Some remarks on non-planar diagrams

Krzysztof Bielas Division of Field Theory and Particle Physics University of Silesia, Katowice, Poland

in collaboration with I. Dubovyk, J. Gluza, T. Riemann

Matter To The Deepest 2013

Contents

1 Motivations

2 Graph theory and Feynman diagrams

- Introduction
- Planarity of Feynman diagrams
- Planarity testing (I. Dubovyk)

3 Feynman diagrams and dual variables

- Geometrical planarity criterion
- Non-planar diagrams and dual variables

Conclusions

Planar and non-planar Feynman diagrams are topologically different, e.g. they correspond to surfaces of different genuses.

Planar and non-planar Feynman diagrams are topologically different, e.g. they correspond to surfaces of different genuses.

As a consequence, they must be treated differently, both on computational and theoretical side:

Planar and non-planar Feynman diagrams are topologically different, e.g. they correspond to surfaces of different genuses.

As a consequence, they must be treated differently, both on computational and theoretical side:

• they demand different methods for analytical computations, e.g. to get as least dimensional Mellin–Barnes representations as possible,

Planar and non-planar Feynman diagrams are topologically different, e.g. they correspond to surfaces of different genuses.

As a consequence, they must be treated differently, both on computational and theoretical side:

- they demand different methods for analytical computations, e.g. to get as least dimensional Mellin–Barnes representations as possible,
- the non-planar ones can not yet be involved in some new constructions, e.g. twistor methods for calculating scattering amplitudes in $\mathcal{N} = 4 \ SYM$.

AMBRE is a Mathematica package that calculates M-B representations [J. Gluza, K. Kajda, T. Riemann and V. Yundin, Eur. Phys. J. C71 (2011)]

AMBRE is a Mathematica package that calculates M–B representations [J. Gluza, K. Kajda, T. Riemann and V. Yundin, Eur. Phys. J. C71 (2011)] the usual approach is the loop-by-loop one

AMBRE is a Mathematica package that calculates M–B representations [J. Gluza, K. Kajda, T. Riemann and V. Yundin, Eur. Phys. J. C71 (2011)] \downarrow the usual approach is the loop-by-loop one \downarrow the same strategy to all cases is not an optimal solution

AMBRE is a Mathematica package that calculates M–B representations [J. Gluza, K. Kajda, T. Riemann and V. Yundin, Eur. Phys. J. C71 (2011)] \downarrow the usual approach is the loop-by-loop one \downarrow the same strategy to all cases is not an optimal solution \downarrow non-planar diagrams demand other methods (new variables, Cheng–Wu theorem etc.)

AMBRE is a Mathematica package that calculates M–B representations [J. Gluza, K. Kajda, T. Riemann and V. Yundin, Eur. Phys. J. C71 (2011)] \downarrow the usual approach is the loop-by-loop one \downarrow the same strategy to all cases is not an optimal solution \downarrow non-planar diagrams demand other methods (new variables, Cheng–Wu theorem etc.)

The choice of the method should be made automatic, with the only input as given external and internal momenta of a diagram G, e.g.

$$k_1$$
, $k_1 - p_1$, $k_1 - p_1 - p_2$, k_2 , $k_2 - p_4$, $k_2 - p_3 - p_4$, $k_1 + k_2$.

AMBRE is a Mathematica package that calculates M–B representations [J. Gluza, K. Kajda, T. Riemann and V. Yundin, Eur. Phys. J. C71 (2011)] \downarrow the usual approach is the loop-by-loop one \downarrow the same strategy to all cases is not an optimal solution \downarrow non-planar diagrams demand other methods (new variables, Cheng–Wu theorem etc.)

The choice of the method should be made automatic, with the only input as given external and internal momenta of a diagram G, e.g.

$$k_1,\ k_1-p_1,\ k_1-p_1-p_2,\ k_2,\ k_2-p_4,\ k_2-p_3-p_4,\ k_1+k_2.$$

Do they determine uniquely the (non)planarity of G?

