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Planar and non-planar Feynman diagrams are topologically different, e.g.
they correspond to surfaces of different genuses.
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Planar and non-planar Feynman diagrams are topologically different, e.g.
they correspond to surfaces of different genuses.

As a consequence, they must be treated differently, both on computational
and theoretical side:

@ they demand different methods for analytical computations, e.g. to
get as least dimensional Mellin—Barnes representations as possible,

@ the non-planar ones can not yet be involved in some new
constructions, e.g. twistor methods for calculating scattering
amplitudes in NV =4 SY M.
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AMBRE is a Mathematica package that calculates M—B representations
[J. Gluza, K. Kajda, T. Riemann and V. Yundin, Eur. Phys. J. C71 (2011)]

Krzysztof Bielas Some remarks on non-planar diagrams Matter To The Deepest 4/34



AMBRE is a Mathematica package that calculates M—B representations
[J. Gluza, K. Kajda, T. Riemann and V. Yundin, Eur. Phys. J. C71 (2011)]

|

the usual approach is the loop-by-loop one

Krzysztof Bielas Some remarks on non-planar diagrams Matter To The Deepest 4/34



AMBRE is a Mathematica package that calculates M—B representations
[J. Gluza, K. Kajda, T. Riemann and V. Yundin, Eur. Phys. J. C71 (2011)]

|

the usual approach is the loop-by-loop one

!

the same strategy to all cases is not an optimal solution

Krzysztof Bielas Some remarks on non-planar diagrams Matter To The Deepest 4/34



AMBRE is a Mathematica package that calculates M—B representations
[J. Gluza, K. Kajda, T. Riemann and V. Yundin, Eur. Phys. J. C71 (2011)]

|
the usual approach is the loop-by-loop one
|
the same strategy to all cases is not an optimal solution
l

non-planar diagrams demand other methods (new variables, Cheng—Wu
theorem etc.)

Krzysztof Bielas Some remarks on non-planar diagrams Matter To The Deepest 4/34



AMBRE is a Mathematica package that calculates M—B representations
[J. Gluza, K. Kajda, T. Riemann and V. Yundin, Eur. Phys. J. C71 (2011)]

|
the usual approach is the loop-by-loop one
|
the same strategy to all cases is not an optimal solution
l

non-planar diagrams demand other methods (new variables, Cheng—Wu
theorem etc.)

The choice of the method should be made automatic, with the only input
as given external and internal momenta of a diagram G, e.g.

k1, k1 —p1, k1 —p1 — p2, ko, k2 — pa, k2 — p3 — pa, k1 + ko.
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AMBRE is a Mathematica package that calculates M—B representations
[J. Gluza, K. Kajda, T. Riemann and V. Yundin, Eur. Phys. J. C71 (2011)]

|
the usual approach is the loop-by-loop one
|
the same strategy to all cases is not an optimal solution
l

non-planar diagrams demand other methods (new variables, Cheng—Wu
theorem etc.)

The choice of the method should be made automatic, with the only input
as given external and internal momenta of a diagram G, e.g.

k1, k1 —p1, k1 —p1 — p2, ko2, k2 — pa, k2 — p3 — pa, k1 + ka.
Do they determine uniquely the (non)planarity of G?
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Graph theory and Feynman diagrams Introduction

A graph is planar if it can be drawn on the sphere (plane) without
intersections.
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Graph theory and Feynman diagrams Introduction

A graph is planar if it can be drawn on the sphere (plane) without
intersections.

Obviously, non-planar graphs are graphs that are not planar; the simplest
ones are:
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K5 and K33 are also the “building blocks™:
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K5 and K33 are also the “building blocks™:

Kuratowski theorem
a graph is non-planar iff it contains K5 or K33 as a subgraph.

A dual to the graph G is constructed by drawing vertices inside the faces
(including the external face) and connecting vertices that correspond to
adjacent faces.
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Graph theory and Feynman diagrams Introduction

K5 and K33 are also the “building blocks™:

Kuratowski theorem
a graph is non-planar iff it contains K5 or K33 as a subgraph.

A dual to the graph G is constructed by drawing vertices inside the faces
(including the external face) and connecting vertices that correspond to
adjacent faces.

