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Talk overview

1. Introduction and motivation for solar neutrino program

 Direct probe of nuclear fusion
o Standard Solar Models: metallicity

e Neutrino oscillation parameters: solar sector (6,,, Am?,,)
e Survival probability P, as f(E,): matter effects, testing LMA-MSW prediction and its upturn

2. Borexino

e Spectroscopy of the pp chain neutrinos
e  Observation of the CNO cycle neutrinos

3. SuperKamiokande

e  Oscillation physics with 2B solar neutrinos



PP vs CNO Competition

pp chain
pep-v

pp-v

2 +.
p+p—cH+e"+v,

— 2 ,
p+e+p—"H+v,

1

1

¥
0.4%

99.6%

H+p —3He +vy

85%

2x10°% pep.,

A

102

N

He + °He — *He + 2p

SHe+p > “He +e*+ v,

pp- 15%

SHe + “He — "Be + vy

.

Be-y 99.?7%

‘Be+e = Li+v,

Y

Li+p — 2%He

pp-ll

0.1;3%

‘Be+p—>%B+y
¥
8B —» ®Be* + e+ v,
i
8Be* + p — 2%He

pp-ll

e

13N

ﬂ#—

Reaction rate (x1034 s7)

107"

V)

CNO sub-cycle

100

10°

150

¢ |[ntense neutrinos from nuclear fusion in the Sun’s core

e Majority (99%) from pp-chain with subdominant contribution from CNO cycle

e What's left in solar neutrinos?
e Help understanding solar interior (metallicity problem)
e Precision test of the MSW oscillation model

* Precise measurement of spectrum at the vacuum-to-matter transition region

e Measurement of Day/Night asymmetry
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The CNO cycle dominates
in stars heavier than 1.3 M




Solar neutrinos as sensitive tool to test
solar models: expected fluxes
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N. Vinyoles et al.
Astrophys. Journal 835:202 (2017)
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Original motivation of the first experiments on solar v was to test the Standard Solar Model (SSM)



BOREXINO - real-time solar

neutrino spectroscopy
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The Borexino Collaboration. Comprehensive measurement of pp-
chain solar neutrinos. Nature 562, 505-510 (2018)

From the measured interacton rates and assuming HZ-
SSM fluxes we get electron neutrino survival probability
from 60 keV to >10 MeV.

Selected the innermost 3-like events
Radius <2.4 m Ps-LPR < 4.8
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P..: Borexino impact

Borexino now
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Pee - electron neutrino survival probability

Before Borexino
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Borexino has measured the electron neutrino Pee
in the vacuum regime, where, according to the
MSW- LMA model, the vacuum dominates

The Borexino data allowed to probe the
vacuum-— matter transition from a single
experiment.

Despite the uncertainty of the various points,
that incorporate both the experimental errors
and the SSM uncertainties, the experimental
results seem in agreement with the predictions
of the MSW-LMA model.
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CNO - challenges
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e pep rate: gaussian penalty at SSM
prediction

* 210Bj rate: semi-gaussian penalty
at our upper limit
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Strategy for 21°Bi constraint

210p1, B~ 210R; B~ ;\210130 @, 206p
4 4
22.3 years 5days — 138.4 days

Easily identified
with PSD

Measuring 219Po could allow to constraint 210Bi

63 keV B: below 1160 keV B-

analysis threshold

e Long-term supplier
of 210Bj

our big enemy!

If only we had secular exquilibrium!

Constraining the decay rate of, a daughter of 21°Pb contaminating the
scintillator, is a key requirement for the CNO analysis and is achieved by
measuring the a decay rate of the 21°Bi daughter, 21°Po.