Definitions

A graph is planar if it can be drawn on the sphere (plane) without intersections.

Definitions

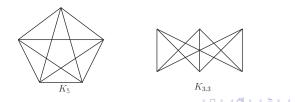
A graph is planar if it can be drawn on the sphere (plane) without intersections.

Obviously, non-planar graphs are graphs that are not planar;

Definitions

A graph is planar if it can be drawn on the sphere (plane) without intersections.

Obviously, non-planar graphs are graphs that are not planar; the simplest ones are:



문에 세종에

æ

Kuratowski theorem

a graph is non-planar iff it contains K_5 or $K_{3,3}$ as a subgraph.

Kuratowski theorem

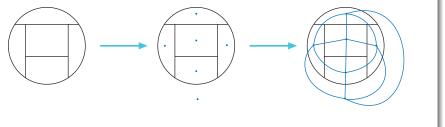
a graph is non-planar iff it contains K_5 or $K_{3,3}$ as a subgraph.

A *dual* to the graph G is constructed by drawing vertices inside the faces (including the external face) and connecting vertices that correspond to adjacent faces.

Kuratowski theorem

a graph is non-planar iff it contains K_5 or $K_{3,3}$ as a subgraph.

A *dual* to the graph G is constructed by drawing vertices inside the faces (including the external face) and connecting vertices that correspond to adjacent faces.



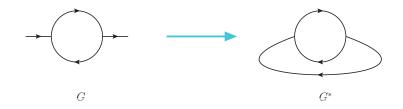
Only planar graphs possess their duals.

Graph theory and Feynman diagrams

To say that a Feynman diagram G is (non-)planar, one has to define the *adjoint* diagram G^* .

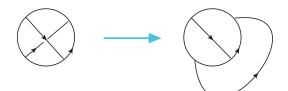
Graph theory and Feynman diagrams

To say that a Feynman diagram G is (non-)planar, one has to define the *adjoint* diagram G^* .



We say that a Feynman diagram G is planar iff G^* is planar.

Hence



is planar,

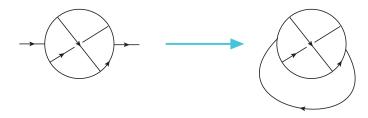
< □ > < 同 >

프 () (프)

æ

Hence

is planar, while



is not (it has $K_{3,3}$ as a subgraph).

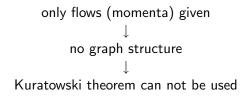
only flows (momenta) given

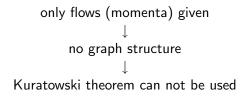
э

< ∃ →

only flows (momenta) given ↓ no graph structure

> < ≣>





However, there are at least 2 methods: combinatorial and geometrical one.

Given a Feynman diagram with

- external momenta $p_1, ..., p_n$
- loop momenta $k_1, ..., k_m$ and Feynman parameters $x_1, ..., x_m$

Given a Feynman diagram with

- external momenta $p_1, ..., p_n$
- ${\ensuremath{\bullet}}$ loop momenta $k_1,...,k_m$ and Feynman parameters $x_1,...,x_m$

the Laplace matrix is

$$L_{ij} = \begin{cases} \sum_{s=1}^{m} x_s & \text{ if } i = j, \ k_s \text{ is attached to } v_i, \ k_s \text{ is not a self-loop,} \\ -\sum_{s=1}^{m} x_s & \text{ if } i \neq j, \ k_s \text{ connects } v_i, v_j. \end{cases}$$

3 N K 3 N

Given a Feynman diagram with

- external momenta $p_1, ..., p_n$
- loop momenta $k_1, ..., k_m$ and Feynman parameters $x_1, ..., x_m$

the Laplace matrix is

$$L_{ij} = \begin{cases} \sum_{s=1}^{m} x_s & \text{if } i = j, \ k_s \text{ is attached to } v_i, \ k_s \text{ is not a self-loop,} \\ -\sum_{s=1}^{m} x_s & \text{if } i \neq j, \ k_s \text{ connects } v_i, v_j. \end{cases}$$

