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Lepton anomalous magnetic moment

@ Best experimentally measured and theoretically predicted quantity
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Introduction
Lepton anomalous magnetic moment

@ Best experimentally measured and theoretically predicted quantity

8olexy = 0.00115965218073(28)
Belheo = 0.00115965218178(6)(4)(3)(77)

aulexp = 1.16592080(54)(33)[63]- 1073
8ulheo = 1.16591790(65) 1072  3.20 diff.

@ QED contributions known numerically up to 5 loops but starting
from four loops not checked by an independent calculation

® aylexp — Aulieo ~ O(4-loop QED contribution)



Introduction

Status QED contributions

@ analytical results

o one loop: &) = 1 [Schwinger 1948]
o two |00p [Petermann; Sommerfeld 1957]
o three IOOp [Laporta, Remiddi 1996]
o four loop: only partial results, mainly contributions due to

corrections to the vacuum polarization function of the photon

@ numerical results

o four loop [Kinoshita et al]
o five |OOp [Aoyama,Hayakawa,Kinoshita,Nio 2012]




Introduction
Definition and Notation
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a, = FM(O)

a, can be obtained by using suitable projektor, but needs expansion
up to first order in g2

o 2+ (&) o (2 o (2) 0

a4 2al® 4 ndal®d



Introduction
Integral Classes

@ At four-loop level two classes of integrals have been studied
extensively: massive tadpoles and massless propagators.

@ Both classes have many phenomenological applications
@ Here we need a new class of integrals: on-shell integrals!

@ New class also important for the calculation of the MS — on-shell
relation for quark masses in QCD
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Contributions from electron loops @ 4 loops

Outline

@ Contributions from electron loops @ 4 loops



Contributions from electron loops @ 4 loops

Setup |

@ calculation done for massless electrons, leading logarithmic
effects recovered through renormalization

@ later extend calculation to obtain universal contributions and
power suppressed terms

@ sample diagrams for n}, n? part

A
JAVSS



Contributions from electron loops @ 4 loops

Setup I

tools used include

@® ggraf

Generation of Feynman diagrams
@ g2e,exp

Expansion / Mapping to topologies
@ FORM

Algebra
@ CRUSHER, FIRE

Reduction to master integrals

® FIESTA
Calculation of master integrals

[Nogueira]

[Harlander, Seidensticker, Steinhauser]

[Vermaseren]

[Seidel,PM / Smirnov,Smirnov]

[Smirnov,Smirnov]

10/26



Contributions from electron loops @ 4 loops

3 P2 qj
Master Integrals ny, ni: simple
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@ Expressible through Gamma functions for arbitrary dimension D!
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Contributions from electron loops @ 4 loops

Master Integrals n?, n?: difficult
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@ Calculated analytically in expansion in ¢ = (4 — D)/2 using the
DRA (dimensional recurrence and analyticity) method and
checked using FIESTA!

@ Calculated up to O(€%)
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Contributions from electron loops @ 4 loops
Results

1 25 317  #2 2(3 2572 8609
43 3 2
a(u ) = 54 ne 1—08L“e + <— + —) Lye

324 27
7.196 66,

9 162 5832

Q

[Laporta; Aguilar,Greynat,De Rafael]
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Contributions from electron loops @ 4 loops
Results

1 25 317 72 2¢s 2572 8609
(43) — Y3 _ =¥ g2 v'or ~ 55 evrh BPYVY
a 54Lne ~ 7oglue t (324+27) Lwe =5 ~ 762 ~ 5832
~ 7.19666,
[Laporta; Aguilar,Greynat,De Rafael]
a&42) _ a&42)a + nhaEL42)b
5 log2 G 13
(42)a _ g2 2 (9 B8e & 19 ~ _3.
al; L2, [w <36 5 >+4 24}+... 3.62427,
af?a —3.64204(112),

[Aoyama,Hayakawa,Kinoshita,Nio 2012]
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Contributions from electron loops @ 4 loops
Results

1 25 317 72 2¢s 2572 8609
(43) — Y3 _ =¥ g2 v'or ~ 55 evrh BPYVY
a 54Lne ~ 7oglue t (324+27) Lwe =5 ~ 762 ~ 5832
~ 7.19666,
[Laporta; Aguilar,Greynat,De Rafael]
a&42) _ a&42)a + nhaEL42)b
5 log2 G 13
(42)a _ g2 2 (9 B8e & 19 ~ _3.
al; L2, [w <36 5 >+4 24}+... 3.62427,
af?a —3.64204(112),

