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Motivations

Why to study planar vs non-planar Feynman
diagrams?

Planar and non-planar Feynman diagrams are topologically different, e.g.
they correspond to surfaces of different genuses.

As a consequence, they must be treated differently, both on computational
and theoretical side:

they demand different methods for analytical computations, e.g. to
get as least dimensional Mellin–Barnes representations as possible,

the non-planar ones can not yet be involved in some new
constructions, e.g. twistor methods for calculating scattering
amplitudes in N = 4 SYM .
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Motivations

Why to study planar vs non-planar Feynman
diagrams?

AMBRE is a Mathematica package that calculates M–B representations
[J. Gluza, K. Kajda, T. Riemann and V. Yundin, Eur. Phys. J. C71 (2011)]

↓
the usual approach is the loop-by-loop one

↓
the same strategy to all cases is not an optimal solution

↓
non-planar diagrams demand other methods (new variables, Cheng–Wu

theorem etc.)

The choice of the method should be made automatic, with the only input
as given external and internal momenta of a diagram G, e.g.

k1, k1 − p1, k1 − p1 − p2, k2, k2 − p4, k2 − p3 − p4, k1 + k2.
Do they determine uniquely the (non)planarity of G?
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Graph theory and Feynman diagrams Introduction

Definitions

A graph is planar if it can be drawn on the sphere (plane) without
intersections.

Obviously, non-planar graphs are graphs that are not planar; the simplest
ones are:

K5
K3,3
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Graph theory and Feynman diagrams Introduction

K5 and K3,3 are also the “building blocks”:

Kuratowski theorem
a graph is non-planar iff it contains K5 or K3,3 as a subgraph.

A dual to the graph G is constructed by drawing vertices inside the faces
(including the external face) and connecting vertices that correspond to
adjacent faces.

Only planar graphs possess their duals.
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Graph theory and Feynman diagrams Planarity of Feynman diagrams

Graph theory and Feynman diagrams

To say that a Feynman diagram G is (non-)planar, one has to define the
adjoint diagram G∗.

G G∗

We say that a Feynman diagram G is planar iff G∗ is planar.
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Graph theory and Feynman diagrams Planarity of Feynman diagrams

Hence

is planar,

while

is not (it has K3,3 as a subgraph).
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Graph theory and Feynman diagrams Planarity of Feynman diagrams

Planarity of Feynman diagrams

only flows (momenta) given

↓
no graph structure

↓
Kuratowski theorem can not be used

However, there are at least 2 methods: combinatorial and geometrical one.
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Graph theory and Feynman diagrams Planarity testing (I. Dubovyk)

Method I

Given a Feynman diagram with

external momenta p1, ..., pn
loop momenta k1, ..., km and Feynman parameters x1, ..., xm

the Laplace matrix is

Lij =


m∑
s=1

xs if i = j, ks is attached to vi, ks is not a self-loop,

−
m∑
s=1

xs if i 6= j, ks connects vi, vj .

Diagonal elements of L are computed by checking all possibilities of
conserved momentum

(for external vertices) ± ka ± kb = ±pe or ± ka ± kb ± kc = ±pe,

(for internal vertices) ± ka ± kb = ±kc or ± ka ± kb ± kc = ±kd,
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Graph theory and Feynman diagrams Planarity testing (I. Dubovyk)

Off-diagonal elements Lij are computed by taking intersection of Lii and
Ljj , since it contains exactly propagators that connect vertices vi and vj .

Then introduce another form of Laplace matrix by xk → 1

Lij =

{
deg (vi) if i = j,
−1 if i 6= j and vi, vj are adjacent,

L can be written as
L = D −A, (1)

where D is a degree matrix and A is adjacency matrix given by

Aij =

{
1 if i 6= j and vi, vj are adjacent,
0 otherwise.
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Graph theory and Feynman diagrams Planarity testing (I. Dubovyk)

The final part of the algorithm is to create the adjoint G∗.

Then A∗ is obtained by adding one row and one column and putting 1’s in
the elements that correspond to external vertices.

Eventually, given A∗, a Mathematica package Combinatorica yields an
answer for the question of planarity of a Feynman diagram G.
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Graph theory and Feynman diagrams Planarity testing (I. Dubovyk)
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Graph theory and Feynman diagrams Planarity testing (I. Dubovyk)

It is also possible to label the edges with propagators
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Feynman diagrams and dual variables Geometrical planarity criterion

Method II

[Arkani-Hamed et al. 2010]:

planarity ↔ (dual) conformal symmetry

Example: simple one-loop planar box

p1

p2
p3

p4
k

I =
∫
d4k

N

k2 (k + p1)
2 (k + p1 + p2)

2 (k + p1 + p2 + p3)
2 .
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Feynman diagrams and dual variables Geometrical planarity criterion

Let introduce dual variables with incoming external momenta p1,. . . ,pn
and some propagators. Let

p1

p2
p3

p4
k

x1

x2

x3

x4

p1 = x1 − x4,
p2 = x2 − x1,
p3 = x3 − x2
p4 = x4 − x3.

Krzysztof Bielas Some remarks on non-planar diagrams Matter To The Deepest 16 / 34



Feynman diagrams and dual variables Geometrical planarity criterion

Note that the lines connecting dual variables cross exactly given momenta

p1

p2
p3

p4
k

x1

x2

x3

x4

x1 − x4

x2 − x1

x3 − x2

x4 − x3

Krzysztof Bielas Some remarks on non-planar diagrams Matter To The Deepest 17 / 34



Feynman diagrams and dual variables Geometrical planarity criterion

p1 = x1 − x4,
p2 = x2 − x1,
p3 = x3 − x2
p4 = x4 − x3.