Diagonal elements of \boldsymbol{L} are computed by checking all possibilities of conserved momentum

Given a Feynman diagram with

- external momenta $p_1, ..., p_n$
- ${\ensuremath{\bullet}}$ loop momenta $k_1,...,k_m$ and Feynman parameters $x_1,...,x_m$

the Laplace matrix is

$$L_{ij} = \begin{cases} \sum_{s=1}^{m} x_s & \text{ if } i = j, \ k_s \text{ is attached to } v_i, \ k_s \text{ is not a self-loop,} \\ -\sum_{s=1}^{m} x_s & \text{ if } i \neq j, \ k_s \text{ connects } v_i, v_j. \end{cases}$$

Diagonal elements of \boldsymbol{L} are computed by checking all possibilities of conserved momentum

(for external vertices)
$$\pm k_a \pm k_b = \pm p_e$$
 or $\pm k_a \pm k_b \pm k_c = \pm p_e$,

(for internal vertices) $\pm k_a \pm k_b = \pm k_c$ or $\pm k_a \pm k_b \pm k_c = \pm k_d$,

Off-diagonal elements L_{ij} are computed by taking intersection of L_{ii} and L_{jj} , since it contains exactly propagators that connect vertices v_i and v_j .

Off-diagonal elements L_{ij} are computed by taking intersection of L_{ii} and L_{jj} , since it contains exactly propagators that connect vertices v_i and v_j .

Then introduce another form of Laplace matrix by $x_k \rightarrow 1$

$$L_{ij} = \begin{cases} \deg(v_i) & \text{if } i = j, \\ -1 & \text{if } i \neq j \text{ and } v_i, v_j \text{ are adjacent}, \end{cases}$$

Off-diagonal elements L_{ij} are computed by taking intersection of L_{ii} and L_{jj} , since it contains exactly propagators that connect vertices v_i and v_j .

Then introduce another form of Laplace matrix by $x_k \rightarrow 1$

$$L_{ij} = \begin{cases} \deg(v_i) & \text{if } i = j, \\ -1 & \text{if } i \neq j \text{ and } v_i, v_j \text{ are adjacent}, \end{cases}$$

L can be written as

$$L = D - A, \tag{1}$$

where D is a degree matrix and A is adjacency matrix given by

$$A_{ij} = \begin{cases} 1 & \text{if } i \neq j \text{ and } v_i, v_j \text{ are adjacent,} \\ 0 & \text{otherwise.} \end{cases}$$

The final part of the algorithm is to create the adjoint G^* .

э

< ∃⇒

The final part of the algorithm is to create the adjoint G^* .

Then A^* is obtained by adding one row and one column and putting 1's in the elements that correspond to external vertices.

The final part of the algorithm is to create the adjoint G^* .

Then A^* is obtained by adding one row and one column and putting 1's in the elements that correspond to external vertices.

Eventually, given A^* , a Mathematica package Combinatorica yields an answer for the question of planarity of a Feynman diagram G.

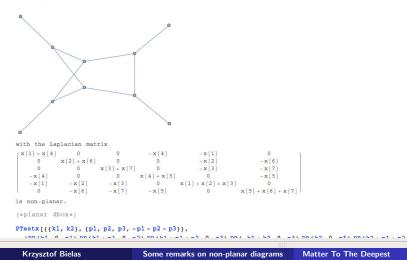
<< PlanarityTest_1.2.m

by E. Dubovyk ver: 1.2 created: April 2013 last executed: 25.06.2013 at 15:37

(*non-planar dbox*)