/
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Only planar graphs possess their duals.
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Graph theory and Feynman diagrams Planarity of Feynman diagrams

To say that a Feynman diagram G is (non-)planar, one has to define the
adjoint diagram G*.
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Graph theory and Feynman diagrams Planarity of Feynman diagrams

To say that a Feynman diagram G is (non-)planar, one has to define the
adjoint diagram G*.

G G*

We say that a Feynman diagram G is planar iff G* is planar. ]

Krzysztof Bielas Some remarks on non-planar diagrams Matter To The Deepest 7/34



Graph theory and Feynman diagrams Planarity of Feynman diagrams

Hence

is planar,
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Graph theory and Feynman diagrams Planarity of Feynman diagrams

® =

is not (it has K33 as a subgraph).

Hence
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only flows (momenta) given
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Graph theory and Feynman diagrams Planarity of Feynman diagrams

only flows (momenta) given

!

no graph structure

!

Kuratowski theorem can not be used

However, there are at least 2 methods: combinatorial and geometrical one.
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Graph theory and Feynman diagrams Planarity testing (I. Dubovyk)

Given a Feynman diagram with
@ external momenta pq, ..., pn

@ loop momenta ki, ..., k,, and Feynman parameters x1, ..., Ty,
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the Laplace matrix is

s=1
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Graph theory and Feynman diagrams Planarity testing (I. Dubovyk)

Given a Feynman diagram with
@ external momenta pq, ..., pn
@ loop momenta ki, ..., k,, and Feynman parameters x1, ..., Ty,
the Laplace matrix is
m
21 xs ifi =7, ks is attached to v;, ks is not a self-loop,
Lij = 5

m
— > xs ifi#j, ks connects v;,v;.
s=1

Diagonal elements of L are computed by checking all possibilities of
conserved momentum
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Graph theory and Feynman diagrams Planarity testing (I. Dubovyk)

Given a Feynman diagram with
@ external momenta pq, ..., pn
@ loop momenta ki, ..., k,, and Feynman parameters x1, ..., Ty,

the Laplace matrix is

m
rs ifi =7, ks is attached to v;, ks is not a self-loop,
3 J
Lij=q “m
— > xs ifi#j, ks connects v;,v;.
s=1

Diagonal elements of L are computed by checking all possibilities of
conserved momentum

(for external vertices) + ko £ ky = £pe or £ kg £ kp + ke = £pe,

(for internal vertices) + k, + ky = +k. or + ko £ ky £+ ke = tkg,

Krzysztof Bielas Some remarks on non-planar diagrams Matter To The Deepest 10 / 34



Graph theory and Feynman diagrams Planarity testing (I. Dubovyk)

Off-diagonal elements L;; are computed by taking intersection of L;; and
L;j, since it contains exactly propagators that connect vertices v; and v;.
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Graph theory and Feynman diagrams Planarity testing (I. Dubovyk)

Off-diagonal elements L;; are computed by taking intersection of L;; and
L;j, since it contains exactly propagators that connect vertices v; and v;.

Then introduce another form of Laplace matrix by z — 1

deg (Ul) if i = j7

Lij = -1 if i # j and v;,v; are adjacent,
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Graph theory and Feynman diagrams Planarity testing (I. Dubovyk)

Off-diagonal elements L;; are computed by taking intersection of L;; and
L;j, since it contains exactly propagators that connect vertices v; and v;.

Then introduce another form of Laplace matrix by z — 1

I — deg (v;) ifi=j,
e -1 if i # j and v;, v; are adjacent,

L can be written as
L=D-A, (1)

where D is a degree matrix and A is adjacency matrix given by

Aij =

1 if i # j and v;,v; are adjacent,
0 otherwise.
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Graph theory and Feynman diagrams Planarity testing (I. Dubovyk)

The final part of the algorithm is to create the adjoint G*.
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The final part of the algorithm is to create the adjoint G*.

Then A* is obtained by adding one row and one column and putting 1's in
the elements that correspond to external vertices.
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Graph theory and Feynman diagrams Planarity testing (I. Dubovyk)

The final part of the algorithm is to create the adjoint G*.

Then A* is obtained by adding one row and one column and putting 1's in
the elements that correspond to external vertices.

