Rare muon decays

Robert Szafron*

Matter To The Deepest Ustroń

September 2013

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● のへで

*Email: szafron@ualberta.ca Dept of Physics, University of Alberta, Edmonton, Alberta, Canada. Rare muon decays

Robert Szafron

Motivation

 $\mu \to e\gamma$

 $\mu - e$ conversion

Outline

Motivation

 $\mu \rightarrow e\gamma$

 $\mu - e$ conversion

Outlook and conclusions

Rare muon decays

Robert Szafron

Motivation

 $\mu \to e\gamma$

 $\mu - e$ conversion

Outlook and conclusions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Search for charged lepton flavour violation

many New Physics models predicts lepton flavour violation process to occur with much higher probability than SM

- SM branching ratios are unobservable Typically SM (BR< 10⁻⁴⁰), SUSY (BR∼ 10⁻¹¹ − 10⁻¹⁵)
- In many models there is a relation between LFV and dipole moments.

▲□▶▲□▶▲□▶▲□▶ □ ● ●

 Any signal observed may help to understand flavour structure of SM Rare muon decays Robert Szafron

Motivation

 $\iota \rightarrow e \gamma$

 $\mu - e$ conversion

- Flavour transitions in neutral sector is observed
- Ongoing effort in measuring possible Charged Lepton Flavour Violation (CLFV)

History of
$$\mu \to e\gamma$$
, $\mu N \to eN$, and $\mu \to 3e$

Rare muon decays Robert Szafron

Motivation

 $\iota \rightarrow e\gamma$

 $\mu - e$ conversion

Outlook and conclusions

[R. Bernstein, P. Cooper arXiv:1307.5787]

・ロット (雪) (日) (日) (日)

MEG experiment at Paul Scherrer Institute is looking for $\mu \rightarrow e\gamma$

Upgrade in progress (Construction 2015, Data taking 2016 - 2018)

- ▶ present limit 5.7 × 10⁻¹³ [MEG Collaboration, Phys. Rev. Lett. 110, 201801 (2013)]
- expected limit 6×10^{-14}

Signal and background:

Signal – two body decay: back to back monoenergetic $e\gamma$,

$$E_e = E_\gamma = \frac{m_\mu}{2}$$

(日)

Rare muon decays

Robert Szafron

Aotivation

 $\mu \to e \gamma$

 $\mu - e$ conversion

Background

- Accidental background dominant, determined by detector resolution
- Radiative muon decay (RMD)

Rare muon decays Robert Szafron

Motivation

 $\mu \rightarrow e\gamma$

 $\mu - e$ conversion

Ongoing work – improvment in evaluation of the background – electron and photon distribution in RMD with A. Czarnecki, Y. Liang, K. Melnikov Rare muon decays Robert Szafron

 $\mu \rightarrow e\gamma$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ のへぐ

Experiment **Mu2e** at Fermilab: Construction may begin in 2015, commissioning in 2019 and initial preliminary results may be ready about 2020.

Rare muon decays

Robert Szafron

 $\mu - e$

Experiment measures rate of coherent muon to electron conversion on nucleus normalized to all nuclear captures

$$R_{\mu e} = \frac{\Gamma[\mu + (A,Z) \rightarrow e + (A,Z)]}{\Gamma[\mu + (A,Z) \rightarrow \nu_{\mu} + (A,Z-1)]}$$

Present limit: $R_{\mu e} < 7 \cdot 10^{-13}$

Expected sensitivity $R_{\mu e} \sim 10^{-17}$

This study are complementary to the LHC and can probe New Physics scale up to **10,000** TeV If New Physics is found CLFV can help discriminate models

Rare muon decays Robert Szafron

Motivation

 $\mu \to e^{i}$

 $\mu - e$ conversion

Signal and background

Rare muon decays Robert Szafron

Signal and background

Rare muon decays Robert Szafron

Signal and background

Rare muon decays Robert Szafron Experimental signature - monoenergetic electron

$$E_{conv} = m_{\mu} - E_{bin} - E_{red}$$

Background - muon decay in orbit (DIO), tail of the spectrum

Most recent evaluation:

A. Czarnecki X. Garcia i Tormo, W. Marciano (2011)

- numerical solution of Dirac equation
- includes recoil and finite nucleus size effects
- no radiative corrections

Rare muon decays Robert Szafron

Motivation

 $\iota \rightarrow e$

 $\mu - e$ conversion

Outlook and conclusions

(日)

Toy example: $\mu \rightarrow eJ$

Rare muon

decays

Expansion close to $E_e \sim m_{\mu}$.

$$\frac{m_{\mu}}{\Gamma_0} \frac{d\Gamma}{dE_e} \approx (Z\alpha)^5 (E_e - E_{max})^3 f(Z\alpha)$$

Function $f(Z\alpha)$ can be expanded but corrections are large

$$f(Z\alpha) \approx \frac{512}{3\pi} - 160 Z\alpha + \frac{6064 + 473\pi^2 - 2944 \log(2) - 1536 \log(Z\alpha)}{9\pi} (Z\alpha)^2$$

Rare muon decays Robert Szafron

Motivation

 $\mu \rightarrow e$

 $\mu - e$ conversion

Outlook and conclusions

<□> < @> < @> < @> < @> < @> < @</p>

Quasi-Classical approximation

Rare muon
decaysRobert SzafronMotivation $\mu \rightarrow e\gamma$ $\mu - e$
conversionOutlook and

Error $\sim \frac{(Z\alpha)^2}{l^2}$ but region $E_e \sim m_\mu$ dominated by low *l*.

$$l = r \times p \sim \frac{1}{m}m \sim 1$$

Quasi-Classical approximation

Rare muon decays Robert Szafron

Motivation

 $\mu \rightarrow e^{i}$

 $\mu - e$ conversion

Outlook and conclusions

Works better for $E_e \sim \frac{m_{\mu}}{2}$, region dominated by high values of *l*.

$$l = r \times p \sim \frac{1}{mZ\alpha} \frac{m}{2} \sim \frac{1}{Z\alpha}$$

Outlook and conclusions

- Exciting time for discoveries at the intensity frontier
- Proper understanding of the background is crucial for obtaining expected accuracy of new experiments
- pQCD methods are used to improve background evaluation (shape function, fragmentation function, etc.)
- For Mu2e we need a theory that allows us to take into account
 - interaction of both muon and electron with the field of nucleus
 - finite size of nucleus
 - recoil effects
 - radiative corrections

Rare muon decays Robert Szafron

Motivation

 $e \rightarrow e \gamma$

 $\mu - e$ conversion

Outlook and conclusions

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Next step: Radiative corrections

- vacuum polarization in the hard photon
- self energy correction
- real radiation

Final goal:

- Smooth matching of the electron spectrum in all energy regions
- Effective field theory description

Rare muon decays Robert Szafron

Motivation

 $\mu \to e\gamma$

 $\mu - e$ conversion

Rare muon decays

Robert Szafron

Motivation

 $\mu \rightarrow e^{\gamma}$

 $\mu - e$ conversion

Outlook and conclusions

Thank You!