News on the loop-tree duality

Matter To The Deepest Recent Developments In Physics Of Fundamental Interactions, Ustron, 1-6 Sep 2013

> Germán Rodrigo IFIC

Loop radiative corrections

- Main bottleneck in higher-order calculations for many years, in particular for large number of external particles
- Huge progress and gain in efficiency from experienced
 Feynmanists (stable tensor reduction [next talks]) and
 Generalized Unitarity (OPP, ...): multiple-cuts over a loop basis (at one-loop and even higher-orders)
- Still a great effort to cancel IR (and UV) divergences with real corrections

Loop radiative corrections

To fix the notation:

$$q_i = \ell + k_i$$
 with $k_i = p_1 + \dots + p_i$
 $G_F(q_i) = \frac{1}{q_i^2 - m_i^2 + i0}$ and $\int_{\ell} = -i \int \frac{d^d \ell}{(2\pi)^d}$

IFIC **CSIC**

Single cuts only (by-passing the Feynman Tree Theorem)

duality relation between one-loop integrals (one-loop scattering amplitudes) with an arbitrary number of external legs (momenta) and corresponding **single-cut** bremsstrahlung integrals.

[Catani, Gleisberg, Krauss, GR, Winter, JHEP 09(2008)064]

• the duality relation is realised by modifying the customary **+i0 prescription** of the Feynman propagators;

- the new +i0 prescription thus compensates for the absence of multiple-cut contributions that appear in the Feynman Tree Theorem;
- in any relativistic, local and unitary quantum field theory;
- recast virtual corrections in a form that closely parallels the contribution of real corrections.

4

The loop-tree duality theorem

Cauchy residue theorem in the loop energy complex plane

Feynman Propagator +i0: positive frequencies are propagated forward in time, and negative backward

selects residues with definite **positive** energy and negative imaginary part (indeed in any coordinate system)

The loop-tree duality theorem

 the one-loop integral represented as a linear combination of N single-cut phase-space integrals

$$\int_{\ell} \prod G_F(q_i) = -\int_{\ell} \sum \tilde{\delta}(q_i) \prod_{j \neq i} G_D(q_i; q_j)$$

• where $\tilde{\delta}(q_i) = 2\pi i \, \delta_+ (q_i^2 - m_i^2)$ sets internal line on-shell;

•
$$G_D(q_i; q_j) = \frac{1}{q_j^2 - m_j^2 - i0\eta(q_j - q_i)}$$
 dual propagator;

• Lorentz-covariant dual prescription with η is a **future-like** vector: $\eta^2 \ge 0$ with $\eta_0 > 0$;

• different choices of η are equivalent to different choices of the coordinate system;

• the dependence on η cancels in the sum of dual integrals.

6

Master topology at two loops

[Bierenbaum, Catani, Draggiotis, GR, JHEP 10(2010)073]

[Bierenbaum, Buchta, Draggiotis, Malamos, GR, JHEP 03(2013)025]

- p_l p_{l-1} q_l q_0 p_{l-2} q_1 p_2 q_{l-1} q_{l+1} q_{l+2} q_{l-2} q_2 p_{l+2} ℓ_2 ℓ_1 q_N q_{r+1} q_r p_{r+1} p_r p_N
- Iterative application of the duality theorem

Loop lines:

$$\alpha_{1} = \{0, 1, \dots, r\}$$

$$\alpha_{2} = \{r + 1, \dots, l\}$$

$$\alpha_{3} = \{l + 1, \dots, N\}$$

$$G_{D}(\alpha_{k}) = \sum_{i \in \alpha_{k}} \tilde{\delta}(q_{i}) \prod_{j \neq i} G_{D}(q_{i}; q_{j})$$

$$G_{F}(\alpha_{k}) = \prod_{i \in \alpha_{k}} G_{F}(q_{i})$$

 duality applies to Feynman propagators depending on the same loop momentum

 $G_D(\alpha_1 \cup \alpha_2) = G_D(\alpha_1)G_D(\alpha_2) + G_D(\alpha_1)G_F(\alpha_2) + G_F(\alpha_1)G_D(\alpha_2)$

• Two cuts only: open any two-loop diagram to a tree-level diagram (sign in $-\alpha_1$ indicates a change of momentum flow)

$$L^{(2)}(p_1, \dots, p_N)$$

= $\int_{\ell_1} \int_{\ell_2} \left[-G_D(\alpha_1) G_F(\alpha_2) G_D(\alpha_3) + G_D(\alpha_1) G_D(\alpha_2 \cup \alpha_3) + G_D(\alpha_1 \cup \alpha_2) G_D(\alpha_3) \right]$

• at one-loop the complex dual prescription depends on external momenta only, however, at two loops it might depend on the integration momenta: complex dual prescription on external momenta only requires to introduce disconnected diagrams

IFIC **SCSIC**

Master topologies at three loops

 Three cuts only: such that the three-loop diagrams are open to a tree-level diagram

 Or multiple cuts (starting from three) leading to disconnected tree diagrams, with complex dual prescription depending on external momenta only.

