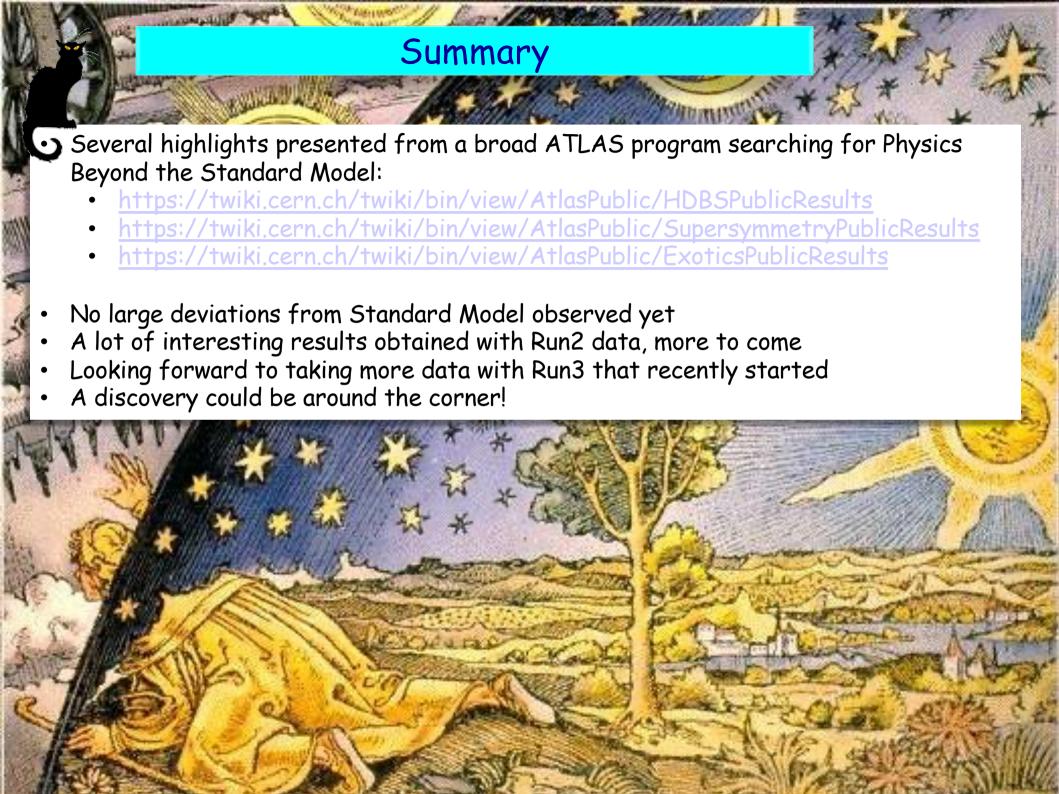


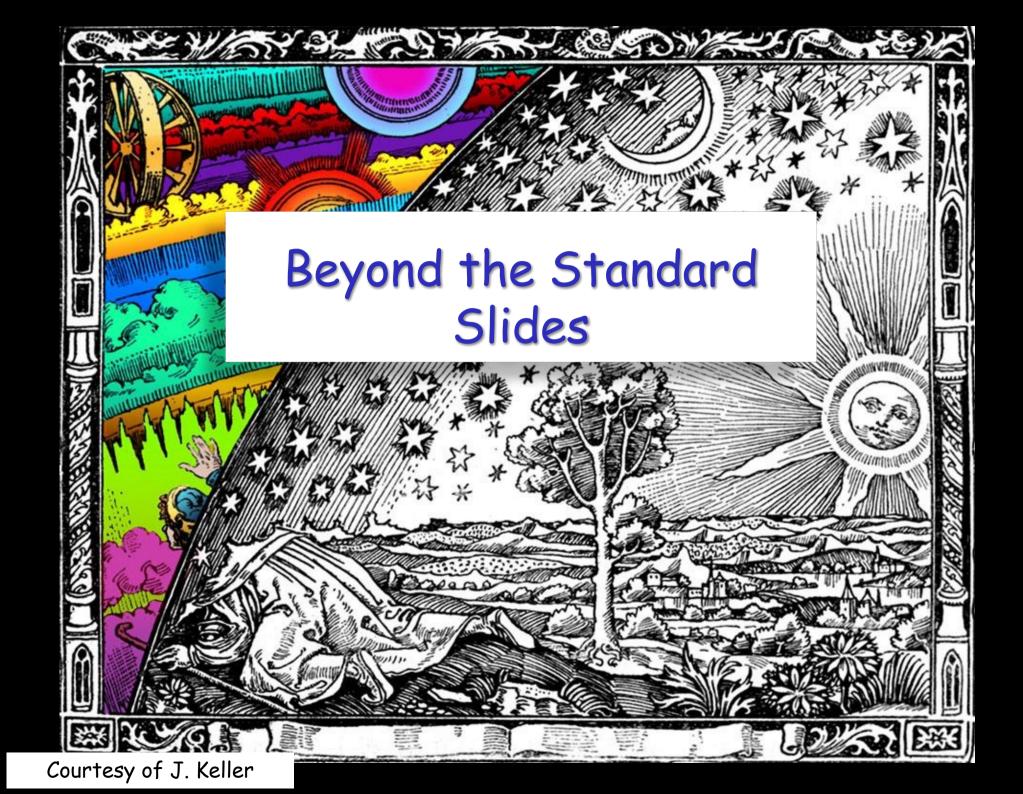

Scalar leptoquarks in btt final state

ATLAS-CONF-2022-037

- Single scalar leptoquark production model (+4/3e, F=3B+L=-2)
- Decays into 3rd generation: bt
- First ATLAS result for such a search
- m_{LQ} 0.4-2.4 TeV, λ 0.5-2.5






No excess:

m(LQ) < 1.26 TeV, 1.30 TeV and 1.41 TeV are excluded for Yukawa coupling to $b\tau$ of 1.0, 1.7 and 2.5, respectively For the chosen LQ model, masses below 1.25 TeV are excluded for all Λ above 0.5.

CMS excess in similar analysis CMS-PAS-EXO-19-016 => 3.4 σ for LQ mass of 2 TeV and Λ =2.5 but including t-channel

Dark photons from Higgs boson decays via ZH production

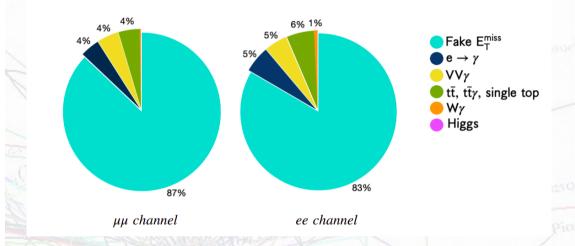
ATLAS-CONF-2022-064

Table 3: Optimised kinematic selections defining the signal region for $\ell^+\ell^-\gamma + E_{\rm T}^{\rm miss}$.

Two same flavour, opposite sign, medium ID and loose isolated leptons, with leading $p_T > 27$ GeV, sub-leading $p_T > 20$ GeV

Veto events with additional lepton(s) with loose ID and $p_T > 10 \text{ GeV}$

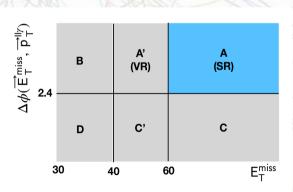
$$76 \text{ GeV} < m_{\ell\ell} < 116 \text{ GeV}$$

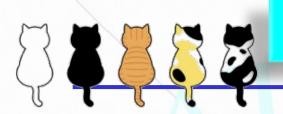

Only one tight ID, tight isolated photon with $E_{\rm T}^{\gamma} > 25~{\rm GeV}$

$$E_{\rm T}^{\rm miss} > 60~{
m GeV}$$
 with $\Delta\phi(\vec{E}_{\rm T}^{\rm miss}, \vec{p}_{\rm T}^{\,\ell\ell\gamma}) > 2.4~{
m rad}$

$$m_{\ell\ell\gamma} > 100 \text{ GeV}$$

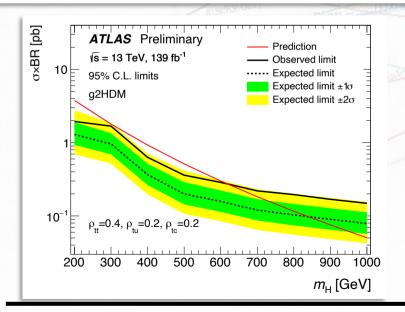
$$N_{\rm jet} \le 2$$
, with $p_{\rm T}^{\rm jet} > 30$ GeV, $|\eta| < 4.5$

