How to falsify CDM model? (and also test some alternatives)

Wojciech Hellwing Center for Theoretical Physics PAS, Warsaw

23 October, orbit no #2022, Katowice Standard Model and Beyond

Planck: CMB temperature anisotropies

The six parameters of minimal Λ CDM model

$DM + \Sigma m_{\nu} + N_{eff}$		w CDM+ Σm_{ν}		ΛC
t	68% limits	best fit	68% limits	best fit
	$2.274 {\pm} 0.027$	2.205	$2.204{\pm}0.026$	2.224
2	$0.1227 {\pm} 0.0044$	0.1181	$0.1176 {\pm} 0.0016$	0.1172
5	$1.04092 {\pm} 0.00070$	1.04139	$1.04125 {\pm} 0.00057$	1.04190
	$0.097 {\pm} 0.015$	0.086	$0.090 {\pm} 0.013$	0.089
5	$0.9929 {\pm} 0.0098$	0.9595	0.9621 ± 0.0059	noo data.
	3.109 ± 0.031	3.075	3.081±0.0019 Z=	3.083
ŝ.	$0.46 {\pm} 0.12$	0.56	ster using 10	0.41
$3.704{\pm}0.29$		dark malle		-
	- b	aryonic 39	-1.39 ± 0.12	
	n of non-D	_		0.00695
9	detection_0.012	0.2693	0.2661 ± 0.0139	0.3027
A	400 00 70.8±1.5	73.68	$74.0 {\pm} 2.1$	68.93
I	$0.7477 {\pm} 0.0151$	0.7902	$0.7937 {\pm} 0.0208$	0.7434
	49Planck collaboration '	13	4908.152	

6 model parameters

Non-baryonic (particle) dark matter candidates

Туре	Example	Mass				
hot	neutrino	a few eV				
Incomp	Incompatible with LSS and CMB!					
warm	sterile v	keV-MeV				
	majoron					
cold	axion	~10 ⁻²⁵ eV?				
	neutralino					
		~100GeV?				

Non-baryonic (particle) dark matter candidates

Both CDM & WDM are compatible with CMB & LSS

Claims that both types of DM have been discovered:

- CDM: γ-ray excess from Galactic Centre

- WDM (sterile v): 3.5 keV X-ray line in galaxies and clusters

The WDM: sterile neutrino model fact sheet

saka+05/Laine+08/BRS+09

Competitive new dark matter models,(sterile neutrinos, models self interacting

Warm dark matter model

- Part of vMSM extension to standard model, facilitates neutrino oscillations, baryogenesis
- Two parameters, mass (M_s) & lepton asymmetry $(L_6) ==>$ matter power **spectrum** & lifetime τ
- 7keV sterile neutrino decay into X-ray + neutrino; an explanation for the 3.5keV line in clusters, M31, GC

M_s=7keV: L₆=[8-11] (3.5keV line compatible)

 $M_s = 7 \text{keV}$: $L_6 = [120]$ (warmest model available for 7keV)

Sterile neutrino: potential channels for detection

THE WAY FORWARD

Detect sterile neutrino and detect m_v

Direct detection If sterile neutrino mix with active neutrinos: Tritiums 0 decease KATDIN

Tritium β -decay - KATRIN

2. Indirect detection

Decay of keV particles produces an X-ray line!

Future X-ray missions: XRISM (XARM) - 2023 (replacement of Hitomi with soft X-ray spectrometer 0.3-12 keV)

Athena - 2028 2031 (0.5-12 keV

High-res or large-area)

Sterile neutrino: potential channels for detection

THE WAY FORWARD

Detect sterile neutrino and detect m

1. Direct detection

If sterile neutrino mix with active neutrinos: Tritium β -decay - KATRIN

Indirect detection Decay of keV particles produces an X-ray line!

3. Indirect subtle detection Find strong WDM effect in galaxy formation and evolution

Dark Matter: Cold, Hot or Else?

The "free-streaming" effect, perturbations that enter horizon are affected by the DM velocities. If at that time DM is relativistic, perturbations of that size gets "smeared-out".

For galaxy size perturbations $\lambda_{Galaxy} \sim 1$ Mpc, $T_U \sim 1$ keV (10⁷ K) today we have:

- Hot Dark Matter is relativistic at $T_{\rm U}$ ~1keV
- Warm Dark Matter is semi-relativistic at $T_{II} \sim 1 \text{keV}$
- Cold Dark Matter is non-relativistic at $T_{U} \sim 1 \text{keV}$

thus, $M_{dump} = \sim 10^{15} M_{\odot} :\sim 10^{9} M_{\odot} :\sim 10^{-6} M_{\odot}$:

Warm & Cold Copernicus Complexio

Satellite (subhalo) mass function

APOSTLE full hydro simulations

Local Group

Sawala et al '15

Far fewer satellite galaxies than CDM halos

APOSTLE full hydro simulations

Sawala et al '15

Local Group

Warm & Cold Copernicus Complexio

Strong lensing observations can detect dark haloes!

Warm & Cold Copernicus Complexio

- Σ_{tot} = projected halo number density within Einstein ring
- m_c= halo cutoff mass
- $m_c = 1.3 \times 10^8 h^{-1} M_o$ for coldest 7 keV sterile neutrino
- 100 Einstein ring systems and detection limit: $m_{low} = 10^7 h^{-1}M_o$
- If DM is 7 keV sterile v → rule out CDM at 3σ!

Strong lensing observations can detect dark haloes! Li, Frenk, Cole, Gao, Bose, WH 2016

The window for indirect detection

X-rays!

Lovell,...,WH et al., ApJ'19

Perseus cluster offset flux ratio

Local Universe: subtle topological effects on dwarfs

(a) COCO-CDM

(b) COCO-WDM

Local Universe: subtle topological effects on dwarfs

Local Universe: subtle topological effects on dwarfs

TAKE HOME MESSAGES

The indirect (astro/cosmo) window for detection appears to be very promising in **this** decade

- X-ray emission lines from its decay can be observed by future space missions
- 3.5 keV line is Gaussian and Perseus cluster on/off center measurement can provide ~>3σ detection
- Counting luminous satellites/dwarf galaxies is a non-conclusive test!
- dark substructure -> Minimum halo mas -> possible falsification of either WDM or CDM at ~>3.5 σ level
- Topological measures of complete Local Universe galaxy sample may yield another ~>3σ detection

CDM and WDM X-ray decay fluxes

CDM and WDM X-ray decay fluxes

If there are N dark matter simulation particles in the FoV, the flux, F, is:

$$F = 1.18 \times 10^{20} \sum_{i=0}^{N} \frac{m_{\text{DM},i}}{M_{\text{DM}}\tau} \frac{1}{4\pi d_i^2} \text{ counts s}^{-1} \text{cm}^{-2} \qquad (1)$$

where d_i is the distance between the *i*-th particle and the observer in kpc, $M_{\rm DM}$ is the mass of the dark matter candidate particle in keV, τ is the particle lifetime in seconds and $m_{{\rm DM},i}$ is the mass of the *i*-th simulation dark matter particle in M_{\odot}:

3 instruments specifications: XMM-Newton: 28' x 28' FoV XRISM: 3' FoV ATHENA: *Wield Field Imager* (WFI) 40'x40' and *X-ray Integral Field Unit* (X-IFU) 5.3'