# **Models for Sterile Neutrinos**

Matter To The Deepest, Ustron, 2 Sep 2013

# **Contents:**

- Neutrino masses and light sterile neutrinos
- Mechanisms for sterile neutrino mass generation
- Example models: flavor symmetries, extra dimensions, seesaw extensions and Froggatt-Nielsen mechanism

# He Zhang

Max-Planck-Institut fuer Kernphysik, Heidelberg, Germany

Neutrinos are **massless** in the **SM** as a result of the model's simple structure:

- \*  $SU(2)_L \times U(1)_Y$  gauge symmetry and Lorentz invariance; Fundamentals of the model, mandatory for its consistency as a QFT.
- ★ Economical particle content: No right-handed neutrinos  $\rightarrow$  a Dirac mass term is not allowed. Only one Higgs doublet  $\rightarrow$  a Majorana mass term is not allowed.
- \* Renormalizability: No dimension  $\geq$  5 operators --- a Majorana mass term is forbidden.



#### **Dirac neutrinos**

#### Neutrinos are **Dirac** particles

 $v_{\rm R}$  + a pure Dirac mass term Extremely tiny Yukawa coupling ~10<sup>-11</sup>, (hierarchy puzzle)

$$\mathscr{D} = \mathscr{D}_{SM} + \left\{ Y \overline{l}_{L} \nu_{R} \widetilde{\phi} + h.c. \right\}$$

The smallness of Dirac masses is ascribed to the assumption that  $V_R$  have access to an extra spatial dimension

(Dienes, Dudas, Gherghetta 98; Arkani-Hamed, Dimopoulos, Dvali, March-Russell 98)



The wavefunction of  $v_R$  spreads out over the extra dimension y, giving rise to a suppressed Yukawa interaction at y = 0.

$$\left[\overline{l_{\rm L}}Y_{\nu}\tilde{H}N_{\rm R}\right]_{y=0} ~\sim~ \frac{1}{\sqrt{L}} \left[\overline{l_{\rm L}}Y_{\nu}\tilde{H}N_{\rm R}\right]_{y=L}$$

#### Majorana neutrinos

#### Neutrinos are Majorana particles

 $\nu_{\rm R}$  + Majorana & Dirac masses + **Seesaw** Natural description of the smallness of v-masses Integrate out righthanded neutrinos

$$\mathscr{D} = \mathscr{D}_{SM} + \left\{ Y \overline{l}_{L} v_{R} \tilde{\phi} + \left[ \frac{1}{2} M_{R} \overline{v}_{R} v_{R}^{C} \right] + h.c. \right\}$$

$$-iY^{T} \frac{\not p + M_{R}}{p^{2} - M_{R}^{2}} Y \left(\varepsilon_{cd}\varepsilon_{ba} + \varepsilon_{ca}\varepsilon_{bd}\right) P_{L} = i\kappa \left(\varepsilon_{cd}\varepsilon_{ba} + \varepsilon_{ca}\varepsilon_{bd}\right) P_{L}$$
$$p^{2} \ll M_{R}^{2} \Rightarrow Y^{T} M_{R}^{-1} Y = \mathcal{K} \Rightarrow m_{V} = -m_{D}^{T} M_{R}^{-1} m_{D}$$

#### The scale of seesaw

Typical choice of the seesaw scale:  $M_{\rm R} \sim \Lambda_{\rm GUT} \gg \Lambda_{\rm EW} \& M_{\rm D} \sim \Lambda_{\rm EW}$ 



#### The scale of seesaw

Typical choice of the seesaw scale:  $M_{\rm R} \sim \Lambda_{\rm GUT} \gg \Lambda_{\rm EW} \& M_{\rm D} \sim \Lambda_{\rm EW}$ 

Alternatively, **eV** scale or **keV** scale righthanded neutrinos could also be nature



#### The scale of seesaw

Typical choice of the seesaw scale:  $M_{\rm R} \sim \Lambda_{\rm GUT} \gg \Lambda_{\rm EW} \& M_{\rm D} \sim \Lambda_{\rm EW}$ 