One single cut per "loop line"

Singularities of the loop integrand

[Buchta, Chachamis, Malamos, in preparation]

- The loop-momentum space approach is attractive because it allows a direct physical interpretation of loop singularities.
- Loop singularities arise when subsets of internal lines go on-shell. (assuming UV singularities have been subtracted)
- Although the existence of singular points in the loop momentumspace is not enough to ensure the presence of singularities:
 - threshold singularities are integrable: contour deformation for numerically stable integration [Soper, Nagy, Weinzierl, ...]
 - IR singularities remain and are cancelled by coherent sum with real emission partonic configurations [subtraction methods at NLO and higher orders]

Singularities of the loop integrand

The loop integrand becomes singular

$$G_F^{-1}(q_i) = q_i^2 - m_i^2 + i\mathbf{0} = \mathbf{0}$$

at **hyperboloids** with origin in $-k_{i,\mu}$

Forward light-cone (solid)

 $q_{i,0}^{(+)} = \sqrt{\vec{q}_i^2 + m_i^2 - i0}$ Backward light-cone (dashed) $q_{i,0}^{(-)} = -q_{i,0}^{(+)}$

Duality: equivalent to integrate along the **forward** light-cones

Singularities of the loop integrand

The loop integrand becomes singular

$$G_F^{-1}(q_i) = q_i^2 - m_i^2 + i\mathbf{0} = \mathbf{0}$$

at **hyperboloids** with origin in $-k_{i,\mu}$

Forward light-cone (solid) $q_{i,0}^{(+)} = \sqrt{\vec{q}_i^2 + m_i^2 - i0}$ Backward light-cone (dashed) $q_{i,0}^{(-)} = -q_{i,0}^{(+)}$

Duality: equivalent to integrate along the **forward** light-cones

Threshold singularities

Feynman and Dual propagators become positive inside the respective light-cone hyperboloid, and negative outside

Threshold singularities

Feynman and Dual propagators become positive inside the respective light-cone hyperboloid, and negative outside

- Integrating along the forward light-cone $\tilde{\delta}(q_1)$ one pass **from outside to inside** the light-cone hyperboloid of $-k_3$
- Integrating along the forward light-cone $\tilde{\delta}(q_3)$ one pass from inside to outside the light-cone hyperboloid of $-k_1$

Threshold singularities

Feynman and Dual propagators become positive inside the respective light-cone hyperboloid, and negative outside

- Integrating along the forward light-cone $\tilde{\delta}(q_1)$ one pass **from outside to inside** the light-cone hyperboloid of $-k_3$
- Integrating along the forward light-cone $\tilde{\delta}(q_3)$ one pass **from inside to outside** the light-cone hyperboloid of $-k_1$

• Only singular along the forward light-cone $\tilde{\delta}(q_1)$ but not along the forward light-cone $\tilde{\delta}(q_2)$

IR singularities

- Massless internal line and on-shell adjacent external momenta
- The light-cone hyperboloids intersect tangentially over an infinite interval

• e.g.
$$e^+e^- \to q(p_1)\overline{q}(p_2)$$

with $k_1 = p_1$, $k_2 = p_1 + p_2$

IR singularities

Forward with forward light-cone:

 collinear singular behaviour cancels among dual integrals

IR singularities

Forward with forward light-cone:

collinear singular behaviour cancels among dual integrals

Forward with backward light-cone:

- Collinear and soft singular behaviour remains, and
- Is restricted to a **finite region** of the loop-momentum space, which is of the order of the magnitude of external momenta
- Mapping with finite real emission phase-space

IFIC **SCSIC**

Factorization in the collinear limit

[Catani, de Florian, GR, PLB586(2004), JHEP 07(2012)026]

dual scattering amplitude

$$\begin{split} \boldsymbol{M}_{N}^{(1)} (p_{1}, \dots, p_{N}) \rangle &\to \left| \boldsymbol{M}_{N+2}^{(0)} (\dots, p_{i}, -q_{i}, q_{i}, \dots) \right\rangle \\ &\simeq \boldsymbol{Sp}^{(0)} (p_{i}, -q_{i}; -\tilde{Q}_{i-1}) \left| \boldsymbol{\overline{M}}_{N+1}^{(0)} (\dots, p_{i-1}, -\tilde{Q}_{i-1}, q_{i}, \dots) \right\rangle \end{split}$$

tree-level scattering amplitude

$$\begin{split} \left| \boldsymbol{M}_{N+1}^{(\boldsymbol{0})}\left(\boldsymbol{p'}_{1},\ldots,\boldsymbol{p'}_{N+1}\right) \right\rangle \\ &\simeq \boldsymbol{S}\boldsymbol{p}^{(0)}\left(\boldsymbol{p'}_{i},\boldsymbol{p'}_{N+1};\tilde{P}_{i,N+1}\right) \left| \boldsymbol{\overline{M}}_{N}^{(\boldsymbol{0})}\left(\ldots,\boldsymbol{p'}_{i-1},\tilde{P}_{i,N+1},\boldsymbol{p'}_{i+1},\ldots\right) \right\rangle \\ \text{with on-shell momenta } \boldsymbol{\widetilde{Q}}_{i-1}^{2} = \boldsymbol{0}, \, \boldsymbol{\widetilde{P}}_{i,N+1}^{2} = \boldsymbol{0}, \\ \text{and restricted loop momenta } \boldsymbol{q}_{i,0}^{(+)} < \boldsymbol{p}_{i,0} \end{split}$$

Conclusions and outlook

the loop-tree duality method exhibits attractive theoretical issues and nice properties

 threshold and infrared singularities occurring in the intersection of forward light-cones cancel among dual integrals

remaining loop singularities are restricted to a finite region of the loop momentum space, which is of the size of external momenta

Outlook

- numerical implementation at one-loop
- singularities at higher orders