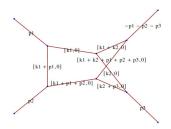
```
PTest[({k1, k2}, (p1, p2, p3, -p1 - p2 - p3)],
(PR[k1 + k2 + p1 + p2 + p3, 0, n1] PR[k1 + k2, 0, n2] PR[k1, 0, n3] PR[k1 + p1, 0, n4] PR[k1 + p1 + p2, 0, n5] PR[k2 + p3,
```

The Diagram:



It is also possible to label the edges with propagators

```
\label{eq:linear} $$ \ln[7]:= DrawDiagram[{k1, k2}, {p1, p2, p3, -p1 - p2 - p3}], $$ {PR[k1 + k2 + p1 + p2 + p3, 0, n1] PR[k1 + k2, 0, n2] PR[k1, 0, n3] PR[k1 + p1, 0, n4] PR[k1 + p1 + p2, 0, n5] $$ PR[k2 + p3, 0, n6] PR[k2, 0, n7]}; $$
```



2

4

14 / 34

Method II

[Arkani-Hamed et al. 2010]:

planarity \leftrightarrow (dual) conformal symmetry

▶ ∢ ⊒ ▶

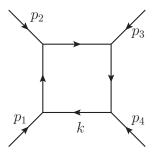
э

Method II

[Arkani-Hamed et al. 2010]:

planarity \leftrightarrow (dual) conformal symmetry

Example: simple one-loop planar box



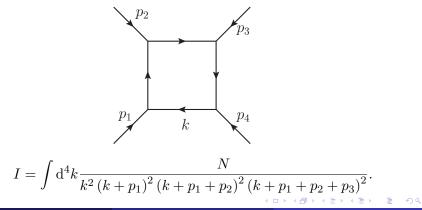
∍⊳

Method II

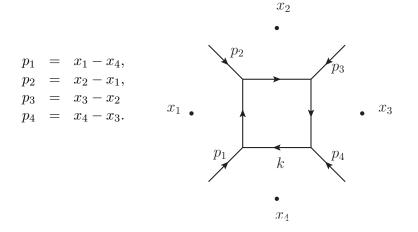
[Arkani-Hamed et al. 2010]:

planarity \leftrightarrow (dual) conformal symmetry

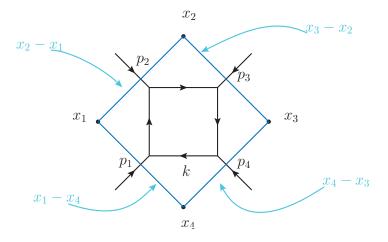
Example: simple one-loop planar box



Let introduce *dual variables* with incoming external momenta p_1, \ldots, p_n and some propagators. Let



Note that the lines connecting dual variables cross exactly given momenta



э

< ∃ →

$$p_{1} = x_{1} - x_{4},$$

$$p_{2} = x_{2} - x_{1},$$

$$p_{3} = x_{3} - x_{2},$$

$$p_{4} = x_{4} - x_{3}.$$

$$\downarrow$$

$$I = \int d^4k \frac{N}{k^2 (k + x_1 - x_4)^2 (k + x_2 - x_4)^2 (k + x_3 - x_4)^2}.$$

ヘロト 人間 とくほとくほとう

Ξ.

$$p_{1} = x_{1} - x_{4},$$

$$p_{2} = x_{2} - x_{1},$$

$$p_{3} = x_{3} - x_{2},$$

$$p_{4} = x_{4} - x_{3}.$$

$$\downarrow$$

$$I = \int d^4k \frac{N}{k^2 (k + x_1 - x_4)^2 (k + x_2 - x_4)^2 (k + x_3 - x_4)^2}.$$

What are dual variables for the loop momentum k?