Alternatively, eV scale or keV scale righthanded neutrinos could also be nature

#### sterile neutrino: $v_s$

 SU(2) singlet: does not participant electroweak interactions





Mention, Fechner, Lasserre, Mueller, Lhuillier, Cribier, Letourneau, 2011



Recent re-evaluation of the anti-neutrino spectra of nuclear reactors indicates increased fluxes, which can be explained by additional sterile neutrinos with masses at the eV scale

$$P_{\overline{\nu}_e \to \overline{\nu}_e} \simeq 1 - 4 \left| U_{e4} \right|^2 \sin^2 \left( \frac{\Delta_{41}L}{4E} \right) = 1 - \sin^2 \left( 2\theta_{14} \right) \sin^2 \left( \frac{\Delta_{41}L}{4E} \right)$$



neutrino-less double beta decay



#### neutrino-less double beta decay

The allowed ranges in the  $\langle m_{ee} \rangle - m_{\text{light}}$  parameter space

1+3, Normal, SN

1+3, Inverted, SI



**Best-fit** and estimated  $2\sigma$  values from **neutrino oscillations**.

Kopp, Maltoni, Schwetz, 1103.4570

|           | parameter | $\Delta m^2_{41} \; [\mathrm{eV}]$ | $ U_{e4} ^2$  | $\Delta m^2_{51}$ [eV] | $ U_{e5} ^2$  |
|-----------|-----------|------------------------------------|---------------|------------------------|---------------|
| 2+1/1+2   | best-fit  | 1.78                               | 0.023         |                        |               |
| 3+1/1+3   | $2\sigma$ | 1.61 - 2.01                        | 0.006 - 0.040 |                        |               |
| 2+9/9+2   | best-fit  | 0.47                               | 0.016         | 0.87                   | 0.019         |
| 3+2/2+3   | $2\sigma$ | 0.42 - 0.52                        | 0.004 - 0.029 | 0.77 - 0.97            | 0.005 - 0.033 |
| 1 + 2 + 1 | best-fit  | 0.47                               | 0.017         | 0.87                   | 0.020         |
| 1+0+1     | $2\sigma$ | 0.42 - 0.52                        | 0.004 - 0.029 | 0.77 – 0.97            | 0.005 - 0.035 |

#### sterile neutrino Warm Dark Matter

**WDM** – relativistic at decoupling, non-relativistic at radiation to matter dominance transition

reduces small scale structure:

- smoother profiles
- less Dwarf Satellites

keV sterile neutrino WDM: works very well

- Right-handed neutrinos probably exist (seesaw)
- $M_R \approx \mathbf{keV}$
- Only one light  $v_s$  is enough, the other two could still be heavy (thermal leptogenesis)

#### The vMSM

Asaka, Blanchet, Shaposhnikov, 05; Asaka, Shaposhnikov, 05

- ✓ A keV  $\nu_{R1}$  can be WDM (production: active-sterile oscillation, etc)
- ✓ GeV-scale  $\nu_{R2}$  &  $\nu_{R3}$  generate light neutrino masses via seesaw
- $\checkmark$   $v_{R2}$  and  $v_{R3}$  are quasi-degenerate
- ✓  $v_{R2}$  &  $v_{R3}$  account for the Baryon Asymmtry of the Universe



## **II.** Mechanisms for light sterile neutrino mass

$$m_{\nu} = M_D M_R^{-1} M_D^T$$

$$0.1 \text{ eV} \quad 1 \text{ eV (or keV)}$$

Why are they so light?

Why do they not form the Dirac particles as heavy as the charged fermions?

### **Solution:**

**mechanisms** (eg., discrete symmetries, extra dimensions, seesaw) suppressing  $M_R$  and  $M_D$  simultaneously

## **III. Example: split seesaw**

#### **Extra Dimension Theories**

(Kusenko, Takahashi, Yanagida, **10**)

• Splitting between the SM brane and a hidden brane



## **III. Example: split seesaw**

#### **Extra Dimension Theories**

(Kusenko, Takahashi, Yanagida, **10**)

• Splitting between the SM brane and a hidden brane



• Sterile neutrino zero mode develops an **exponential profile** in the bulk

$$\Psi_R^{(0)}(y,x) = \sqrt{\frac{2m}{e^{2m\ell} - 1}} \frac{1}{\sqrt{M}} e^{my} \psi_R^{(4D)}(x)$$

$$S = \int d^4x \, dy \left\{ M \left( i \bar{\Psi}_{iR}^{(0)} \Gamma^A \partial_A \Psi_{iR}^{(0)} + m_i \bar{\Psi}_{iR}^{(0)} \Psi_{iR}^{(0)} \right) + \delta(y) \left( \frac{\kappa_i}{2} v_{\mathrm{B-L}} \bar{\Psi}_{iR}^{(0)c} \Psi_{iR}^{(0)} + \tilde{\lambda}_{i\alpha} \bar{\Psi}_{iR}^{(0)} L_\alpha \phi + \mathrm{h.c.} \right) \right\}$$