Eventually, given A*, a Mathematica package Combinatorica yields an
answer for the question of planarity of a Feynman diagram G.
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aph theory and Feynman diagrams Plai

<< PlanarityTest_l1l.2.m

by E. Dubovyk ver: 1.2

last executed: 25.06.2013 at 15:37

N

{PR[kL+k2+pl+p2+p3, 0, nl] PR[k1 + k2, 0, n2] PR[k1, 0, n3] PR[k1+pl, 0, nd] PR[k1+ pl+p2, 0, n5] PR[k2 + p3,

PTest[{{kl, k2}, (pl, P2, P3, -pl - P2 -p3}},

The Diagram:

—a_
with the Laplacian matrix
x[1] + x[4) 0 0 -x[4] -x[1] 0

0 x[2] + x[6] 0 [ “xifa] -x[6]

[ o x[3]+x[7] o -x[3] -x[7]
-x[4] [ 0 x[ [5] 0 -x[5]
-x[1] -x[2] -x[3] x[1] +x[2] +x[3] 0

) -x[6] -x[7] 0 x[5] +x[6]+x[7]}

non-planar.

PTestx[{{kl, k2}, {pl, P2, P3, -pl - D2 - P3}},

1. =1 A mna mmet

fAmeld A m1a onn

sztof Bielas Some remarks on no




Graph theory and Feynman diagrams Planarity testing (I. Dubovyk)

It is also possible to label the edges with propagators

in7)- Drawbiagram[{{k1, k2}, {pl, P2, P3, -pl-p2-p3}}.
{PR[kl+k2+pl+p2+p3, 0, nl] PR[kl +%k2, 0, n2] PR[k1l, 0, n3] PR[kl+pl, 0, nd4] PR[kl +pl+p2, 0, n5]
PR[k2 +p3, 0, n6] PR[k2, 0, n7]}];

& p2 +p3.0] [N

(I ]
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Feynman diagrams and dual variables Geometrical planarity criterion

[Arkani-Hamed et al. 2010]:

planarity < (dual) conformal symmetry
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Feynman diagrams and dual variables Geometrical planarity criterion

[Arkani-Hamed et al. 2010]:

planarity < (dual) conformal symmetry

Example: simple one-loop planar box

b2
D3

Y

P P4

??.l\
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Feynman diagrams and dual variables Geometrical planarity criterion

[Arkani-Hamed et al. 2010]:

planarity < (dual) conformal symmetry

Example: simple one-loop planar box

b2
D3

Y

P P4

??.l\

I= /d4 N
2 2
k‘i‘Pl) (k +p1+p2)” (k+ p1 + p2 + p3)

Krzysztof Bielas

Some remarks on non-planar diagrams Matter To The Deepest



Feynman diagrams and dual variables Geometrical planarity criterion

Let introduce dual variables with incoming external momenta p1,...,p,
and some propagators. Let

T2
°
P2
= I1—
n 1 4, D3
p2 = T2 — T, >
b3 = T3— T2 "
P4 = T4— T3 . 0 Y <
pi p 2
k
[ ]
x4
Krzysztof Bielas Some remarks on non-planar Matter To The Deepest 16 / 34




Feynman diagrams and dual variables Geometrical planarity criterion

Note that the lines connecting dual variables cross exactly given momenta

€2
b2
N p3
L1 A Y 3
p1 :k’ P4
XA
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Feynman diagrams and dual variables Geometrical planarity criterion

P11 = T1— T4,
b2 = T2— 1,
b3 = T3 — X2
bs = T4 —X3.

I—/d4 N
k+$1*$4) (k+$2*334)2(k‘+333*$4)2
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Feynman diagrams and dual variables Geometrical planarity criterion

b1 = T1— T4,
p2 = T2 — X1,
p3s = I3 — X2
by = T4—T3.

I_/d4 N
k+$1*$4) (k+$2*334)2(k‘+333*$4)2

What are dual variables for the loop momentum k7
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Feynman diagrams and dual variables Geometrical planarity criterion

P1r = T1— T4,

b2 = T2— 1,

b3 = T3 — X2

bs = T4 —X3.
!

I_/d4 N
k+$1*$4) (k+$2*334)2(k‘+333*$4)2

What are dual variables for the loop momentum k7

Since any momentum leads to the one new dual variable, let x5 be
introduced.
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Feynman diagrams and dual variables Geometrical planarity criterion

Note that the choice

€2

D2
D3

Y

T ° A ° Y ° '1:3

A

b1 i P4

gives unique recipe for k, that is k = x5 + x4.