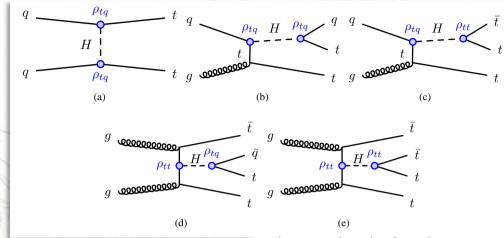

Veto events with *b*-jet(s)

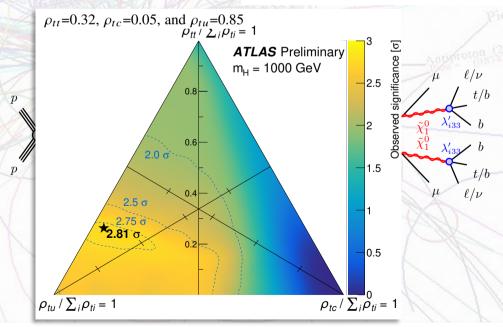


• **ABCD method**, based on E_T^{miss} and $\Delta\phi(\overrightarrow{E}_T^{miss}, \overrightarrow{p}_T^{\ell\ell\gamma})$ variables:

$$N_A^{fakeMET} = R \frac{N_B N_C}{N_D}$$
 , $R = \frac{N_{A+A'}^{MC} N_D^{MC}}{N_{C+C'}^{MC} N_B^{MC}}$


- R takes into account possible correlation between the 2 variables
- N_X is number observed data in region X, after subtraction of the contribution from non fake E_T^{miss} backgrounds




ATLAS-CONF-2022-039

- Search for heavy scalar H from generic 2HDM (interpreted also in RPV SUSY)
- First search targeting BSM 3 top production and first with 2HDM with flavour violation
 - m_H = [200 GeV, 1 TeV]
 - tFCNC vertices allowed with Yukawa-like couplings ρ_{tt} , ρ_{tu} , ρ_{tc}
- 17 Signal Regions (DNN trained to classify the different signal channels) + 10 Control Regions => 27 analysis regions
- DNN trained over each SR region to separate signal and background

2155, 31, 41 final states

Most significant deviation observed at $m_H\text{=}1000$ GeV with local significance of 2.81 σ

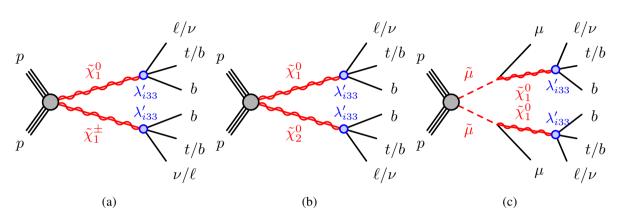


Figure 2: Signal diagrams for the RPV SUSY signals used as additional interpretation in the analysis. The subsequent decay can lead to a final state with high multiplicity of leptons and *b*-jets which is targeted by the search.

Table 5: Input variables to the training of the DNN^{cat} and DNN^{SB} discriminants.

Variable	DNN ^{cat}	DNNSB
Number of jets (N_{jets})	1	✓
Sum of pseudo-continuous b-tagging scores of jets	✓	✓
Pseudo-continuous b-tagging score of 1st, 2nd, 3rd leading jet in p_T	✓	✓
Sum of p_T of the jets and leptons $(H_{T,jets}, H_{T,lep})$	✓	✓
Angular distance of leptons (sum in the case of 3ℓ and 4ℓ)	✓	✓
Missing transverse energy	✓	1
Leading transverse momentum of jet	-	1
Invariant mass of leading lepton and missing transverse energy	-	1
Di/tri/quad-lepton type variable (associated to the number of electrons/muons in event)	-	✓

Table 3: Event selection summary in the signal regions. Leptons are ordered by p_T in the $2\ell SS$ and 4ℓ regions. In the 3ℓ regions the lepton with opposite-sign charge is taken first, followed by the two same-sign leptons in p_T order. In the lepton selection, T, M, L stand for Tight, Medium and Loose lepton definitions. In the region naming, the "CAT ttX" denotes the category based on the DNN^{cat} output enriched in the signal process "ttX". Each of these regions is split according to the lepton charge of the same-sign lepton pair ("++" or "--").

Lepton category	2ℓSS	3ℓ	4ℓ			
Lepton definition	$(T,T) \text{ with } \ge 1 \ b^{60\%} \parallel$	(L, T, M) with $\geq 1 b^{60\%}$	(L, L, L, L)			
_	(T, M) with $\geq 2 b^{77\%}$	$(L, M, M) \text{ with } \ge 2 b^{77\%}$				
Lepton $p_{\rm T}$ [GeV]	(20, 20)	(10, 20, 20)	(10, 10, 10, 10)			
$m_{\ell^+\ell^-}^{OS-SF}$ [GeV]	_	>12				
$ m_{\ell^+\ell^-}^{OS-SF} - m_Z $ [GeV]	_	>10				
$N_{ m jets}$		≥ 2				
$N_{b-{ m jets}}$	$\geq 1 b^{60\%} \parallel \geq 2 b^{77\%}$					
Region split	(sstt, ttq, ttt, tttq, tttt) \times ($Q^{++}, Q^{}$)	$(ttt,tttq,tttt)\times(Q^+,Q^-)$	_			
Region naming	2ℓSS ++ CAT sstt	3ℓ ++ CAT ttt	4ℓ			
	2ℓSS ++ CAT ttq	3ℓ ++ CAT tttq				
	2ℓSS ++ CAT ttt	3ℓ ++ CAT tttt				
	2ℓSS ++ CAT tttq	3ℓ — CAT ttt				
	2ℓSS ++ CAT tttt	3ℓ — CAT tttq				
	2ℓSS CAT sstt	3ℓ — CAT tttt				
	2ℓSS CAT ttq					
	2ℓSS CAT ttt					
	2ℓSS CAT tttq					
	2ℓSS CAT tttt					

