On extended GMSB models

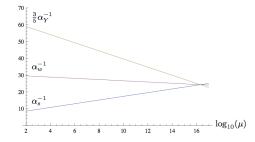
Tomasz Jeliński

Department of Field Theory and Particle Physics

University of Silesia, Katowice, Poland

based on: arXiv:1305.6277 [hep-ph]

Matter To The Deepest 2013, Ustroń, 1-6 September


イロト イポト イヨト

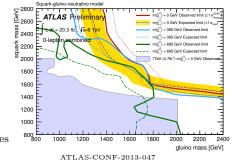
1

1. MSSM

Still the best candidate for BSM is softly broken MSSM:

- ${old o}$ solves problem of quadratic corrections to m_{h^0}
- ${\ensuremath{\, \circ }}$ dark matter candidate ${\ensuremath{\, \rightarrow }}$ LSP
- $\bullet\,$ better unification of gauge couplings at $10^{16}~{\rm GeV}{\rightarrow}\,$ hint for GUT model

Problems:


- one needs additional sectors: SUSY breaking and mediation
- fine-tuning
- a lot of parameters (soft terms) \rightarrow explain them using RGE and some simple set of initial conditions at high scale \rightarrow GUT model

2. LHC vs. MSSM

What do the LHC searches tell us about MSSM?

- no SUSY signal so far
- relevant exclusions only for 1st and 2nd family
- still Q₃,... can be as light as 500 GeV

BUT important information comes from Higgs mass measurement:

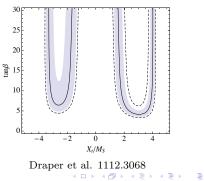
(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

-

• $m \sim 125 \text{ GeV} \rightarrow \text{need}$ for large loop corrections

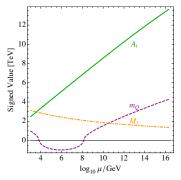
ASSUME other MSSM Higgses are much heavier and masses of $\hat{Q}_{1,2}$ and \tilde{g} are bigger than 1.8 TeV.

3. 1-loop corrections to m_{h^0}


• dominant contribution from top quarks and stops (due to $y_t \sim 1$):

$$m_{h^0}^2 = m_Z^2 \cos^2 2\beta + \frac{3m_t^4}{4\pi^2 v^2} \left[\ln \frac{M_S^2}{m_t^2} + \frac{X_t^2}{M_S^2} \left(1 - \frac{X_t^2}{12M_S^2} \right) \right] \approx (125 \,\text{GeV})^2,$$

 $M_S = \sqrt{m_{\tilde{t}_1} m_{\tilde{t}_2}}$ $X_t = A_t - \mu \cot \beta$

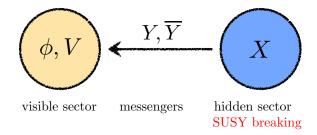

A-terms:

$$V_{\text{soft}} \supset y_t A_t H_u \widetilde{Q}_3 \widetilde{U}_3^c \longrightarrow y_t A_t h_0 \widetilde{t}_1 \widetilde{t}_2$$

4. How to generate large A-terms?

• value of A-term gives initial condition for RGE evolution

Draper et al. 1112.3068


• how to get A-terms in GUT model?

$$\mu \frac{dA_t}{d\mu} \sim y_t^2 A_t + g_3^2 M_3$$

E> < E>

크

5. SUSY breaking mediation

- such structure is dictated by SUSY
- mediation = interactions between Y, \overline{Y} and other fields
- singlet $\langle X \rangle = M + \theta^2 F \rightarrow$ spontaneous SUSY breaking
- X does not interact via superpotential with visible sector
- $\bullet\,$ messengers have large masses e.g. $M\sim 10^{14}~{\rm GeV}$

6. SUSY breaking mediation

- supergravity
 - no control over FCNC at all \rightarrow arbitrary mixings between families
- gauge interactions
 - no FCNC effects at *M* scale (small mixing generated via RGE)
 - $A \approx 0$ at M scale
 - $m_{h^0} \sim 125 \text{ GeV} \rightarrow M \gtrsim 10^{14} \text{ GeV}$ (i.e. A needs long RGE evolution)
- Yukawa (and gauge) interactions \rightarrow EXTENDED GMSB MODELS
 - FCNC effects controlled by Yukawa-type couplings of messengers