Krzysztof Bielas Some remarks on non-planar
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Feynman diagrams and dual variables Geometrical planarity criterion

kE+pi+ps=x5+ 22

)
kE+p=a5+2 D2
A p3
xy e ~ iixs Y £y T3
z ki < k+pi+p2+ps = a5+ a3
k=x5+ x4 L4

T5+x4 =25+ T1 —p1 =5 +Ty—Pp1— P2 = T5+ T3~ p1—p2—p3=Kk.
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Feynman diagrams and dual variables Geometrical planarity criterion

Hence a dual to the adjoint is defined in unambiguous way:
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Feynman diagrams and dual variables Geometrical planarity criterion

Hence a dual to the adjoint is defined in unambiguous way:

_ [ N
I'= [ dazs 2 2 2 2
(a:5 + acl) (SU5 + 332) ($5 + :L‘3) (.1‘5 + $4)

Moreover, it is (dual) conformally invariant.
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Feynman diagrams and dual variables Geometrical planarity criterion

In the case of more loops, the strategy is the same:
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Feynman diagrams and dual variables Geometrical planarity criterion

In the case of more loops, the strategy is the same:
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In the case of more loops, the strategy is the same:




Feynman diagrams and dual variables Geometrical planarity criterion

In the end we get the relation

dual variables <« dual graph
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Feynman diagrams and dual variables Geometrical planarity criterion

In the end we get the relation

dual variables <« dual graph

!

dual variables <« planar Feynman diagram

What happens in the non-planar cases?
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Feynman diagrams and dual variables Geometrical planarity criterion

In the end we get the relation

dual variables <« dual graph

!

dual variables <« planar Feynman diagram

What happens in the non-planar cases?
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Feynman diagrams and dual variables Geometrical planarity criterion

Example — non-planar double box:

P2

=
]
iy

Krzysztof Bielas Some remarks on non-planar diagrams
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Feynman diagrams and dual variables Geometrical planarity criterion

Example — non-planar double box:

P2
A
1?/1/ P4

Nd*k1d*ks

I :/
k3 (k1 — p2)? (k1 — p1 — p2)* k3 (ko + p3)” (k1 — ko + pa)? (k1 — k2)?
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Feynman diagrams and dual variables Geometrical planarity criterion

External dual variables are identical as the previous ones, while internal
faces intersect each other:

T Le
x5 p2 p3
/)
T T3
p1 Da
Zy
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Feynman diagrams and dual variables Geometrical planarity criterion

One can not construct a dual diagram:

€
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Feynman diagrams and dual variables Geometrical planarity criterion

One can not construct a dual diagram:

€

which is not a surprise from a graph-theoretical point of view.
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Feynman diagrams and dual variables Geometrical planarity criterion

Any choice gives a similar result

/ Nd4$5d4l‘6
I = 2

S (s 4 21)? (s + 22)? (w5 + 24)% (w6 + 22)? (6 + 23)° (25 — 26)
1

X 2
(.735 — X6+ X4 —333)

)

which is not (dual) conformally invariant.
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Feynman diagrams and dual variables Geometrical planarity criterion

Any choice gives a similar result

/ Nd4$5d4l‘6
I = 2

S (s 4 21)? (s + 22)? (w5 + 24)% (w6 + 22)? (6 + 23)° (25 — 26)
1

X 2
(.735 — X6+ X4 —333)

)

which is not (dual) conformally invariant.

planar diagrams — single line-crossings — z; & x;
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Feynman diagrams and dual variables Geometrical planarity criterion

Any choice gives a similar result

I = / Nd41‘5d4l‘6
(25 + 21)% (25 + 22)* (w5 + 24) (w6 + 22)° (w6 + 23)° (x5 — 26)?
1
X R
(.’135 — Xg+ XTg4 — 333)

which is not (dual) conformally invariant.

planar diagrams — single line-crossings — z; & x;

while

non-planar diagrams — double line-crossings — x; = x; £z =,

Krzysztof Bielas Some remarks on non-planar diagrams Matter To The Deepest 28 / 34



Feynman diagrams and dual variables Geometrical planarity criterion

Conclusion

There is a simple planarity criterion for a Feynman diagram given by the
set of momentum flows.
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Feynman diagrams and dual variables Geometrical planarity criterion

Conclusion

There is a simple planarity criterion for a Feynman diagram given by the
set of momentum flows.