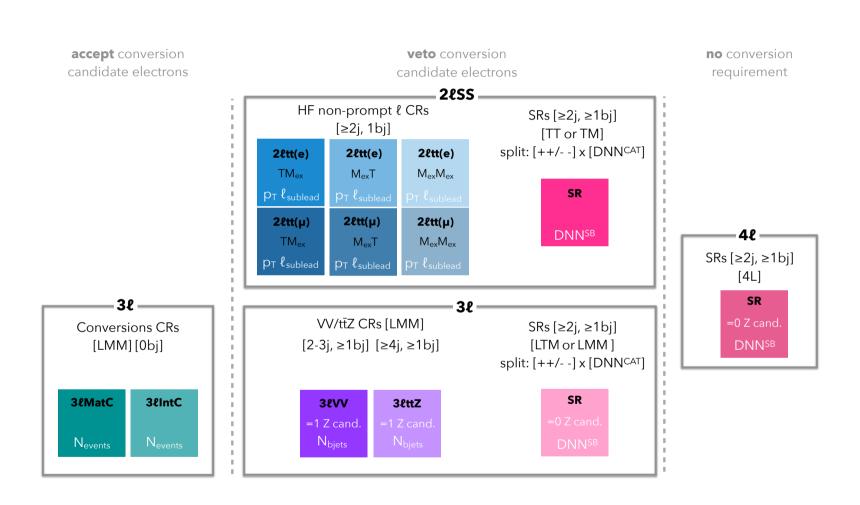
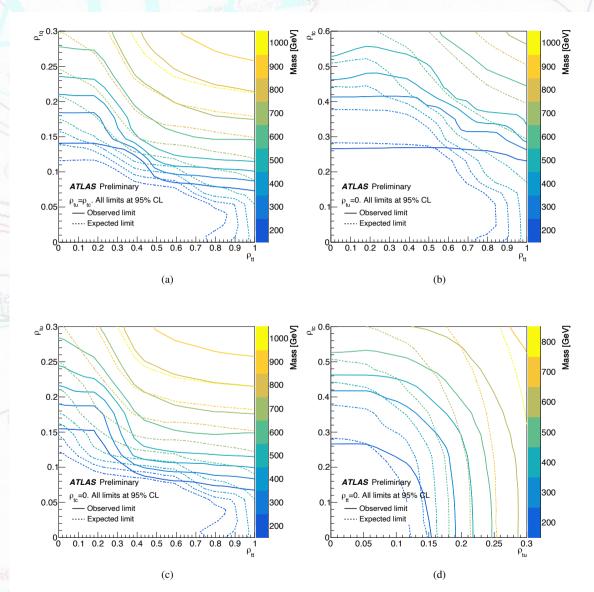
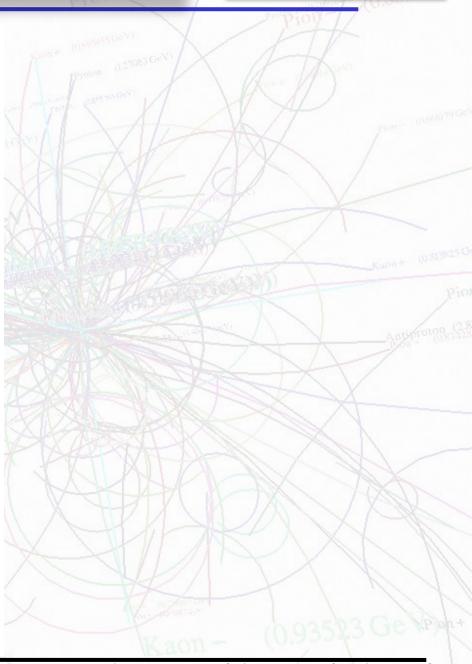


Figure 3: Illustrative sketch of the definition of the signal and control regions. At the bottom of each region box the corresponding observable used in the simultaneous fit as described in Section 8 is shown.




Figure 14: Observed (solid line) and expected (dashed line) exclusion limits on the scalar mass as a function of the coupling under different assumptions: (a) $\rho_{tc} = \rho_{tu}$, (b) $\rho_{tu} = 0$, (c) $\rho_{tc} = 0$, and (d) $\rho_{tt} = 0$.

Heavy resonances into Z/W and Higgs boson in final states with leptons and b-jets

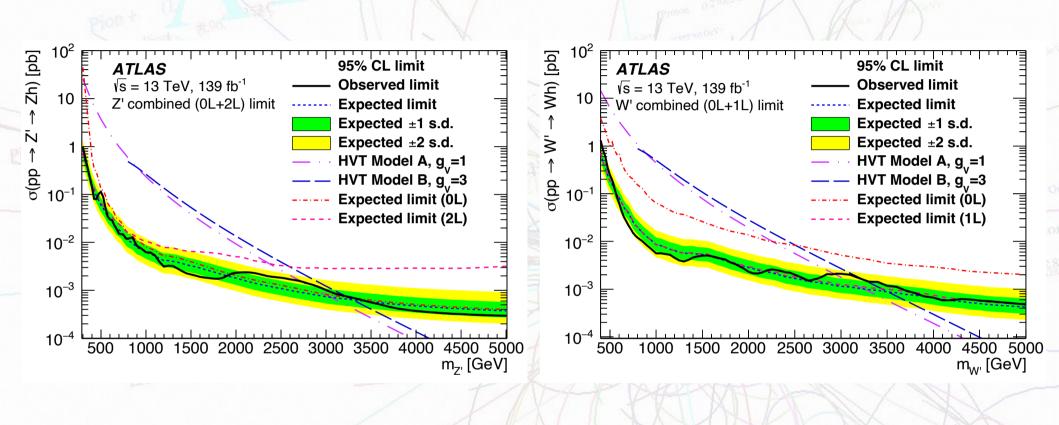
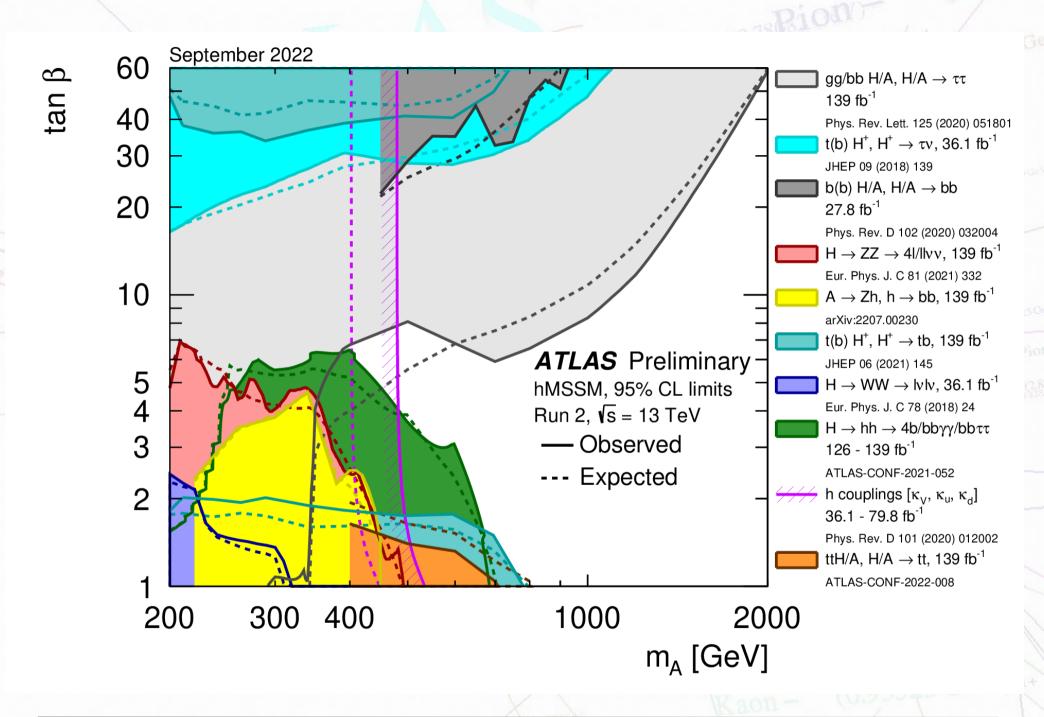

arXiv:2207.00230

Table 2: Topological and kinematic selections for each channel and category as described in the text. (**) Applies in the case of only two central jets. (**) Applied only for the W' search. (†) A higher threshold (80 GeV) is used for the single-electron channel. (††) Applied only for $m_{Vh} > 320$ GeV. (‡‡) Only the two leading VR track-jets matched by ghost-association to the large-R jet are considered when classifying events into b-tag categories. Events are further classified according to the number of b-tagged jets in the events.

