Progress in Analytical Calculations for g-2 at Four Loops

Peter Marquard

DESY in collaboration with

R. Lee, A.V. Smirnov, V.A. Smirnov and M. Steinhauser JHEP03(2013)162 A. Kurz, T. Liu and M. Steinhauser P. Baikov and A. Maier arXiv:1307.6105

Matter To The Deepest, Ustron, 2013

2 Contributions from electron loops @ 4 loops

3 Contributions from tau loops @ 4 loops

Lepton anomalous magnetic moment

Best experimentally measured and theoretically predicted quantity

$$a_{e|exp} = 0.00115965218073(28)$$

 $a_{e|theo} = 0.00115965218178(6)(4)(3)(77)$

Lepton anomalous magnetic moment

Best experimentally measured and theoretically predicted quantity

$$a_{e|exp} = 0.00115965218073(28)$$

 $a_{e|theo} = 0.00115965218178(6)(4)(3)(77)$

$$a_{\mu}|_{\exp} = 1.16592080(54)(33)[63] \cdot 10^{-3}$$

 $a_{\mu}|_{\text{theo}} = 1.16591790(65) \cdot 10^{-3} \qquad 3.2\sigma \text{ diff.}$

- QED contributions known numerically up to 5 loops but starting from four loops not checked by an independent calculation
- $a_{\mu}|_{
 m exp} a_{\mu}|_{
 m theo} pprox \mathcal{O}(4\text{-loop QED contribution})$

Status QED contributions

analytical results

- one loop: $a_{\mu}^{(1)} = \frac{1}{2}$
- two loop
- three loop

[Schwinger 1948]

[Petermann; Sommerfeld 1957]

[Laporta, Remiddi 1996]

• four loop: only partial results, mainly contributions due to corrections to the vacuum polarization function of the photon

numerical results

- four loop
- five loop

[Kinoshita et al]

[Aoyama, Hayakawa, Kinoshita, Nio 2012]

Definition and Notation

$$= (-ie)\overline{u}(p_2) \left\{ \gamma^{\mu} F_E(q^2) + i \frac{\sigma^{\mu\nu} q^{\nu}}{2m} F_M(q^2) \right\} u(p_1)$$

 $a_{\mu} = F_M(0)$

 a_{μ} can be obtained by using suitable projektor, but needs expansion up to first order in q^2

$$a_{\mu} = \frac{\alpha}{\pi} a_{\mu}^{(1)} + \left(\frac{\alpha}{\pi}\right)^2 a_{\mu}^{(2)} + \left(\frac{\alpha}{\pi}\right)^3 a_{\mu}^{(3)} + \left(\frac{\alpha}{\pi}\right)^4 a_{\mu}^{(4)}$$
$$a_{\mu}^{(4)} = a_{\mu}^{(40)} + n_l a_{\mu}^{(41)} + n_l^2 a_{\mu}^{(42)} + n_l^3 a_{\mu}^{(43)}$$

Integral Classes

- At four-loop level two classes of integrals have been studied extensively: massive tadpoles and massless propagators.
- Both classes have many phenomenological applications
- Here we need a new class of integrals: on-shell integrals!
- New class also important for the calculation of the MS on-shell relation for quark masses in QCD

Order of Complexity

$$Z_m: \Sigma(q^2, M^2)|_{q^2=M^2}$$

Order of Complexity

Order of Complexity

Outline

Introduction

2 Contributions from electron loops @ 4 loops

- 3 Contributions from tau loops @ 4 loops
- 4 Vacuum polarisation effects @ 5 loops

Setup I

- calculation done for massless electrons, leading logarithmic effects recovered through renormalization
- later extend calculation to obtain universal contributions and power suppressed terms
- sample diagrams for n_I^3 , n_I^2 part

Setup II

tools used include

qqraf [Noqueira] Generation of Feynman diagrams q2e, exp [Harlander, Seidensticker, Steinhauser] Expansion / Mapping to topologies • FORM [Vermaseren] Algebra • CRUSHER, FIRE [Seidel,PM / Smirnov,Smirnov] Reduction to master integrals FIESTA [Smirnov.Smirnov] Calculation of master integrals

Contributions from electron loops @ 4 loops

Master Integrals n_l^3 , n_l^2 : simple

Expressible through Gamma functions for arbitrary dimension D!