[Aoyama,Hayakawa,Kinoshita,Nio 2012]
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Contributions from electron loops @ 4 loops
Results: n, part

@ decompose aff’” further
afj”) _ a/(fﬂa I nhafj”)b 4 n,%aﬁf'”c

@ Preliminary result for al” and a{}")°

a}t = -1.06(5)
a} = 0.0280

Compare W|th [Aoyama,Hayakawa,Kinoshita,Nio 2012]

ait = -1.046
a}° = 0.0280

@ nn? part calculated but further cross checks necessary !
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Contributions from tau loops @ 4 loops

Outline

9 Contributions from tau loops @ 4 loops
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Contributions from tau loops @ 4 loops
Method

@ contributions due to heavy leptons can be calculated in an
asymptotic expansion in M,/ M.

@ asymptotic expansion leads to at most vacuum diagrams at four
loops

@ expansion up to including terms of order (M,,/M.)’

@ all required master integrals are known

@ same tool set used as in case of electron contributions
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Contributions from tau loops @ 4 loops

Asymptotic expansion
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Contributions from tau loops @ 4 loops
Diagram classes at four loops

4 oo fO O /e sem o

I(a) I(b) 1(0) 1(d) (@) 1(b) 1(0)
IV(a) IV(b) IV(c) IV(d)

[Aoyama et al '2012]
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Contributions from tau loops @ 4 loops
Results

Preliminary!
group 102. 4)( M,/ M)
our work Kinoshita et al

I(a) 0.00324281(XX) | 0.0032(0)

I(b) + I(c) + li(b) + ll(c) || -0.6292808(XX) | -0.6293(1)

I(d) 0.0367796(XX) 0.0368(0)

1 4.5208986(XX) 4.504(14)
ll(a) + IV(d) -2.316756(XX) -2.3197(37)
IV(a) 3.851967(XX) 3.8513(11)
IV(b) 0.612661(XX) 0.6106(31)

IV(c) -1.83010(XX) -1.823(11)

fast convergence

(M, /M) =

0.0421670 + 0.0003257 + 0.0000015 = 0.0424941



Vacuum polarisation effects @ 5 loops

Outline

6 Vacuum polarisation effects @ 5 loops
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Vacuum polarisation effects @ 5 loops
Method

@ Certain contributions to g-2 can be obtained by integration over
the vacuum polarisation function (g?)

(6% 1 X2 2
au:}/o ax(1 = X) [N(s)]  8e = .

S

=

@ use a suitable approximating function for MN(g?) at four loops and
obtain g-2 at five loops
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Vacuum polarisation effects @ 5 loops

Accessible classes
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Vacuum polarisation effects @ 5 loops

Reconstruction of M(g?) |

o first step: take only leading term in high-energy expansion

[Baikov et al 2013]

@ for certain classes large deviation from numerical results of
Kinohita et al.

@ Improve by using all available information in the low- and
high-energy and the threshold region to obtain best possible
approximation for M(g?) in form of a Padé approximation

@ input used: 3 low-energy, 2 high-energy and 2 threshold constants
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Vacuum polarisation effects @ 5 loops

Reconstruction of M(g?) Il

@ To obtain an error estimate constructed ~ 800 Padé approximants
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@ few percent uncertainty in the high energy region
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Vacuum polarisation effects @ 5 loops
Results

| our work | Baikov et al | Kinoshita et al
( 20.142813 | 20.1832 20.142 93(23)
( 27.690061 | 27.7188 27.690 38(30)
( 4.742 149 4.817 59 4.742 12(14)
( 6.241470 | 6.11777 6.243 32(101)(70)
( -1.211 249 -1.331 41 -1.208 41(70)
(H)+1(g)+I(h) || 4.446 81’2 4.391 31 4.446 68(9)(23)(59)
(i) 0.074 6 jgg 0.252 37 0.087 1(59)
1(j) 1246975 [ -1.21429 | -1.247 26(12)
Improved agreement with previous works by Kinoshita et al.
£, oo, £, e 2 &
I(a) I(b) I(c) I(d) I(e)
Oy # @ # @ I

@
I(f) I(9) I(h) 1(i)

()
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Conclusions and Outlook
Conclusions and Outlook

@ calculation of the leading contribution from diagrams containing
electron loops finished

@ contributions from diagrams containing tau loops calculated in an
expansion in M, /M,

@ improved prediction for certain class of five-loop diagrams leading
to better agreement with literature

@ ToDo

@ extend calculations to include higher orders in M,,/ M,
@ calculate the universal contribution at four loops
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