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ シのの⊙

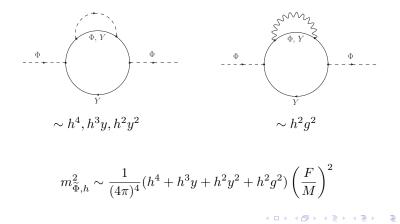
- A-terms $\neq 0$ at M scale
- easy to satisfy $m_{h^0} \sim 125 \text{ GeV}$ even for $M \sim 10^8 \text{ GeV}$
- rich phenomenology

7. Messenger couplings in EGMSB models

Focus on: SU(5) unification model with messengers in $5+\overline{5}$ and $10+\overline{10}$

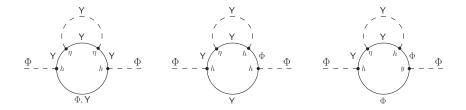
- matter Φ_i in 5, $\overline{5}$ or 10 (in MSSM only 51010 and $\overline{5510}$)
- pair of messengers $\mathsf{Y} = (Y, \overline{Y})$

$$W_Y = \eta \mathbf{Y} \mathbf{Y} \mathbf{Y} + h_I^i \Phi_i \mathbf{Y} \mathbf{Y} + h_{II}^{ij} \Phi_i \Phi_j \mathbf{Y}$$


▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 - のへの

- allowed couplings: $5\,10\,10$, $\overline{5}\,\overline{5}\,10$, $\overline{5}\,\overline{10}\,\overline{10}$, $5\,5\,\overline{10}$
- $h_{I,II}$ quite well explored (Yukawa-Deflected Gauge Mediation) usually some hierarchy for $h_{I,II}$ is assumed
- couplings of three messengers $\eta \to \text{additional effects}!$
 - relevant only if occur together with h_I or h_{II}
 - do not contribute to A-terms (nor to 1-loop masses)

8. Soft terms


• 2-loop contributions to soft masses

 $W_Y = \eta \mathbf{Y} \mathbf{Y} \mathbf{Y} + h_I^i \Phi_i \mathbf{Y} \mathbf{Y} + h_{II}^{ij} \Phi_i \Phi_j \mathbf{Y}$

9. New contributions to soft masses

$$W_Y = \eta \mathbf{Y} \mathbf{Y} \mathbf{Y} + h_I^i \Phi_i \mathbf{Y} \mathbf{Y} + h_{II}^{ij} \Phi_i \Phi_j \mathbf{Y}$$

$$m_{\widetilde{\Phi},\eta}^2 \sim \frac{1}{(4\pi)^4} (\eta^2 h^2 + \eta h^3 + \eta h^2 y) \left(\frac{F}{M}\right)^2$$

(日を)(四を)(四を)(日を)(日)(日)(日)(日)(日)(日)(日)(日)

10. Phenomenological constraints

Assumptions:

• no rapid proton decay via

$$\phi_{\overline{5}}\phi_{\overline{5}}\phi_{10}, \quad \frac{1}{M}\phi_{\overline{5}}\phi_{10}\phi_{10}\phi_{10} \quad \frac{1}{M^2}(\phi_{10}^{\dagger}\phi_{10})^2$$

- absence of μ/B_{μ} problem
- no $\mu H_u H_d$ term in the superpotential; but Higgs mass via

$$\frac{1}{M_{GUT}}X^{\dagger}H_{u}H_{d}$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 - のへの

One needs additional selection rules \rightarrow e.g. global U(1) symmetry Examples?