Contributions from electron loops @ 4 loops

Master Integrals n_l^3 , n_l^2 : difficult

- Calculated analytically in expansion in *ϵ* = (4 − *D*)/2 using the DRA (dimensional recurrence and analyticity) method and checked using FIESTA!
- Calculated up to $\mathcal{O}(\epsilon^3)$

$$\begin{aligned} a^{(43)}_{\mu} &= \frac{1}{54} L^3_{\mu e} - \frac{25}{108} L^2_{\mu e} + \left(\frac{317}{324} + \frac{\pi^2}{27}\right) L_{\mu e} - \frac{2\zeta_3}{9} - \frac{25\pi^2}{162} - \frac{8609}{5832} \\ &\approx 7.196\,66\,, \end{aligned}$$

[Laporta; Aguilar, Greynat, De Rafael]

$$\begin{array}{rcl} a^{(43)}_{\mu} & = & \displaystyle \frac{1}{54} L^3_{\mu e} - \frac{25}{108} L^2_{\mu e} + \left(\frac{317}{324} + \frac{\pi^2}{27} \right) L_{\mu e} - \frac{2\zeta_3}{9} - \frac{25\pi^2}{162} - \frac{8609}{5832} \\ & \approx & 7.196\,66\,, \end{array}$$

[Laporta; Aguilar, Greynat, De Rafael]

$$\begin{aligned} a_{\mu}^{(42)} &= a_{\mu}^{(42)a} + n_{h}a_{\mu}^{(42)b} \\ a_{\mu}^{(42)a} &= L_{\mu e}^{2} \left[\pi^{2} \left(\frac{5}{36} - \frac{\log 2}{6} \right) + \frac{\zeta_{3}}{4} - \frac{13}{24} \right] + \ldots \approx -3.624\,27\,, \\ a_{\mu}^{(42)a} \Big|_{\text{num}} &= -3.642\,04(1\,12)\,, \end{aligned}$$

[Aoyama, Hayakawa, Kinoshita, Nio 2012]

$$\begin{array}{rcl} a^{(43)}_{\mu} & = & \displaystyle \frac{1}{54} L^3_{\mu e} - \frac{25}{108} L^2_{\mu e} + \left(\frac{317}{324} + \frac{\pi^2}{27} \right) L_{\mu e} - \frac{2\zeta_3}{9} - \frac{25\pi^2}{162} - \frac{8609}{5832} \\ & \approx & 7.196\,66\,, \end{array}$$

[Laporta; Aguilar, Greynat, De Rafael]

$$\begin{aligned} a_{\mu}^{(42)} &= a_{\mu}^{(42)a} + n_{h} a_{\mu}^{(42)b} \\ a_{\mu}^{(42)a} &= L_{\mu e}^{2} \left[\pi^{2} \left(\frac{5}{36} - \frac{\log 2}{6} \right) + \frac{\zeta_{3}}{4} - \frac{13}{24} \right] + \ldots \approx -3.624\,27\,, \\ a_{\mu}^{(42)a} \Big|_{\text{num}} &= -3.642\,04(1\,12)\,, \end{aligned}$$

[Aoyama, Hayakawa, Kinoshita, Nio 2012]

$$\begin{array}{rcl} a^{(42)b}_{\mu} & = & \left(\frac{119}{108} - \frac{\pi^2}{9}\right) L^2_{\mu e} + \left(\frac{\pi^2}{27} - \frac{61}{162}\right) L_{\mu e} - \frac{4\pi^4}{45} + \frac{13\pi^2}{27} + \frac{7627}{1944} \\ & \approx & 0.494\,05 \end{array}$$

[Laporta; Aguilar, Greynat, De Rafael] 13/26

Results: *n*_l part

• decompose $a^{(41)}_{\mu}$ further

$$a_{\mu}^{(41)}=a_{\mu}^{(41)a}+n_{h}a_{\mu}^{(41)b}+n_{h}^{2}a_{\mu}^{(41)c}$$

• Preliminary result for $a_{\mu}^{(41)b}$ and $a_{\mu}^{(41)c}$

$$egin{array}{rcl} a^{(41)b}_{\mu} &=& -1.06(5) \ a^{(41)c}_{\mu} &=& 0.0280 \end{array}$$

compare with [Aoyama,Hayakawa,Kinoshita,Nio 2012]

$$a^{(41)b}_{\mu} = -1.046$$

 $a^{(41)c}_{\mu} = 0.0280$

n_ln⁰_h part calculated but further cross checks necessary !