Variable	Resolved	Merged			
	Com	nmon selection			
Number of jets	$\geq 2 \text{ small-} R \text{ jets } (0, 2\text{-lep.})$	≥1 large-R jet			
runiber of jets	2 or 3 small-R jets (1-lep.)	\geq 1 VR track-jets (matched to leading large-R jet) [‡]			
Leading jet p_T [GeV]	> 45	> 250			
m_h [GeV]	110–140 (0,1-lep.), 100–145 (2-lep.)	75–145			
	0-le	pton selection			
$E_{\rm T}^{\rm miss}$ [GeV]	> 150	> 200			
$S_{\rm T}$ [GeV]	> 150 (120*)	_			
$\Delta\phi_{jj}$	$<7\pi/9$	_			
$p_{\mathrm{T}}^{\mathrm{miss}}$ [GeV]		> 60			
$\Delta\phi(\vec{E}_{\mathrm{T}}^{\mathrm{miss}}, \vec{p}_{\mathrm{T}}^{\mathrm{miss}})$		$<\pi/2$			
$\Delta\phi(\vec{E}_{\mathrm{T}}^{\mathrm{miss}},h)$	$> 2\pi/3$				
$\min \left[\Delta \phi(\vec{E}_{\mathrm{T}}^{\mathrm{miss}}, \mathrm{small-}R \mathrm{jet}) \right]$	$> \pi/9$ (2 or 3	3 jets), $> \pi/6 \ (\ge 4 \text{ jets})$			
$N_{ au_{ m had}}$	0 (≤ 1**)				
	$(>9) if m_{Vh} < 240 \text{GeV},$				
$E_{\rm T}^{ m miss}$ significance ${\cal S}$	- ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '				
	> 13.6 if $m_{Vh} > 700 \text{GeV}$,				
	T	pton selection			
Leading lepton p_T [GeV]	> 27	> 27			
$E_{\mathrm{T}}^{\mathrm{miss}}$ [GeV]	> 40 (80 [†])	> 100			
$p_{\mathrm{T},W}$ [GeV]	$> \max \left[150, 710 - (3.3 \cdot 10^5 \text{ GeV}) / m_{Vh} \right]$	$> \max \left[150, 394 \cdot \log(m_{Vh}/(1 \text{ GeV})) - 2350 \right]$			
$m_{\mathrm{T},W}$ [GeV]		< 300			
$\Delta R(\ell,h)$		> 2.0			
	2-le	pton selection			
Leading lepton p_T [GeV]	> 27	> 27			
Subleading lepton p_T [GeV]	> 20	> 25			
$E_{\rm T}^{\rm miss}/\sqrt{H_{\rm T}} [\sqrt{\rm GeV}]$		$\times 10^{-3} \cdot m_{Vh}/(1 \text{ GeV})$			
$p_{\mathrm{T},\ell\ell}$ [GeV]	$> 20 + 9 \cdot \sqrt{m_{Vh}/(1 \text{ GeV}) - 320}^{\dagger\dagger}$				
$m_{\ell\ell}$ [GeV]	$\in \left[\max \left[40, 87 - 0.030 \cdot m_{Vh} / (1 \text{ GeV}) \right], 97 + 0.013 \cdot m_{Vh} / (1 \text{ GeV}) \right]$				

arXiv:2207.00230


을 FATLAS

95% CL limit

[dd]

ATLAS

95% CL limit

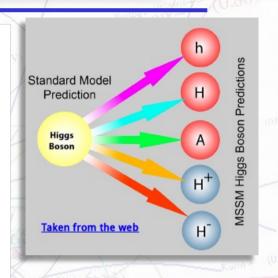
ATLAS Diboson Searches - 95% CL Exclusion Limits

ATLAS Preliminary

 $f = (36.1 - 139) \text{ fb}^{-1}$

 $\sqrt{s} = 13 \text{ TeV}$

		Status. burie 2021								$\mathcal{L} = (36$	6.1 - 139	3) tb_ ₁		$\sqrt{s} = 13 \text{ leV}$
	Model	Channel [†]	Strategy*		Limit									Reference
	Bulk RS ($k\pi r_c=35,\Lambda_R=3{\rm TeV})$	$R \rightarrow WW, ZZ \rightarrow vvqq, \ell vqq, \ell \ell qq$	resolved, boosted	'				-		0.3-3.	2 TeV	1	•	Eur. Phys. J. C 80 (2020) 1165
	Bulk RS ($k\pi r_c=35,\Lambda_R=3{\rm TeV})$	R o WW, ZZ o qqqq	boosted							1.3-3.0 T	TeV			JHEP 06 (2020) 042
S	RS1 $(k/\overline{M}_{Pl}=0.01)$	$G_{KK} o \gamma \gamma$	resolved						0.5-2.2 To	eV				arXiv:2102.13405
sion	RS1 $(k/\overline{M}_{Pl}=0.05)$	$G_{KK} o \gamma \gamma$	resolved								0.5-3.9 Te	V		arXiv:2102.13405
nen	RS1 $(k/\overline{M}_{Pl}=0.1)$	$G_{KK} o \gamma \gamma$	resolved								0.5-	4.5 TeV		arXiv:2102.13405
Extra dimensions	Bulk RS $(k/\overline{M}_{Pl} = 0.5)$	$G_{KK} o WW o e \nu \mu \nu$	resolved			0.2-0.75 To	eV							Eur. Phys. J. C 78 (2018) 24
xtra	Bulk RS ($k/\overline{M}_{Pl}=1.0$)	$G_{KK} o ZZ o \ell\ell\ell'\ell'$, $\nu\nu\ell\ell$	resolved					0.6	-1.75 TeV					Eur. Phys. J. C 81 (2021) 332
4	Bulk RS ($k/\overline{M}_{Pl}=1.0$)	$G_{KK} o WW o e \nu \mu \nu$	resolved				0.2-1.	1 TeV						Eur. Phys. J. C 78 (2018) 24
	Bulk RS ($k/\overline{M}_{Pl}=1.0$)	$G_{KK} o WW, ZZ o vvqq, \ell vqq, \ell \ell qq$	resolved, boosted						0.3-2.0 TeV					Eur. Phys. J. C 80 (2020) 1165
	Bulk RS ($k/\overline{M}_{Pl}=1.0$)	$G_{KK} o WW$, $ZZ o qqqq$	boosted					E	1.3-1.8 TeV					JHEP 06 (2020) 042
-	HVT ($g_F = -0.55$, $g_H = -0.56$)	$W' \to WZ \to \ell \nu \ell' \ell'$	resolved						0.25-2.26	TeV				Phys. Lett. B 787 (2018) 68
	HVT ($g_F = -0.55, g_H = -0.56$)	$W' o WZ o vvqq, \ell vqq, \ell \ell qq$	resolved, boosted								0.3-3.9 Te	V		Eur. Phys. J. C 80 (2020) 1165
i i	HVT ($g_F = -0.55, g_H = -0.56$)	$W' o WH o \ell \nu bb$	resolved, boosted							0.4-2.95 Te	eV			ATLAS-CONF-2021-026
	HVT ($g_F = -0.55, g_H = -0.56$)	W' o WZ o qqqq	boosted							1.3-	-3.4 TeV			JHEP 06 (2020) 042
	HVT ($g_F = -0.55, g_H = -0.56$)	W' o WH o qqbb	boosted							1.5-2.9 Te	V			Phys. Rev. D 102 (2020) 112008
-	HVT ($g_F = -0.55, g_H = -0.56$)	$Z' o WW o e \nu \mu \nu$	resolved					0.2-1.3 TeV						Eur. Phys. J. C 78 (2018) 24
	HVT ($g_F = -0.55, g_H = -0.56$)	$Z' \to WW \to \ell \nu qq$	resolved, boosted							0.3	3-3.5 TeV			Eur. Phys. J. C 80 (2020) 1165
(0	HVT ($g_F = -0.55, g_H = -0.56$)	$Z' o ZH o vvbb, \ell\ell bb$	resolved, boosted							0.3-2.9 Te	V			ATLAS-CONF-2020-043
Gauge bosons	HVT ($g_F = -0.55, g_H = -0.56$)	$Z' \to WW \to qqqq$	boosted							1.3-2.9 Te	V			JHEP 06 (2020) 042
oq a	$HVT(g_F = -0.55, g_H = -0.56)$	$Z' \rightarrow ZH \rightarrow qqbb$	boosted						1.5-2.2 To	eV				Phys. Rev. D 102 (2020) 112008
ange	HVT ($g_F = 0.14$, $g_H = -2.9$)	$W' \to WZ \to \ell \nu \ell' \ell'$	resolved					_	0.8-2.	46 TeV				Phys. Lett. B 787 (2018) 68
Ö	HVT ($g_F = 0.14$, $g_H = -2.9$)	$W' o WZ o vvqq, \ell vqq, \ell \ell qq$	resolved, boosted								0.8-4.	3 TeV		Eur. Phys. J. C 80 (2020) 1165
	HVT ($g_F = 0.14$, $g_H = -2.9$)	$W' o WH o \ell \nu bb$	resolved, boosted							0.8-3.15	TeV			ATLAS-CONF-2021-026
	HVT ($g_F = 0.14$, $g_H = -2.9$)	W' o WZ o qqqq	boosted							1	.3-3.6 TeV			JHEP 06 (2020) 042
	HVT ($g_F = 0.14$, $g_H = -2.9$)	W' o WH o qqbb	boosted							1.5-3.	2 TeV			Phys. Rev. D 102 (2020) 112008
	HVT ($g_F = 0.14$, $g_H = -2.9$)	$Z' \to WW \to \ell \nu qq$	resolved, boosted								0.8-3.9 Te	V		Eur. Phys. J. C 80 (2020) 1165
	HVT ($g_F = 0.14$, $g_H = -2.9$)	$Z' o ZH o vvbb, \ell\ell bb$	resolved, boosted							0.8-3.2	2 TeV			ATLAS-CONF-2020-043
	HVT ($g_F = 0.14$, $g_H = -2.9$)	$Z' \to WW \to qqqq$	boosted							1.3-3.1	TeV			JHEP 06 (2020) 042
	HVT ($g_F = 0.14, g_H = -2.9$)	Z' o ZH o qqbb	boosted		ı	1			1.5	5-2.65 TeV				Phys. Rev. D 102 (2020) 112008
				0.2	0.4	0.6	0.8	1	2	2	3	4	5	
		_							Exclu	ıded m	ass ra	nge l	TeVl	
	$\sqrt{s} = 13 \text{ TeV}$ $\sqrt{s} = 13^{\circ}$	TeV										J - 1		