## **III. Example: split seesaw**

#### **Extra Dimension Theories**

(Kusenko, Takahashi, Yanagida, **10**)

• Splitting between the SM brane and a hidden brane



• Sterile neutrino zero mode develops an **exponential profile** in the bulk

$$\Psi_R^{(0)}(y,x) = \sqrt{\frac{2m}{e^{2m\ell} - 1}} \frac{1}{\sqrt{M}} e^{my} \psi_R^{(4D)}(x)$$

sterile  
mass
$$M_{Ri} = \kappa_i v_{B-L} \frac{2m_i}{M(e^{2m_i\ell} - 1)}$$
Yukawa  
coupling
$$\lambda_{i\alpha} = \frac{\tilde{\lambda}_{i\alpha}}{\sqrt{M}} \sqrt{\frac{2m_i}{e^{2m_i\ell} - 1}} = \tilde{\lambda}_{i\alpha} \sqrt{\frac{M_{Ri}}{\kappa_i v_{B-L}}}$$

$$(m_{\nu})_{\alpha\beta} = \left(\sum_i \frac{1}{\kappa_i} \tilde{\lambda}_{i\alpha} \tilde{\lambda}_{i\beta}\right) \frac{\langle \phi^0 \rangle^2}{v_{B-L}}$$

### **Flavor symmetries**

 $L_e - L_\mu - L_\tau$  symmetry:

|   | $L_{eL}$ | $L_{\mu L}$ | $L_{\tau L}$ | $e_R$ | $\mu_R$ | $	au_R$ | $N_{1R}$ | $N_{2R}$ | $N_{3R}$ | $\phi$ | Δ |
|---|----------|-------------|--------------|-------|---------|---------|----------|----------|----------|--------|---|
| F | 1        | -1          | -1           | 1     | -1      | -1      | 1        | -1       | -1       | 0      | 0 |

(Lindner, Merle, Niro, 10)

|                       | ( | 0             | $m_L^{e\mu}$  | $m_L^{e	au}$  | $m_D^{e_1}$  | 0             | 0             |  |
|-----------------------|---|---------------|---------------|---------------|--------------|---------------|---------------|--|
|                       |   | $m_L^{e\mu}$  | 0             | 0             | 0            | $m_D^{\mu 2}$ | $m_D^{\mu 3}$ |  |
| ΛΛ —                  |   | $m_L^{e\tau}$ | 0             | 0             | 0            | $m_D^{	au 2}$ | $m_D^{	au 3}$ |  |
| $\mathcal{M}_{\nu}$ – |   | $m_D^{e1}$    | 0             | 0             | 0            | $M_{R}^{12}$  | $M_{R}^{13}$  |  |
|                       |   | 0             | $m_D^{\mu 2}$ | $m_D^{	au 2}$ | $M_{R}^{12}$ | 0             | 0             |  |
|                       |   | 0             | $m_D^{\mu 3}$ | $m_D^{	au 3}$ | $M_{R}^{13}$ | 0             | 0             |  |

two heavy + one massless righthanded neutrinos

$$\Lambda_{\pm} = \pm \sqrt{2} M_R$$
  
$$\lambda_{\pm} = \pm \sqrt{2} [m_L - m_D^2 / M_R]$$





### **Flavor symmetries**

#### **Friedberg-Lee symmetry:**

R.Friedberg & T.D.Lee, 2006

Neutrino mass operator is invariant under the transformation

 $\nu_e \rightarrow \nu_e + z;$   $\nu_\mu \rightarrow \nu_\mu + z;$   $\nu_\tau \rightarrow \nu_\tau + z;$  $z \rightarrow \text{Grassmann number}$ 