프 () (프)

э

$$p_{1} = x_{1} - x_{4},$$

$$p_{2} = x_{2} - x_{1},$$

$$p_{3} = x_{3} - x_{2},$$

$$p_{4} = x_{4} - x_{3}.$$

$$\downarrow$$

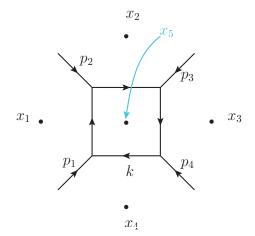
$$I = \int d^4k \frac{N}{k^2 (k + x_1 - x_4)^2 (k + x_2 - x_4)^2 (k + x_3 - x_4)^2}.$$

What are dual variables for the loop momentum k?

Since any momentum leads to the one new dual variable, let x_5 be introduced.

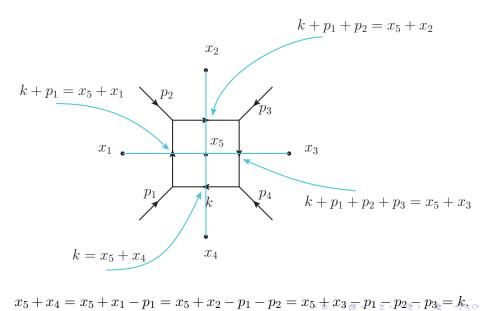
18 / 34

Note that the choice



gives unique recipe for k, that is $k = x_5 + x_4$.

∍⊳

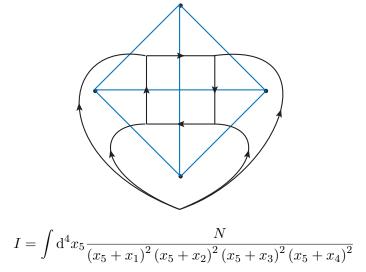


Hence a dual to the adjoint is defined in unambiguous way:

э

< ∃ →

Hence a dual to the adjoint is defined in unambiguous way:



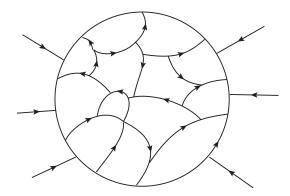
Moreover, it is (dual) conformally invariant.

In the case of more loops, the strategy is the same:

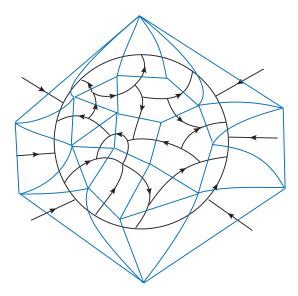
< ∃⇒

э

In the case of more loops, the strategy is the same:



In the case of more loops, the strategy is the same:



▶ ★ 臣 ▶

э

In the end we get the relation

dual variables \leftrightarrow dual graph

∃ > < ∃ >

э

In the end we get the relation

dual variables \leftrightarrow dual graph \downarrow dual variables \leftrightarrow planar Feynman diagram

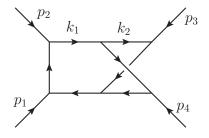
What happens in the non-planar cases?

In the end we get the relation

dual variables \leftrightarrow dual graph \downarrow dual variables \leftrightarrow planar Feynman diagram

What happens in the non-planar cases?

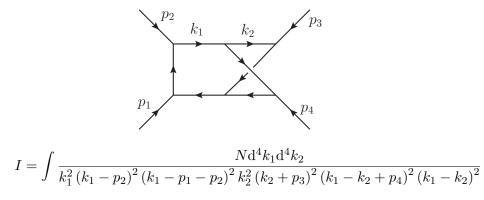
Example — non-planar double box:



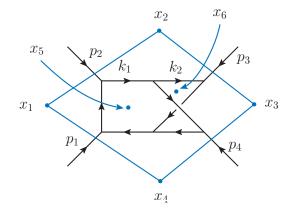
< ∃⇒

э

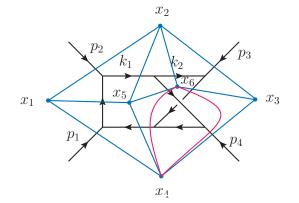
Example — non-planar double box:



External dual variables are identical as the previous ones, while internal faces intersect each other:



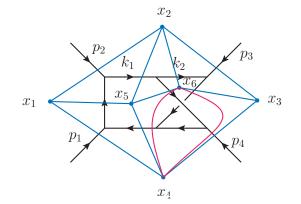
One can not construct a dual diagram:



э

< ∃ →

One can not construct a dual diagram:



which is not a surprise from a graph-theoretical point of view.