^{*}small-radius (large-radius) jets are used in resolved (boosted) events

Status: June 2021

 $^{^\}dagger$ with $\ell=\mu$, e

Two Higgs Doublet Model (2HDM)

- Generic class with second Higgs doublet. Four variants to couple SM fermions to the 2HDs (no FCNCs):
 - Type I: all quarks and leptons couple to only one doublet
 - Type II: one doublet couples to up-type quarks, the other to down-type quarks and leptons: "MSSM-like"
 - Lepton-specific: couplings to quarks as in the Type I model and to leptons as in Type II
 - Flipped: couplings to quarks as in the Type II model and to leptons as in Type I
- 5 Higgs bosons: h, H, A, H⁺, H⁻
- Free parameters: $tan\beta$ (ratio between the vevs of the doublets), α (mixing angle between h and H) and m_A
- Minimal Supersymmetric SM (MSSM) is a special case of 2HDM:
 - "type II" with fixed α
 - numerous benchmark models: hMSSM, m_h^{mod+}, etc.
- SM Higgs results give big constraints on 2HDM. Data prefers alignment limit: $cos(\beta-a)=0$ h recovers properties of the SM Higgs

Phys. Rev. D 101 (2020) 012002

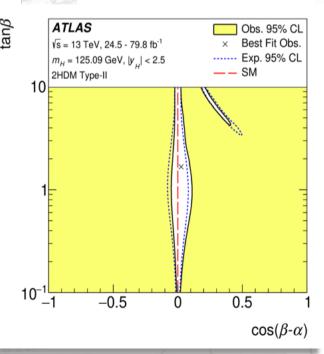


Table 1: Signal region definitions designed for the *Wh* model. The variables are defined in the text.

	$\mathrm{SR}^{Wh}_{\mathrm{high}}$	$\mathrm{SR}^{Wh}_{\mathrm{low}-m_{\mathrm{T2}}}$				
	$e^{\pm}e^{\pm} \mid e^{\pm}\mu^{\pm} \mid$	$\mu^{\pm}\mu^{\pm}$	$e^{\pm}e^{\pm}$	$e^{\pm}\mu^{\pm}$	$\mu^{\pm}\mu^{\pm}$	
$N_{\rm BL}(\ell)$		= 2				
$N_{\mathrm{Sig}}(\ell)$		= 2				
Charge(ℓ)		same-si	gn			
$p_{\mathrm{T}}(\ell)$	≥ 25 GeV					
$n_{\rm jets} (p_{\rm T} > 25 \text{ GeV})$	≥ 1					
$n_{b ext{-jets}}$	= 0					
m_{jj}	< 350 GeV					
m_{T2}	$\geq 80 \mathrm{GeV}$ < $80 \mathrm{GeV}$				V	
$m_{ m T}^{ m min}$	≥ 100 GeV					
$\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$	≥ 7 ≥ 6					
$E_{ m T}^{ m miss}$	$\geq 75 \text{ GeV}$ $\geq 50 \text{ GeV}$ $ SR_{high-m_{T2}}^{Wh} -1: \in [75, 125) $ $SR_{high-m_{T2}}^{Wh} -2: \in [125, 175) $					
	$SR_{high-m_T}^{Wh}$ -1:	∈ [75, 125)				
$E_{\rm T}^{\rm miss}$ binning (GeV) ^a	$SR_{high-m_{T2}}^{Wh}$ -2:	∈ [125, 175)		_		
	$SR_{high-m_{T2}}^{Wh}$ -2: $SR_{high-m_{T2}}^{Wh}$ -3:	∈ [175, +∞)				
arm miss			CDWh			

 $[\]overline{{}^{a}}$ The $E_{\mathrm{T}}^{\mathrm{miss}}$ binning applies separately to each flavour channel of $\mathrm{SR}_{\mathrm{high}-m_{\mathrm{T2}}}^{Wh}$.

Table 3: Signal region definitions designed for bRPV model. The variables are defined in the text.

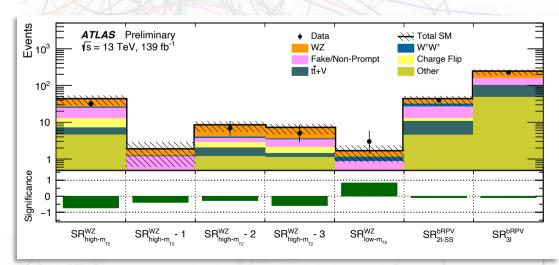
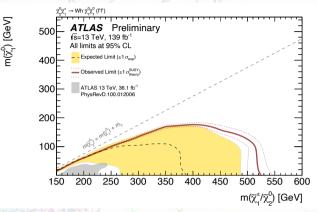

	SR _{2ℓ-SS}	$\mathrm{SR}_{3\ell}^{\mathrm{bRPV}}$				
$N_{\mathrm{BL}}(\ell) = p_{\mathrm{T}}(\ell)$	_ ≥ 20 GeV for (sub)leading lepton					
$n_{\rm jets} \ (p_{\rm T} > 25 \ {\rm GeV})$	≥ 20 GeV for (sub)reading reprofit ≥ 1					
$N_{\mathrm{Sig}}(\ell)$	= 2	= 3				
$Charge(\ell)$	same-sign	_				
$m_{ m T2}$	$\geq 60 \mathrm{GeV}$ $\geq 80 \mathrm{GeV}$					
$E_{ m T}^{ m miss}$	≥ 100 GeV	≥ 120 GeV				
$m_{ m eff}$	_	≥ 350 GeV				
$n_{b ext{-jets}}$	= 0 -					
$n_{\rm jets}~(p_{\rm T} > 40~{\rm GeV})$	≥ 4	_				
$m_{e^{\pm}e^{\mp}}, m_{\mu^{\pm}\mu^{\mp}}$	_	∉ [81, 101] GeV				

Table 2: Signal region definitions designed for WZ model. The variables are defined in the text.