### **Flavor symmetries**

#### **Friedberg-Lee symmetry:**

R.Friedberg & T.D.Lee, 2006

Neutrino mass operator is invariant under the transformation

$$\nu_{e} \rightarrow \nu_{e} + z; \qquad \nu_{\mu} \rightarrow \nu_{\mu} + z; \qquad \nu_{\tau} \rightarrow \nu_{\tau} + z; \\ z \rightarrow \text{Grassmann number}$$

$$a(\overline{\nu}_{\tau} - \overline{\nu}_{\mu})(\nu_{\tau} - \nu_{\mu}) + b(\overline{\nu}_{\mu} - \overline{\nu}_{e})(\nu_{\mu} - \nu_{e}) + c(\overline{\nu}_{e} - \overline{\nu}_{\tau})(\nu_{e} - \nu_{\tau})$$

$$\overline{M} = \begin{pmatrix} b + c & -b & c \\ -b & a + b & a \\ c & a & c + a \end{pmatrix} \Rightarrow \text{Rank } 2 \rightarrow \text{one massless eigenstate}$$

- ✓ Applied to the right-handed neutrino sector
- ✓ One massless sterile neutrino before symmetry breaking

He, Li, Liao, 2009

### **Froggatt-Nielsen mechanism**

- Fermion flavors are differently charged under a  $U(1)_{FN}$  symmetry
- Right-handed neutrino masses receive a suppression factor  $M \to M \lambda^{2F}$  ( $\lambda = \frac{\langle \phi \rangle}{\Lambda} < 1$ )

### **Froggatt-Nielsen mechanism**

- Fermion flavors are differently charged under a  $U(1)_{FN}$  symmetry
- Right-handed neutrino masses receive a suppression factor  $M \to M \lambda^{2F}$  ( $\lambda = \frac{\langle \phi \rangle}{\Lambda} < 1$ )

• Vertex suppressed by a factor  $\lambda^F$ 



### **Froggatt-Nielsen mechanism**

- Fermion flavors are differently charged under a  $U(1)_{FN}$  symmetry
- Right-handed neutrino masses receive a suppression factor  $M \to M \lambda^{2F}$  ( $\lambda = \frac{\langle \phi \rangle}{\langle \phi \rangle} < 1$ )

 Seesaw formula and the active neutrino masses are not affected by the FN charges

### **Froggatt-Nielsen mechanism**

- Fermion flavors are differently charged under a  $U(1)_{FN}$  symmetry
- Right-handed neutrino masses receive a suppression factor  $M \to M \lambda^{2F}$  ( $\lambda = \frac{\langle \phi \rangle}{\langle \phi \rangle} < 1$ )

$$N_{R} \xrightarrow{F_{1}} F_{2} \xrightarrow{F_{3}} F_{4} \xrightarrow{(N_{R})^{c}}$$

$$X \xrightarrow{\times} X \xrightarrow{\times} X \xrightarrow{\times} X$$

$$\langle \Phi \rangle \langle \Phi \rangle \langle \Phi \rangle \langle \Phi \rangle \langle \Phi \rangle$$

• Seesaw formula and the active neutrino masses are **not** affected by the FN charges M



### A flavor model based on A<sub>4</sub> + FN mechanism



- Symmetry group of tetrahedron
- Even permutations of four objects
- 12 elements; 4 irreducible represents: 1, 1', 1", and 3 (Wyler 79', Ma, Rajasekaran 01', Babu, Ma, Valle 03', Altarelli, Feruglio, 05')

| Field                | L        | $e^{c}$    | $\mu^c$    | $	au^c$    | $h_{u,d}$ | $\varphi$ | $\varphi'$ | ξ        | $\nu_s$  |      |
|----------------------|----------|------------|------------|------------|-----------|-----------|------------|----------|----------|------|
| $\mathrm{SU}(2)_L$   | 2        | 1          | 1          | 1          | 2         | 1         | 1          | 1        | 1        |      |
| $A_4$                | <u>3</u> | <u>1</u>   | <u>1</u> " | <u>1</u> ′ | <u>1</u>  | <u>3</u>  | <u>3</u>   | <u>1</u> | <u>1</u> |      |
| $Z_3$                | ω        | $\omega^2$ | $\omega^2$ | $\omega^2$ | 1         | 1         | ω          | $\omega$ | 1        | Barr |
| $\mathrm{U}(1)_{FN}$ | _        | 3          | 1          | 0          | —         | _         | _          | _        | 6        | JHE. |

$$\mathcal{L}_{\mathrm{Y}} = \frac{y_e}{\Lambda} e^c(\varphi L) h_d + \frac{y_\mu}{\Lambda} \mu^c(\varphi L)' h_d + \frac{y_\tau}{\Lambda} \tau^c(\varphi L)'' h_d + \frac{x_a}{\Lambda^2} \xi(Lh_u Lh_u) + \frac{x_d}{\Lambda^2} (\varphi' Lh_u Lh_u) + \text{h.c.} + \dots \mathcal{L}_{\mathrm{Y}_s} = \frac{x_e}{\Lambda^2} \xi(\varphi' Lh_u) \nu_s + \frac{x_f}{\Lambda^2} (\varphi' \varphi' Lh_u) \nu_s + m_s \nu_s^c \nu_s^c + \text{h.c.}$$