27 / 34

Any choice gives a similar result

$$I = \int \frac{N d^4 x_5 d^4 x_6}{(x_5 + x_1)^2 (x_5 + x_2)^2 (x_5 + x_4)^2 (x_6 + x_2)^2 (x_6 + x_3)^2 (x_5 - x_6)^2} \\ \times \frac{1}{(x_5 - x_6 + x_4 - x_3)^2},$$

which is not (dual) conformally invariant.

< ∃⇒

Any choice gives a similar result

$$I = \int \frac{N d^4 x_5 d^4 x_6}{(x_5 + x_1)^2 (x_5 + x_2)^2 (x_5 + x_4)^2 (x_6 + x_2)^2 (x_6 + x_3)^2 (x_5 - x_6)^2} \\ \times \frac{1}{(x_5 - x_6 + x_4 - x_3)^2},$$

which is not (dual) conformally invariant.

planar diagrams \longrightarrow single line-crossings $\longrightarrow x_i \pm x_j$

▶ ★ 臣 ▶ …

Any choice gives a similar result

$$I = \int \frac{N d^4 x_5 d^4 x_6}{(x_5 + x_1)^2 (x_5 + x_2)^2 (x_5 + x_4)^2 (x_6 + x_2)^2 (x_6 + x_3)^2 (x_5 - x_6)^2} \\ \times \frac{1}{(x_5 - x_6 + x_4 - x_3)^2},$$

which is not (dual) conformally invariant.

planar diagrams \longrightarrow single line-crossings $\longrightarrow x_i \pm x_j$

while

non-planar diagrams \rightarrow double line-crossings $\rightarrow x_i \pm x_j \pm x_k \pm x_n$

Conclusion

There is a simple planarity criterion for a Feynman diagram given by the set of momentum flows.

Conclusion

There is a simple planarity criterion for a Feynman diagram given by the set of momentum flows.

Namely, a diagram, whose integrand can not be reduced to function of quantities $x_i \pm x_j$, is non-planar.

Conclusion

There is a simple planarity criterion for a Feynman diagram given by the set of momentum flows.

Namely, a diagram, whose integrand can not be reduced to function of quantities $x_i \pm x_j$, is non-planar.

The method is general and applicable to all loop orders and for any vertex valences.

э

▶ ∢ ⊒ ▶

• make a first substitution $k_1 \rightarrow x_1 - x_2$,

< ∃ →

- make a first substitution $k_1 \rightarrow x_1 x_2$,
- from all flows that were mixed with k_1 find the ones of the form $k_i \pm x_j \pm x_n$,

- make a first substitution $k_1 \rightarrow x_1 x_2$,
- from all flows that were mixed with k_1 find the ones of the form $k_i \pm x_j \pm x_n$,
- make a substitution $k_i \rightarrow x_3 \pm x_i$ or $k_i \rightarrow x_3 \pm x_j$ (depending on signs in order to simplify a term),

The algorithm in Mathematica code is based on following steps:

- make a first substitution $k_1 \rightarrow x_1 x_2$,
- from all flows that were mixed with k_1 find the ones of the form $k_i \pm x_j \pm x_n$,
- make a substitution $k_i \rightarrow x_3 \pm x_i$ or $k_i \rightarrow x_3 \pm x_j$ (depending on signs in order to simplify a term),
- if many terms such, always take the commonest of x's

The algorithm in Mathematica code is based on following steps:

- make a first substitution $k_1 \rightarrow x_1 x_2$,
- from all flows that were mixed with k_1 find the ones of the form $k_i \pm x_j \pm x_n$,
- make a substitution $k_i \rightarrow x_3 \pm x_i$ or $k_i \rightarrow x_3 \pm x_j$ (depending on signs in order to simplify a term),
- if many terms such, always take the commonest of x's
- the last step gives the answer whether all momenta are reducible; if not, there remains a term $x_i \pm x_j \pm x_k \pm x_n$, that breaks conformality and hence the diagram is non-planar.