Namely, a diagram, whose integrand can not be reduced to function of
quantities x; &= x;, is non-planar.
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Feynman diagrams and dual variables Geometrical planarity criterion

Conclusion
There is a simple planarity criterion for a Feynman diagram given by the
set of momentum flows.

Namely, a diagram, whose integrand can not be reduced to function of
quantities x; &= x;, is non-planar.

The method is general and applicable to all loop orders and for any vertex
valences.
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Feynman diagrams and dual variables Geometrical planarity criterion

The algorithm in Mathematica code is based on following steps:
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Feynman diagrams and dual variables Geometrical planarity criterion

The algorithm in Mathematica code is based on following steps:

@ make a first substitution k1 — x1 — 22,

Krzysztof Bielas Some remarks on non-planar Matter To The Deepest 30 /34



Feynman diagrams and dual variables Geometrical planarity criterion

The algorithm in Mathematica code is based on following steps:

@ make a first substitution k1 — x1 — 22,

o from all flows that were mixed with k; find the ones of the form
kii + Zj + Tp,
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Feynman diagrams and dual variables Geometrical planarity criterion

The algorithm in Mathematica code is based on following steps:
@ make a first substitution k1 — x1 — 22,
o from all flows that were mixed with k; find the ones of the form
kii + Zj + Tn,
e make a substitution k; — x3 = x; or k; — x3 £ z; (depending on
signs in order to simplify a term),
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Feynman diagrams and dual variables Geometrical planarity criterion

The algorithm in Mathematica code is based on following steps:
@ make a first substitution k1 — x1 — 22,
o from all flows that were mixed with k; find the ones of the form
kii + Zj + Tn,
e make a substitution k; — x3 = x; or k; — x3 £ z; (depending on
signs in order to simplify a term),

o if many terms such, always take the commonest of x’s
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Feynman diagrams and dual variables Geometrical planarity criterion

The algorithm in Mathematica code is based on following steps:
@ make a first substitution k1 — x1 — 22,
o from all flows that were mixed with k; find the ones of the form
ki £x; £ xp,
e make a substitution k; — x3 = x; or k; — x3 £ z; (depending on
signs in order to simplify a term),
o if many terms such, always take the commonest of x’s

@ the last step gives the answer whether all momenta are reducible; if
not, there remains a term x; + x; & 3, £ x,,, that breaks conformality
and hence the diagram is non-planar.
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Feynman diagrams and dual variables Geometrical planarity criterion

The algorithm in Mathematica code is based on following steps:
@ make a first substitution k1 — x1 — 22,
o from all flows that were mixed with k; find the ones of the form
ki £x; £ xp,
e make a substitution k; — x3 = x; or k; — x3 £ z; (depending on
signs in order to simplify a term),
o if many terms such, always take the commonest of x’s

@ the last step gives the answer whether all momenta are reducible; if
not, there remains a term x; + x; & 3, £ x,,, that breaks conformality
and hence the diagram is non-planar.

Remark: since sometimes external legs could be permuted, which would
lead to wrong relations p; = x; — x;_1, it is even better to treat external
momenta as loop momenta from the beginning.
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The number of faces of the diagram can be derived from Euler's
characteristics:

x=v—e+f=2-29=2-2-1=0— f=0-6+9=23.

Hence there are only 3 dual variables x1, x2, x3, representing 3 momenta,
thus leading to non-unique assignment x; — z; — k;.

While it is possible to find a dual, it is not the dual in the sense of
correspondence z; — x; — k; — no conformal symmetry.
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Conclusions

e we found two ways of testing (non-)planarity of Feynman diagrams
only upon given momenta,

@ it allows to fully automatize the procedures in AMBRE, that differ on
(non-)planar diagrams,

@ the second method uses the fact, that non-planar diagrams break
conformal symmetry,

@ while it is the cornerstone of e.g. twistor methods in SY M theories,
the simple embedding on the higher-genus surface does not give the
conformal invariant analogue,

@ we should think about other methods of applying twistor techniques
to non-planar diagrams.
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Conclusions

Thank you!
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