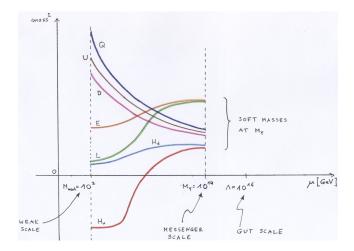
11. The simplest model

• U(1) charges

H_5	$H_{\overline{5}}$	$\phi_{\overline{5}}$	ϕ_{10}	Y_5	$Y_{\overline{5}}$	Y_{10}	$Y_{\overline{10}}$	X
-8q	-7q	3q	4q	17q	-2q	14q	q	-15q

• Yukawa-type couplings of messengers

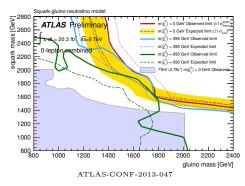
$$W_{\mathsf{Y}} = \frac{1}{2}h_{14}\phi_{10}Y_{\overline{5}}Y_{\overline{5}} + \frac{1}{2}\eta_2Y_{\overline{5}}Y_{\overline{10}}Y_{\overline{10}}.$$


• soft terms

$$m_{\tilde{Q},\eta}^2 = 6\alpha_{h_{14}}\alpha_{\eta_2}\frac{\xi^2}{16\pi^2}, \quad m_{\tilde{Q},h}^2 = \alpha_{h_{14}}\left(6\alpha_{h_{14}} - \frac{7}{15}\alpha_1 - 3\alpha_2 - 6\alpha_3\right)\frac{\xi^2}{16\pi^2}$$
$$A_t = A_b = -\alpha_{h_{14}}\frac{\xi}{4\pi}$$

▲ロ▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

12. Top-down analysis


Reverse the initial problem and evolve parameters from M to EWSB scale:

13. Phenomenology

Find spectrum and check if phenomenology is correct i.e.

- $m_{h^0} \approx 125 \,\mathrm{GeV}$
- no tachyons
- scalar potential bounded from below, no CCB
- $a_{\mu}, b \rightarrow s\gamma$
- ATLAS bounds on gluino and squarks of 1. and 2. generation

14. The simplest model

$$W_{\rm Y} = \frac{1}{2} \eta_2 Y_{\overline{5}} Y_{\overline{10}} Y_{\overline{10}} + \frac{1}{2} h_{14} \phi_{10} Y_{\overline{5}} Y_{\overline{5}}$$

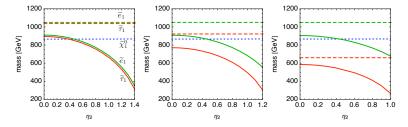


Figure : Plot of the particles masses vs. η_2 coupling for $\tan \beta = 10$ (left plot), $\tan \beta = 30$ (middle plot) and $\tan \beta = 50$ (right plot). h_{14} is set to 1.2, while $\xi = F/M$ scale is 1.6×10^5 GeV. Dashed lines show masses of the particles when $h_{14} = \eta_2 = 0$, which corresponds to the standard GMSB case. $\tilde{\tau}_1$ and $\tilde{\epsilon}_1$ are mostly right-handed.

15. The simplest model

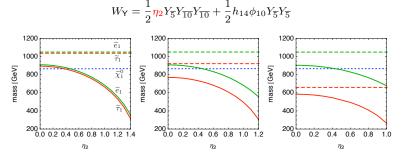


Figure : Plot of the particles masses vs. η_2 coupling for $\tan \beta = 10$ (left plot), $\tan \beta = 30$ (middle plot) and $\tan \beta = 50$ (right plot). h_{14} is set to 1.2, while $\xi = F/M$ scale is 1.6×10^5 GeV. Dashed lines show masses of the particles when $h_{14} = \eta_2 = 0$, which corresponds to the standard GMSB case. $\tilde{\tau}_1$ and $\tilde{\epsilon}_1$ are mostly right-handed.

$$m_{\tilde{Q},\eta}^2 = 6\alpha_{h_{14}}\alpha_{\eta_2}\frac{\xi^2}{16\pi^2}, \quad m_{\tilde{Q},h}^2 = \alpha_{h_{14}}\left(6\alpha_{h_{14}} - \frac{7}{15}\alpha_1 - 3\alpha_2 - 6\alpha_3\right)\frac{\xi^2}{16\pi^2}$$

$$\boxed{\mu \frac{d}{d\mu} m_{\tilde{E}_3}^2 = \ldots + \frac{6}{10} g_1^2 m_{\tilde{Q}, \eta}^2}_{\Box}$$

- Extended GMSB models naturally accommodate for left-right top squarks mixing
- in some cases superpotential couplings of three messengers are relevant to mass spectrum
- additional selection rules (e.g. global U(1)) are necessary to satisfy phenomenological constraints