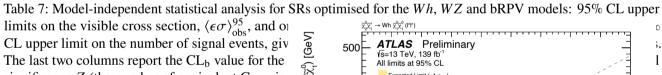
	$SR_{high-m_{T2}}^{WZ}$	$SR_{low-m_{T2}}^{WZ}$			
$N_{\mathrm{BL}}(\ell)$	= 2				
$N_{\mathrm{Sig}}(\ell)$	= 2				
$Charge(\ell)$	same-sign				
$p_{ m T}(\ell)$	≥ 25 GeV				
$n_{\rm jets}~(p_{\rm T} > 25~{\rm GeV})$	≥ 1				
$n_{b ext{-jets}}$	= 0				
m_{jj}	≤ 350 GeV				
m_{T2}	≥ 100 GeV	≤ 100 GeV			
$m_{ m T}^{ m min}$	≥ 100 GeV	≥ 130 GeV			
$E_{ m T}^{ m miss}$	≥ 100 GeV	≥ 140 GeV			
$m_{ m eff}$	_	≤ 600 GeV			
$\Delta R(\ell^{\pm},\ell^{\pm})$	_	≤ 3			
	$S(E_{\mathrm{T}}^{\mathrm{miss}}): \in [0, 10)$				
	Spread(Φ) ≥ 2.2				
Bins	$S(E_{\rm T}^{\rm miss}): \in [10, 13)$	_			
	$S(E_{\mathrm{T}}^{\mathrm{miss}}): \in [13, +\infty]$				
	$\Delta R(\ell^{\pm}, \ell^{\pm}) \ge 1$				

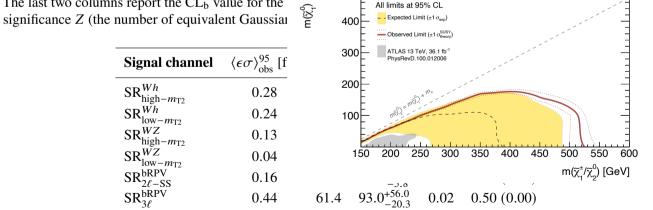
$$m_{\mathrm{T2}} = \min_{\mathbf{q}_{\mathrm{T}}} \left[\max \left(m_{\mathrm{T},\ell_{1}}(\mathbf{p}_{\mathrm{T},\ell_{1}},\mathbf{q}_{\mathrm{T}}), m_{\mathrm{T},\ell_{2}}(\mathbf{p}_{\mathrm{T},\ell_{2}},\mathbf{p}_{\mathrm{T}}^{\mathrm{miss}} - \mathbf{q}_{\mathrm{T}}) \right) \right]$$

$$m_{\mathrm{T}}(\mathbf{p}_{\mathrm{T}},\mathbf{q}_{\mathrm{T}}) = \sqrt{2(p_{\mathrm{T}}q_{\mathrm{T}}-\mathbf{p}_{\mathrm{T}}\cdot\mathbf{q}_{\mathrm{T}})}.$$

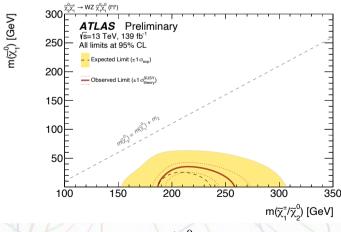


Same-sign 2L/3L from direct production of winos and higgsinos

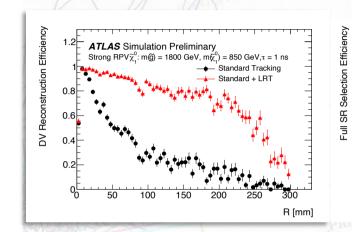

ATLAS-CONF-2022-057

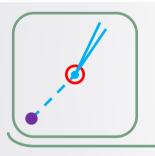

Background Type	Wino Wh	non- Wh			
	1. CR/VR defined for WZ^1 and $W^\pm W^\pm$	1. CR/VR defined for WZ^1 and VR for $tar tV$			
Irreducible	2. Other small backgrounds are estimated using full Monte-Carlo samples				
Reducible	3. Charge flip rates are estimated in MC and corrected using the Egamma SFs				
	4. Fakes: using Fake Factor Method	4. Fakes: using Matrix Method and MCTemplate method as a cross-check			

¹. Note that the WZ would be normalised in the respective CR in Wh and non-Wh.



(a) Wino $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ with Wh


ATLAS Preliminary √s=13 TeV, 139 fb



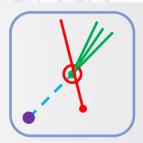
(b) Wino $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ with WZ

Table 2: Summary of the signal region selections. The x in the $n_{\text{jet/trackless jet}}^x$ notation refers to the jet p_T threshold in GeV. All jets are required to have $|\eta| < 2.5$.

	1				
Signal Region	High- $p_{\rm T}$ jet SR	Trackless jet SR			
	$n_{\text{jet}}^{250} \ge 4 \text{ or } n_{\text{jet}}^{195} \ge 5 \text{ or}$ $n_{\text{jet}}^{116} \ge 6 \text{ or } n_{\text{jet}}^{90} \ge 7$	Fail high- p_T jet selection,			
Jet selection	$n_{\text{iet}}^{116} \ge 6 \text{ or } n_{\text{iet}}^{90} \ge 7$	$n_{\text{iet}}^{137} \ge 4 \text{ or } n_{\text{iet}}^{101} \ge 5 \text{ or}$			
		$n_{\text{iet}}^{83} \ge 6 \text{ or } n_{\text{iet}}^{55} \ge 7,$			
		$n_{\text{jet}}^{83} \ge 6 \text{ or } n_{\text{jet}}^{55} \ge 7,$ $n_{\text{trackless jet}}^{70} \ge 1 \text{ or } n_{\text{trackless jet}}^{50} \ge 2$			
	$R_{\rm DV} < 300 {\rm r}$	$mm, z_{DV} < 300 \text{ mm},$			
DV pre-selection	$\min(\vec{r}_{DV} - \vec{r}_{PV}) > 4 \text{ mm}, \chi^2/n_{DoF} < 5,$				
	$n_{\text{Selected tracks}}^{\text{DV}} \ge 2$	2, pass material map veto			
$n_{ m Tracks}^{ m DV}$	≥ 5				
$m_{ m DV}$	>10 GeV				

SM Decays

 SM LLP just decays naturally in flight

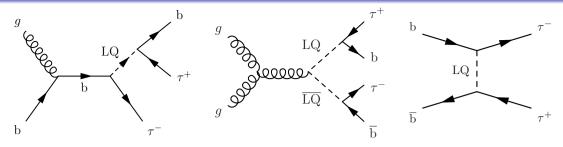

Hadronic Interactions (HI)

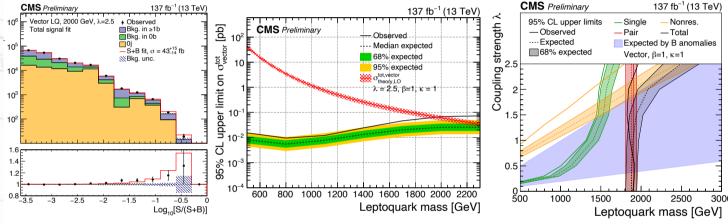
 SM LLP hits and interacts with detector material

Merged Vertices (MV)

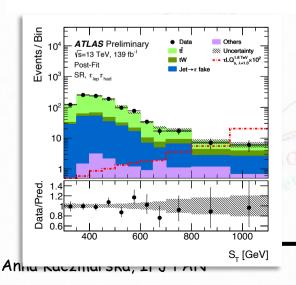
 Two DVs close together get reconstructed as a higher N, higher m DV

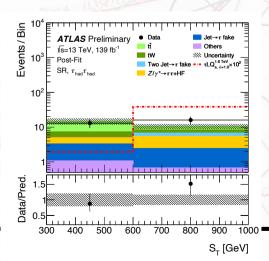
Accidental Crossings (AX)


 Random track crossing DV makes it appear higher N and higher m


Supersymmetry - supercementary?