↓

I =
∫
d4k

N

k2 (k + x1 − x4)2 (k + x2 − x4)2 (k + x3 − x4)2
.

What are dual variables for the loop momentum k?

Since any momentum leads to the one new dual variable, let x5 be
introduced.

Krzysztof Bielas Some remarks on non-planar diagrams Matter To The Deepest 18 / 34
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Feynman diagrams and dual variables Geometrical planarity criterion

Note that the choice

p1

p2
p3

p4
k

x1

x2

x3

x4

x5

gives unique recipe for k, that is k = x5 + x4.
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Feynman diagrams and dual variables Geometrical planarity criterion

p1

p2
p3

p4
k

x1

x2

x3

x4

x5

k = x5 + x4

k + p1 = x5 + x1

k + p1 + p2 = x5 + x2

k + p1 + p2 + p3 = x5 + x3

x5+ x4 = x5+ x1− p1 = x5+ x2− p1− p2 = x5+ x3− p1− p2− p3 = k.
Krzysztof Bielas Some remarks on non-planar diagrams Matter To The Deepest 20 / 34



Feynman diagrams and dual variables Geometrical planarity criterion

Hence a dual to the adjoint is defined in unambiguous way:

I =
∫
d4x5

N

(x5 + x1)
2 (x5 + x2)

2 (x5 + x3)
2 (x5 + x4)

2

Moreover, it is (dual) conformally invariant.
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Feynman diagrams and dual variables Geometrical planarity criterion

In the case of more loops, the strategy is the same:
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Feynman diagrams and dual variables Geometrical planarity criterion

In the end we get the relation

dual variables ↔ dual graph

↓
dual variables ↔ planar Feynman diagram

What happens in the non-planar cases?
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Feynman diagrams and dual variables Geometrical planarity criterion

Example — non-planar double box:

p1

p2 p3

p4

k1 k2

I =
∫

Nd4k1d4k2
k21 (k1 − p2)

2 (k1 − p1 − p2)2 k22 (k2 + p3)
2 (k1 − k2 + p4)2 (k1 − k2)2
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Feynman diagrams and dual variables Geometrical planarity criterion

External dual variables are identical as the previous ones, while internal
faces intersect each other:

p1

p2 p3

p4

k1 k2

x1

x2

x3

x4

x5

x6
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Feynman diagrams and dual variables Geometrical planarity criterion

One can not construct a dual diagram:

p1

p2 p3

p4

k1 k2

x1

x2

x3

x4

x5

x6

which is not a surprise from a graph-theoretical point of view.
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Feynman diagrams and dual variables Geometrical planarity criterion

Any choice gives a similar result

I =
∫

Nd4x5d4x6
(x5 + x1)

2 (x5 + x2)
2 (x5 + x4)

2 (x6 + x2)
2 (x6 + x3)

2 (x5 − x6)2

× 1

(x5 − x6 + x4 − x3)2
,

which is not (dual) conformally invariant.

planar diagrams −→ single line-crossings −→ xi ± xj

while

non-planar diagrams → double line-crossings → xi ± xj ± xk ± xn
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Feynman diagrams and dual variables Geometrical planarity criterion

Conclusion
There is a simple planarity criterion for a Feynman diagram given by the
set of momentum flows.

Namely, a diagram, whose integrand can not be reduced to function of
quantities xi ± xj , is non-planar.

The method is general and applicable to all loop orders and for any vertex
valences.
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Feynman diagrams and dual variables Geometrical planarity criterion

The algorithm in Mathematica code is based on following steps:

make a first substitution k1 → x1 − x2,
from all flows that were mixed with k1 find the ones of the form
ki ± xj ± xn,

make a substitution ki → x3 ± xi or ki → x3 ± xj (depending on
signs in order to simplify a term),

if many terms such, always take the commonest of x’s

the last step gives the answer whether all momenta are reducible; if
not, there remains a term xi ± xj ± xk ± xn, that breaks conformality
and hence the diagram is non-planar.

Remark : since sometimes external legs could be permuted, which would
lead to wrong relations pi = xi − xi−1, it is even better to treat external
momenta as loop momenta from the beginning.
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Feynman diagrams and dual variables Non-planar diagrams and dual variables

lack of conformal symmetry → twistor methods can not be used

↓
How to planarize the non-planar diagrams?

↓
embed them on a higher-genus surface
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Feynman diagrams and dual variables Non-planar diagrams and dual variables

The number of faces of the diagram can be derived from Euler’s
characteristics:

χ = v − e+ f = 2− 2g = 2− 2 · 1 = 0 −→ f = 0− 6 + 9 = 3.

Hence there are only 3 dual variables x1, x2, x3, representing 3 momenta,
thus leading to non-unique assignment xi − xj → ki.

While it is possible to find a dual, it is not the dual in the sense of
correspondence xi − xj → ki → no conformal symmetry.
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Conclusions

Conclusions

we found two ways of testing (non-)planarity of Feynman diagrams
only upon given momenta,

it allows to fully automatize the procedures in AMBRE, that differ on
(non-)planar diagrams,

the second method uses the fact, that non-planar diagrams break
conformal symmetry,

while it is the cornerstone of e.g. twistor methods in SYM theories,
the simple embedding on the higher-genus surface does not give the
conformal invariant analogue,

we should think about other methods of applying twistor techniques
to non-planar diagrams.
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Conclusions

Thank you!

The work is supported by the scholarship project ŚWIDER
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