The Low Polonium Field
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CNO fit results The Borexino Collaboration. Improved Measurement of

Solar Neutrinos from the Carbon-Nitrogen-Oxygen
Cycle by Borexino and Its Implications for the Standard
60 — : — Solar Model. arXiv:2205.15975
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2-dimensional planes C.I. for v fluxes: “Be-v, 8B-v,CNO
General agreement with SSM-HZ scenario
Binary hypothesis test: HZ vs LZ

— Assuming SSM-HZ, Borexino results (7Be-v +
8B-v + CNO-v), SSM-LZ is disfavored at ~3.10 level

The Borexino Collaboration. Improved Measurement of Solar Neutrinos from the Carbon-
Nitrogen-Oxygen Cycle by Borexino and Its Implications for the Standard Solar Model.
arXiv:2205.15975
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Future: First directional measurement of sub-MeV
solar neutrinos

CID: Correlated and Integrated Directionality
Exploit 1st and 2nd hit of each event (characterized by a high fraction of Cherenkov light)
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! First Directional Measurement of sub-MeV Solar
Neutrinos with Borexino, Phys. Rev. Lett. 128
(2022) 091803.

Correlated and Integrated Directionality for sub-
MeV solar neutrinos in Borexino, Phys. Rev. D 105

(2022) 052002




Borexino

The international journal of science/ 26 November 2020

|. Borexino has been the first experiment probing sub-MeV
neutrinos in real-time, and is still now the unique
experiment able to proceed with these studies.

2. Borexino has measured for the first time all pp chain nuclear
reactions producing neutrinos, measuring, in particulas
simultaneously the pp, ’Be, and pep neutrino flux, 8B neutrinos with
a low threshold and probing hep neutrinos.

3. These results paved the way to actual breakthroughs not only on

iy | Solar physics, but also on neutrino physics. The v, survival

IHE RAYS s ' r ‘ % probability in the vacuum regime is measured for the first

S time by Borexino and the vacuum-matter transition has

Neutrino detector secures evidence \_

oftheSyn's secanflony Stenss been probed by a single experiment. In addition, a number of

C i Family planni Envi 2% . . . .
Howlecland. Rescifiham Imjist. . Theeffeg oS non-standard neutrino interactions has been studied by

subdued COVID19 incontraceptivesthat - and light pollutionon
with science meetwomen's needs US bird populations

Borexino with world leading limits.




BREAKTHROUGH

OF THE YEAR

world

TOP10

BREAKTHROUGH

European Physical Society
PRIZE

The 2021 Giuseppe and Vanna Cocconi Prize

for an outstanding contripution to Particle Astrophysics and Cosmology
is awarded tothe

Borexino Collaboration

nd-breaking observation of solar neutrinas from the pp chain and CNO ¢ycle
ided unigue and comprehensive tests of the Sun as 2 nuclear fusion engine

President Chair

European Physical Society EPS High Energy and Particle Physics Division

Borexino

4. The detection of the CNO cycle closes a long history, which began in the 30s of

5.
6.

7.

the last century, when Hans Bethe and Carl Friedrich von Weizsacker
independently, proposed that the fusion of hydrogen in stars could also be
catalyzed by nuclei heavier than He. Then the theory of energy generation
hypothesizes that the CNO would be the primary channel for hydrogen burning
in stars more massive than the Sun , and it is in fact the primary channel for
hydrogen burning in the Universe. This hypothesis never received an
observational confirmation until now, when Borexino has observed CNO
neutrinos proving also that its contribution in the Sun is of the order of 1%.
First directional measurement of sub-MeV solar neutrinos.

When all solar neutrino fluxes measured by Borexino, including CNQ,

are combined,the LZ hypothesis is disfavored at a level of 3.1c.

Again, thanks to the low intrinsic background, Borexino has observed

geo-neutrinos with 5c statistical significance and studied them to

obtain Earth geo-physical and geo-chemical information.