ATLAS Preliminary ATLAS SUSY Searches* - 95% CL Lower Limits $\sqrt{s} = 13 \text{ TeV}$ March 2022 Model Signature $\int \mathcal{L} dt \, [fb^{-1}]$ Mass limit Reference $0e,\mu$ Emiss Emiss 1.85 $m(\tilde{\chi}_1^0) < 400 \text{ GeV}$ 2010.14293 $\tilde{q}\tilde{q}, \tilde{q} \rightarrow q\tilde{\chi}_1^0$ 1-3 jets 139 q [8x Degen.] 0.9 2102.10874 $m(\tilde{q})-m(\tilde{\chi}_1^0)=5 \text{ GeV}$ 2-6 jets $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}\tilde{\chi}_{1}^{0}$ E_T^{miss} 139 $m(\tilde{\chi}_1^0)=0 \text{ GeV}$ 2010.14293 1.15-1.95 Forbidden $m(\tilde{\chi}_{1}^{0})=1000 \text{ GeV}$ 2010.14293 2-6 iets 139 22 $m(\tilde{\chi}_{1}^{0}) < 600 \text{ GeV}$ 2101.01629 $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}W\tilde{\chi}_{1}^{0}$ 1 e.u $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}(\ell\ell)\tilde{\chi}_1^0$ $ee, \mu\mu$ 2 jets 139 2.2 $m(\tilde{\chi}_1^0)$ <700 GeV CERN-EP-2022-014 $\tilde{g}\tilde{g}, \tilde{g} \rightarrow qqWZ\tilde{\chi}_{1}^{0}$ 7-11 jets 139 1.97 $m(\tilde{\chi}_1^0)$ <600 GeV 2008.06032 SS e, μ 6 jets 139 1.15 $m(\tilde{g})-m(\tilde{\chi}_1^0)=200 \text{ GeV}$ 0-1 e, µ ATLAS-CONF-2018-041 $\tilde{g}\tilde{g}, \tilde{g} \rightarrow t\bar{t}\tilde{\chi}_1^0$ 3 h E_T^{miss} 79.8 $m(\tilde{\chi}_1^0)$ <200 GeV $m(\tilde{g})$ - $m(\tilde{\chi}_1^0)$ =300 GeV SS e, µ 6 jets 1.25 139 $0e, \mu$ E_T^{miss} 139 1.255 $m(\tilde{\chi}_{1}^{0})<400 \text{ GeV}$ 0.68 10 GeV< $\Delta m(\tilde{b}_1,\tilde{\chi}_1^0)$ <20 GeV 2101.12527 $\Delta m(\tilde{\chi}_{2}^{0}, \tilde{\chi}_{1}^{0})=130 \text{ GeV}, m(\tilde{\chi}_{1}^{0})=100 \text{ GeV}$ $\Delta m(\tilde{\chi}_{2}^{0}, \tilde{\chi}_{1}^{0})=130 \text{ GeV}, m(\tilde{\chi}_{1}^{0})=0 \text{ GeV}$ $\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\chi}_2^0 \rightarrow b h \tilde{\chi}_1^0$ $0e, \mu$ 6 h 139 Forbidden 0.23-1.35 1908.03122 0.13-0.85 2 b 139 2103 08189 2 τ $\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow t\tilde{\chi}_1^0$ 0-1 e, µ ≥ 1 jet 139 $m(\tilde{\chi}_{\perp}^{0})=1 \text{ GeV}$ 2004.14060,2012.03799 $\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow Wb\tilde{\chi}_1^0$ $1e,\mu$ 3 jets/1 b 139 Forbidden 0.65 $m(\tilde{\chi}_{1}^{0})=500 \text{ GeV}$ 2012.03799 2 jets/1 b $\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow \tilde{\tau}_1 b \nu, \tilde{\tau}_1 \rightarrow \tau \tilde{G}$ 1-2 τ 139 m(71)=800 GeV 2108 07665 $\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow c\tilde{\chi}_1^0 / \tilde{c}\tilde{c}, \tilde{c} \rightarrow c\tilde{\chi}_1^0$ 0 e.u 20 36.1 0.85 $m(\tilde{\chi}_{1}^{0})=0 \text{ GeV}$ $m(\tilde{\iota}_{1},\tilde{c})-m(\tilde{\chi}_{1}^{0})=5 \text{ GeV}$ 1805.01649 mono-jet 139 2102.10874 0 e, u $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow t \tilde{\chi}_2^0, \tilde{\chi}_2^0 \rightarrow Z/h \tilde{\chi}_1^0$ 1-2 e, µ 1-4 b 139 0.067-1.18 $m(\tilde{\chi}_{2}^{0})=500 \text{ GeV}$ 2006.05880 $\tilde{t}_2\tilde{t}_2, \, \tilde{t}_2 \rightarrow \tilde{t}_1 + Z$ E_T^{miss} $3e,\mu$ 1 b 139 Forbidden 0.86 $m(\tilde{\chi}_1^0)$ =360 GeV, $m(\tilde{t}_1)$ - $m(\tilde{\chi}_1^0)$ = 40 GeV 2006.05880 $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ via WZ Multiple ℓ/iets 139 $m(\tilde{\chi}_1^0)=0$, wino-bino $m(\tilde{\chi}_1^0)=m(\tilde{\chi}_1^0)=5$ GeV, wino-bino 2106.01676, 2108.07586 0.205 ee, µµ 139 1911.12606 $\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{1}^{\mp}$ via WW $2e,\mu$ 139 0.42 $m(\tilde{\chi}_1^0)=0$, wino-bino 1908.08215 Multiple ℓ/jets $\tilde{X}_{1}^{\pm}/\tilde{X}_{2}^{0}$ $\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{2}^{0}$ via Wh 139 Forbidden 1.06 $m(\tilde{\chi}_1^0)=70$ GeV, wino-bino 2004.10894.2108.07586 $\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp}$ via $\tilde{\ell}_L/\tilde{\nu}$ 2 e.u 139 1.0 $m(\tilde{\ell}, \tilde{\nu})=0.5(m(\tilde{\chi}_{1}^{\pm})+m(\tilde{\chi}_{1}^{0}))$ 1908.08215 $\tilde{\tau}\tilde{\tau}, \tilde{\tau} \rightarrow \tau \tilde{\chi}_1^0$ 2 τ 139 $[\tilde{\tau}_L, \tilde{\tau}_{R,L}]$ 0.16-0.3 0.12-0.39 $m(\tilde{\chi}_{\perp}^{0})=0$ 1911.06660 $\tilde{\ell}_{L,R}\tilde{\ell}_{L,R}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_1^0$ $2e,\mu$ 139 $m(\tilde{\chi}_1^0)=0$ 1908 08215 ee, µµ ≥ 1 jet 139 0.256 $m(\tilde{\ell})-m(\tilde{\chi}_1^0)=10 \text{ GeV}$ 1911.12606 $\begin{array}{ccc} \geq 3 \ b & E_T^{\rm miss} \\ \text{0 jets} & E_T^{\rm miss} \\ \geq 2 \ \text{large jets} & E_T^{\rm miss} \end{array}$ $\tilde{H}\tilde{H}, \tilde{H} \rightarrow h\tilde{G}/Z\tilde{G}$ $0e, \mu$ 36.1 0.13-0.23 0.29-0.88 $BR(\tilde{\chi}_{1}^{0} \rightarrow h\tilde{G})=1$ 1806.04030 4 e.u 139 $BR(\tilde{\chi}_{1}^{0} \rightarrow Z\tilde{G})=1$ $BR(\tilde{\chi}_{1}^{0} \rightarrow Z\tilde{G})=1$ 2103.11684 0 e, µ 139 0.45-0.93 2108.07586 Direct $\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}$ prod., long-lived $\tilde{\chi}_{1}^{\pm}$ Disapp. trk 139 0.66 Pure Wind 2201.02472 0.21 Pure higgsing 2201.02472 Stable § R-hadron pixel dE/dx 139 2.05 CERN-EP-2022-029 Metastable \tilde{g} R-hadron, $\tilde{g} \rightarrow qq\tilde{\chi}^0$ pixel dE/dx 139 \tilde{g} [$\tau(\tilde{g})$ =10 ns] $m(\tilde{\chi}_1^0)=100 \text{ GeV}$ CERN-EP-2022-029 E_T^{miss} $\tilde{\ell}\tilde{\ell}, \tilde{\ell} \rightarrow \ell\tilde{G}$ Displ. lep 139 0.7 $\tau(\tilde{\ell}) = 0.1 \text{ ns}$ 2011.07812 0.34 0.36 $\tau(\tilde{\ell}) = 0.1 \text{ ns}$ 2011.07812 pixel dE/dx 139 CERN-EP-2022-029 $\tau(\tilde{\ell}) = 10 \text{ ns}$ $\begin{array}{c} \tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp} / \tilde{\chi}_1^0 \;, \tilde{\chi}_1^{\pm} {\to} Z\ell {\to} \ell\ell\ell \\ \tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp} / \tilde{\chi}_2^0 \;{\to} \; WW / Z\ell\ell\ell\ell\nu \\ \end{array}$ $3e,\mu$ 139 E_T^{miss} 0 jets 139 1.55 $m(\tilde{\chi}_{1}^{0})=200 \text{ GeV}$ 2103.11684 $\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow qqq$ $\tilde{t}\tilde{t}, \tilde{t} \rightarrow t\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow tbs$ 4-5 large jets 36.1 Large \(\lambda''_{112}\) 1804.03568 1.05 Multiple 36.1 $m(\tilde{\chi}_1^0)=200$ GeV, bino-like ATLAS-CONF-2018-003 $\tilde{t}\tilde{t}, \tilde{t} \rightarrow b\tilde{\chi}_{1}^{\pm}, \tilde{\chi}_{1}^{\pm} \rightarrow bbs$ $\geq 4b$ 139 Forbidden 0.95 $m(\tilde{\chi}_{\perp}^{\pm})=500 \text{ GeV}$ 2010.01015 $\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow bs$ 2 jets + 2 b 36.7 0.61 1710.07171 $\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow q\ell$ $2e, \mu$ 36.1 $BR(\tilde{t}_1 \rightarrow be/bu) > 20\%$ 1710.05544 BR($\tilde{t}_1 \rightarrow q\mu$)=100%, $\cos \theta_t$ =1 DV 136 2003.11956 $\tilde{\chi}_{1}^{\pm}/\tilde{\chi}_{2}^{0}/\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1,2}^{0} \rightarrow tbs, \tilde{\chi}_{1}^{+} \rightarrow bbs$ 1-2 e, µ ≥6 jets 139 2106.09609 *Only a selection of the available mass limits on new states or 10^{-1} Mass scale [TeV] phénomena is shown. Many of the limits are based on simplified models, c.f. refs. for the assumptions made.