The algorithm in Mathematica code is based on following steps:

- make a first substitution $k_1 \rightarrow x_1 x_2$,
- from all flows that were mixed with k_1 find the ones of the form $k_i \pm x_j \pm x_n$,
- make a substitution $k_i \rightarrow x_3 \pm x_i$ or $k_i \rightarrow x_3 \pm x_j$ (depending on signs in order to simplify a term),
- if many terms such, always take the commonest of x's
- the last step gives the answer whether all momenta are reducible; if not, there remains a term $x_i \pm x_j \pm x_k \pm x_n$, that breaks conformality and hence the diagram is non-planar.

Remark: since sometimes external legs could be permuted, which would lead to wrong relations $p_i = x_i - x_{i-1}$, it is even better to treat external momenta as loop momenta from the beginning.

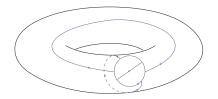
イロト イヨト イヨト

lack of conformal symmetry \rightarrow twistor methods can not be used

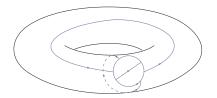
э

- ∢ ⊒ →

lack of conformal symmetry \rightarrow twistor methods can not be used \downarrow How to planarize the non-planar diagrams? lack of conformal symmetry \rightarrow twistor methods can not be used \downarrow How to planarize the non-planar diagrams? \downarrow embed them on a higher-genus surface lack of conformal symmetry \rightarrow twistor methods can not be used How to planarize the non-planar diagrams? embed them on a higher-genus surface

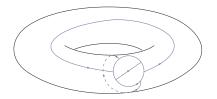


∍⊳



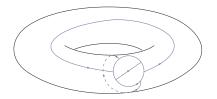
$$\chi=v-e+f=2-2g=2-2\cdot 1=0 \longrightarrow f=0-6+9=3.$$

∍⊳



$$\chi = v - e + f = 2 - 2g = 2 - 2 \cdot 1 = 0 \longrightarrow f = 0 - 6 + 9 = 3.$$

Hence there are only 3 dual variables x_1 , x_2 , x_3 , representing 3 momenta, thus leading to non-unique assignment $x_i - x_j \rightarrow k_i$.



$$\chi = v - e + f = 2 - 2g = 2 - 2 \cdot 1 = 0 \longrightarrow f = 0 - 6 + 9 = 3.$$

Hence there are only 3 dual variables x_1 , x_2 , x_3 , representing 3 momenta, thus leading to non-unique assignment $x_i - x_j \rightarrow k_i$.

While it is possible to find a dual, it is not the dual in the sense of correspondence $x_i - x_j \rightarrow k_i \rightarrow$ no conformal symmetry.

32 / 34

Conclusions

Conclusions

- we found two ways of testing (non-)planarity of Feynman diagrams only upon given momenta,
- it allows to fully automatize the procedures in AMBRE, that differ on (non-)planar diagrams,
- the second method uses the fact, that non-planar diagrams break conformal symmetry,
- while it is the cornerstone of e.g. twistor methods in *SYM* theories, the simple embedding on the higher-genus surface does not give the conformal invariant analogue,
- we should think about other methods of applying twistor techniques to non-planar diagrams.

Thank you!

The work is supported by the scholarship project ŚWIDER

Krzysztof Bielas

ms Matter To The Deepest

34 / 34

э