Superk -
Detector simulation improvements

* Improved PMT hit timing simulation
* Improved modeling of water quality non-uniformity

Analysis improvements

* Correction for PMT gain drift

* Improved correction for non-uniform energy
response
E-scale non-uniformity (MC) 1.7% — 0.5%

Improved spallation cut

* 12% more signal efficiency while keeping spallation
rejection efficiency at a similar level (~90%)

Gained ~1 year worth statistics

Yasuhiro Nakajima Recent results and future prospects from
Super-Kamiokande Neutrino 2020
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Locke, S. M. (2020). New Methods to Reduce Cosmogenic Backgrounds
of Super-Kamiokande in the Solar Neutrino Energy Regime. UC Irvine.



New spectrum and Day/Nigth asymemetry
measurements to test MSW

* Energy dependent survival probability Pee

_SK VY LMA Spectrum
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TAUP 2019 - Yuuki Nakano and for the Super-Kamiokande
collaboration 2020 J. Phys.: Conf. Ser. 1468 012189 TAUP 2021 - Livia Ludhova talk: Solar and Geoneutrinos

Day/Night effect

ALl = (=3.6  1.6(stat) = 0.6(syst)) % — ALl = (=2.1£1.1)%

Neutrino 2020 Yasuhiro Nakajima Recent results and future prospects from Super-Kamiokande

Data/MC ratio at E < 6 MeV
slightly shifted upward

Shift of prediction due to
improved detector simulation.
Added statistics due to
improved spallation cut.

Event migration due to new
reconstruction

Day/Night asymmetry shift

Previous analysis used data up
to Feb 2014 (SK-1V: 1664 days)

Added ~1200 days of data
fluctuated towards smaller D/N
asymmetry

Both impacted to the shift
of best fit Am?2,,



Superk - Oscillation Parameter Extraction

e use rate, spectral and day/night rate variation e larger value of Am? than before
e less tension (1.4 o) with KamLAND (reactor antinu) -

. . 30
Oscillation parameters extracted by ) g;
combining all SK data, as well as SNO and e
KamLAND data 2] .f.’.’. R
S lsinfe,)=0316%8  amz=(7.544 |
sin2(012) Am221 [10-5 eV2] o smE ; 0.300-0014 A = E? I {‘]&L; ]g eg’
: sin*(e,, 0o AmZ=(7.51%13) 10%eV?
KamLAND | 0.316%9.33 7.54*312 2
SK+SNO | 0.306+0.014| 6.1 1’%)1%18 -51_ - SK+SNO KamLAND
Combined | 0.306*2:213 /.51 N
0.012 -0.18 <E] o \
Consistent 812 values among experiments :
Solar best fit Am221 lower than KamLAND, but 5 Te(n)smnl? d _
difference is less than the previous analysis. - Lombine
SK+SNO fit disfavors the KamLAND - Contours show 1,2, . 5 o confidence ntervals |
best fit value at ~1.40 (was ~20) 0.1 02 03 04 Sing(%)s 2 4 (Zsz
0'4

Yasuhiro Nakajima Recent results and future prospects from Super-Kamiokande Neutrino 2020




Resolved tension in the solar sector

Pre-Neutrino 2020 data
/ NUFIT 5.0 (2020) e With the new data the
14 B |2 T | | | 1 11 | I I 12 TV Ikl T 1 | 1T 1 | T T ] tension between the best flt
[ sin"0,, = 0.0222 - GS98 (NuFIT 4.1) ] Am?2,, of KamLAND and that
12— TS _ 10 GS98 — of the solar results has
- 2 _ N ~ AGSS09 i decreased
10 = ':' ] B KamLAND | ’
L [ ! ] 8 ]
o Ay, = B ) e The best fit of KamLAND lies
) _ /R “w g /3 at 1.14c in the analysis with
= oL ~ 1 <+ /T the GS98 fluxes.
C\IEN : : — =]
< 40 ‘_ . ] 4 ; e This decrease in the tension is
- — ] - g due to both, the smaller day-
P 7 2 — night asymmetry (and the
_ i - - slightly more pronounced
ol 1 Lo oo b v b a7 0 [ L L turn-up in the low energy part
0.2 0.25 0.3 0.35 0.4 2 4 6 8 10 of the spectrum which lowers
Sin'2812 Am; [1 0° eV2] it one extra unit.