Leptoquark in b au in s- and t-channels cms-pas-exo-19-016



- LQ $\rightarrow b \tau$ in events w/ τ and ≥ 1 b-jets
- Range of coupling strengths and masses tested

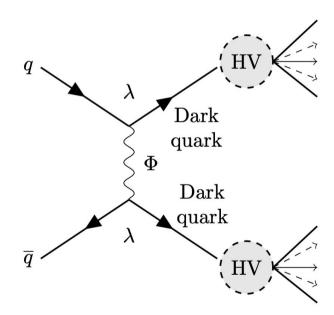
• Significant 3.4 σ excess for a LQ mass of 2 TeV and $\lambda=2.5$

 S_{T} -scalar p_{T} sum of the two τ and the leading- p_{T} b-jet

9/27

5th Symposium of the Division for Physics of Fundamental Interactions of the PPS, 21.10.2022

Analysis preselections


- 1. No electrons / muons ($p_T > 7 \text{ GeV}$)
- 2. Looking at events with MET trigger (trigger is fully efficient, tests in backup slide), MET > 200 GeV
- 3. At least 2 jets with leading jet $p_T > 250$ GeV, other jet $p_T > 30$ GeV and |eta| < 2.8, jet cleaning LooseBad (also TightBad selection applied on data leading jet, for NCB treatment)
- 4. Dead-tile correction, LAr, SCT error veto
- 5. DeltaPhi(closest jet, MET) < 2.0
- 6. B-tagged jets < 2
- 7. Tau jets $(p_T > 20 \text{ GeV}) < 1$

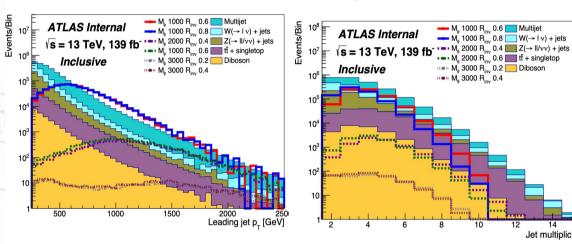
Key variables for this analysis:

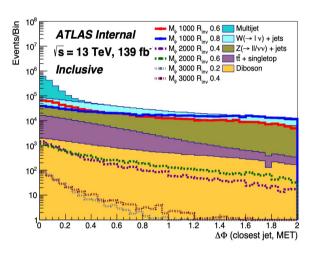
- MET
- Scalar jet pT sum, HT
- DeltaPhi (closest jet, MET)
- p_T balance (between closest and farthest jet from MET)

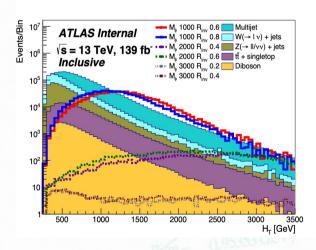
$$\Delta_{\text{rel}} p_{\text{T}}(j_1, j_2) = \frac{|\vec{p}_{\text{T}}(j_1) + \vec{p}_{\text{T}}(j_2)|}{|\vec{p}_{\text{T}}(j_1)| + |\vec{p}_{\text{T}}(j_2)|}$$

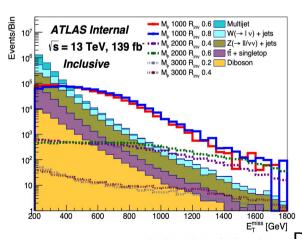
Maxminphi | Δφ(farthest jet, MET) - Δφ(closest jet, MET) |

The resultant MET direction is aligned along one of the jets.

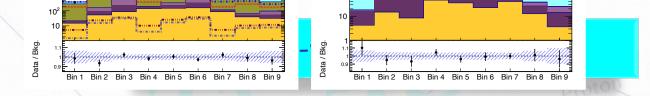

Deepak Kar, Xifeng Ruan, Sukanya Sinha

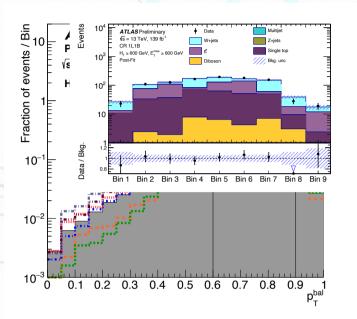

The region with MET>600 GeV and HT> 600 GeV after the pre-selection is defined as the SR.


30 / 12


Key kinematic variables

Jet multiplicity





Other signal mass points show similar trend.

Deepak Kar, Xifeng Ruan, Sukanya Sinha

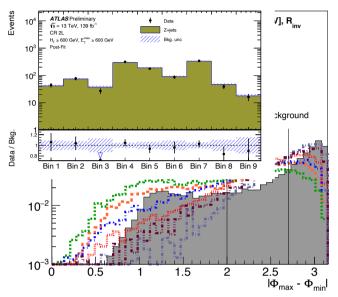


Table 2: Scale factors for each background processes obtained from simultaneous fit using SR, 1L CR, 1L1B CR and 2L CR. Top processes denotes merged contributions from $t\bar{t}$ and single top processes.

Process	$k_i^{\rm SF}$
Z+jets	1.18 ± 0.05
W+jets	1.09 ± 0.04
Top processes	0.64 ± 0.04
Multijet	1.10 ± 0.04

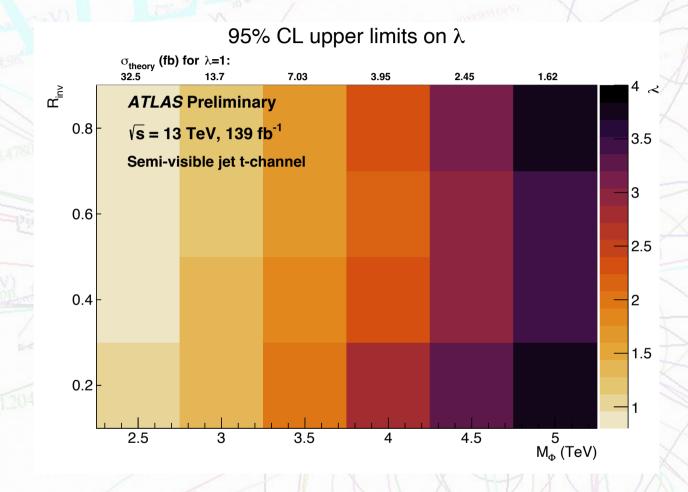


Figure 7: The grid shows the observed 95% CL upper limit on λ with M_{ϕ} on the x-axis, $R_{\rm inv}$ on the y axis. It also includes over each M_{ϕ} column the predicted cross-section for that specific mass value as a reference.

33 / 12

Proton (0.78 Pion)