Introduction

2 Contributions from electron loops @ 4 loops

3 Contributions from tau loops @ 4 loops

Method

- contributions due to heavy leptons can be calculated in an asymptotic expansion in M_{μ}/M_{τ}
- asymptotic expansion leads to at most vacuum diagrams at four loops
- expansion up to including terms of order $(M_{\mu}/M_{\tau})^7$
- all required master integrals are known
- same tool set used as in case of electron contributions

Asymptotic expansion

Contributions from tau loops @ 4 loops

Diagram classes at four loops

[Aoyama et al '2012]

Preliminary!			
group	$10^2 \cdot a^{(4)}_{2,\mu}(M_\mu/M_ au)$		
	our work	Kinoshita et al	
l(a)	0.00324281(XX)	0.0032(0)	
I(b) + I(c) + II(b) + II(c)	-0.6292808(XX)	-0.6293(1)	
l(d)	0.0367796(XX)	0.0368(0)	
111	4.5208986(XX)	4.504(14)	
II(a) + IV(d)	-2.316756(XX)	-2.3197(37)	
IV(a)	3.851967(XX)	3.8513(11)	
IV(b)	0.612661(XX)	0.6106(31)	
IV(c)	-1.83010(XX)	-1.823(11)	

fast convergence

 $a_{2,\mu}^{(4)}(M_{\mu}/M_{\tau}) = 0.0421670 + 0.0003257 + 0.0000015 = 0.0424941$

Outline

Introduction

- 2 Contributions from electron loops @ 4 loops
- 3 Contributions from tau loops @ 4 loops
- 4 Vacuum polarisation effects @ 5 loops

Method

 Certain contributions to g-2 can be obtained by integration over the vacuum polarisation function Π(q²)

$$a_{\mu} = \frac{\alpha}{\pi} \int_{0}^{1} \mathrm{d}x(1-x) \left[-\Pi(s_{x})\right], \ s_{x} = -\frac{x^{2}}{1-x}m_{\mu}^{2}$$

 use a suitable approximating function for Π(q²) at four loops and obtain g-2 at five loops

Accessible classes

Reconstruction of $\Pi(q^2)$ I

• first step: take only leading term in high-energy expansion

[Baikov et al 2013]

- for certain classes large deviation from numerical results of Kinohita et al.
- Improve by using all available information in the low- and high-energy and the threshold region to obtain best possible approximation for $\Pi(q^2)$ in form of a Padé approximation
- input used: 3 low-energy, 2 high-energy and 2 threshold constants

Reconstruction of $\Pi(q^2)$ II

• To obtain an error estimate constructed \approx 800 Padé approximants

few percent uncertainty in the high energy region

	our work	Baikov et al	Kinoshita et al
l(a)	20.142 813	20.183 2	20.142 93(23)
l(b)	27.690 061	27.7188	27.690 38(30)
l(c)	4.742 149	4.817 59	4.742 12(14)
l(d)+l(e)	6.241 470	6.117 77	6.243 32(101)(70)
l(e)	-1.211 249	-1.331 41	-1.208 41(70)
I(f)+I(g)+I(h)	4.4468^{+6}_{-4}	4.391 31	4.446 68(9)(23)(59)
l(i)	0.074 6 ⁺⁸ _19	0.252 37	0.087 1(59)
l(j)	-1.246 9 ⁺⁴ -3	-1.214 29	-1.247 26(12)

Improved agreement with previous works by Kinoshita et al.

Conclusions and Outlook

- calculation of the leading contribution from diagrams containing electron loops finished
- contributions from diagrams containing tau loops calculated in an expansion in M_{μ}/M_{τ}
- improved prediction for certain class of five-loop diagrams leading to better agreement with literature
- ToDo
 - extend calculations to include higher orders in $M_{\mu}/M_{ au}$
 - calculate the universal contribution at four loops