Esteban, I., Gonzalez-Garcia, M., Maltoni, M. et al. The fate of hints: updated global
analysis of three-flavor neutrino oscillations. J. High Energ. Phys. 2020, 178 (2020).



Future detectors

o Jinping
e 20 kt liquid scintillator
JUNO * excellent for B solar neutrino measurements, * slow liquid scintillator
¢ low-energy threshold,  total fiducial target mass of 2000 tons for
* high energy resolution compared with water Cherenkov solar neutrino
1 =
‘% e Am? =4.8x107eV? i :f‘ 0.8 z_
> ~Am2=75x107eVE £ 07F
) * 2 o E
G 4000[— ~P=032 (E>2MeV) ] 2 06F
2 L i S 0SF B
- - Z 04F
2000 . 2 03F = PP ——
i ] > F —%— Be7
5§ 02F —= 015
- . o % 01 = PP
g B H 0E .BS. Lol . R |
= 03 i 10-! 1 10
é i neutrino energy/MeV
£ 04 0 John F. Beacom et al 2017 Chinese Phys. C 41 023002
3 0.4 :
E ' °
[
N L N R R N HyperKamiokande

Visible Energy [MeV] .
* next generation large water Cherenkov detector

Chinese Physics C 2021, Vol. 45 Issue(2) : 023004 e water tanks provide the fiducial (total)
DOI: 10.1088/1674-1137/abd92a volume of 0.19 (0.26) million metric tons
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11C cut: 1) the three fold coincidence

H1C is produced by muons together with neutron(s);
around 2.2
i{é‘fﬁ;“ﬁ'r‘;‘;ﬁ The likelihood that a certain event is 1C is obtained using:

* Distance in space and time from the p-track;
 Distance from the neutron;
*  Neutron multiplicity;

. Muon dE/dx and number of muon clusters in an
event;

The data-set is divided in two samples: one depleted in BC (TFC-subtracted) and
one enriched in 1C (TFC-tagged) which are simultaneously fit;

2) The B+/B~ pulse-shape variable PS-Lpi:

1nC decays *: the probability density function (PDF) of the . P

scintillation time profile is different for e- and e* for two reasons:

* in 50% of the case et annihilation is delayed by
ortho-positronium formation (t~3ns);

e et energy deposit is not point-like because of the two
annihilation gammas;

54
narm likelihood

New discrimination parameter based on the output likelihood of the pos-reco alghoritm



o / B Discrimination with ANN

< NS

s}

Alpha curve from Po-214

Beta curve from Bi-214

Solved problem of a discrimination from 219Po (o)

ity of hit detection in

Neural networks method

100 200 300 400 500 600 700 800 900

Time [ns]

Coordinate system: Y
2014-06-06 - .
2014 -Dt‘)_ ;

Example of a/f3
for 214Bi-214Po

il - L
-0.06 -0.04 -0.02 0 002 0.04

Galbiati, C., Misiaszek, M. & Rossi, N. Eur. Phys. J. A (2016) 52: 86.




Thermal Insulation Program

ldea:

Strong and stable vertical gradient prevents
convective motions

Milestones

2014 :installation of temperature probes
Mid-2015: beginning of the insulation program
Late 2015: turning off of the water recirculation
systemin the water tank;

2016:first operation of the active temperature
control system (ATCS)

Early 2019: change of the active control set point
Late 2019: installation and commissioning of the
hall C temperature control system.

Warm air
from room
Ventilation

(T20°C)

BOREXINO
Water Tank

Heat sink 6°




Effects on the temperatures

Temperature probes

Temperature (°C)

1 - Beginning of the Insulation 4 - Start of ATCS
2 - Water Loop turning OFF 5 - Change of ATCS set-points
3 - Completion of the Insulation 6 - Start of Hall C TCS
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Probes closer to the inner detectors with
thermal program milestones
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