Barry, Rodejohann, HZ, JHEP 2011; JCAP 2012

Numerical example: assuming Yukawa couplings are of order 1 and  $\lambda = 10^{-1.5} \approx 0.03$ 

$$\begin{aligned} a \sim d \simeq 0.1 \left(\frac{u}{10^{11} \text{ GeV}}\right) \left(\frac{v_u}{10^2 \text{ GeV}}\right)^2 \left(\frac{10^{12.5} \text{ GeV}}{\Lambda}\right)^2 \text{eV}, \\ e \simeq 0.1 \left(\frac{\lambda}{10^{-1.5}}\right)^6 \left(\frac{u}{10^{11} \text{ GeV}}\right) \left(\frac{v'}{10^{11} \text{ GeV}}\right) \left(\frac{v_u}{10^2 \text{ GeV}}\right) \left(\frac{10^{12.5} \text{ GeV}}{\Lambda}\right)^2 \text{eV} \\ m_s \simeq 10^{0.5} \left(\frac{\lambda}{10^{-1.5}}\right)^{12} \left(\frac{v}{10^{11} \text{ GeV}}\right)^2 \left(\frac{10^{12.5} \text{ GeV}}{\Lambda}\right) \text{eV} \quad \text{an eV-scale } \nu_s \text{ is accommodated} \end{aligned}$$

#### **Extension to the seesaw framework**

| Field           | L        | $e^{c}$    | $\mu^{c}$  | $	au^c$          | $h_{u,d}$ | $\varphi$ | $\varphi'$ | $\varphi''$ | ξ          | ξ'               | ξ"       | Θ        | $\nu_1^c$  | $\nu_2^c$        | $\nu_3^c$ |
|-----------------|----------|------------|------------|------------------|-----------|-----------|------------|-------------|------------|------------------|----------|----------|------------|------------------|-----------|
| $SU(2)_L$       | 2        | 1          | 1          | 1                | 2         | 1         | 1          | 1           | 1          | 1                | 1        | 1        | 1          | 1                | 1         |
| $A_4$           | <u>3</u> | <u>1</u>   | <u>1</u> " | $\underline{1'}$ | 1         | <u>3</u>  | <u>3</u>   | <u>3</u>    | 1          | $\underline{1}'$ | <u>1</u> | <u>1</u> | <u>1</u>   | $\underline{1}'$ | 1         |
| $Z_3$           | ω        | $\omega^2$ | $\omega^2$ | $\omega^2$       | 1         | 1         | ω          | $\omega^2$  | $\omega^2$ | ω                | 1        | 1        | $\omega^2$ | ω                | 1         |
| $U(1)_{\rm FN}$ | -        | 3          | 1          | 0                | -         | -         | -          | -           | -          | -                |          | -1       | $F_1$      | $F_2$            | $F_3$     |

- Right-handed neutrinos are A<sub>4</sub> singlets so as to assign different FN charges (mass splitting)
- If the sterile neutrinos is located at eV or keV scale
- ✓ The other two right-handed neutrinos generate active neutrino masses via seesaw (reproducing the *v*MSM structure)
- Tri-bimaximal mixing (TBM) is obtained at leading order from vacuum alignments of flavons
- ✓ Charged-lepton corrections →  $\theta_{13}$

**Minimal Extended Seesaw (MES)** 

Light sterile neutrinos: suppressed by **seesaw** as well?

HZ, Phys.Lett.B 714 (2012) 262

#### **Minimal Extended Seesaw (MES)**

The model: **SM** + **three** right-handed neutrinos + **one** singlet **S** 

$$-\mathcal{L}_m = \overline{\nu_L} M_D \nu_R + \overline{S^c} M_S \nu_R + \frac{1}{2} \overline{\nu_R^c} M_R \nu_R + \text{h.c.}$$

$$M_S = (\times \times \times)$$

$$M_{\nu}^{7 \times 7} = \begin{pmatrix} 0 & M_D & 0 \\ M_D^T & M_R & M_S^T \\ 0 & M_S & 0 \end{pmatrix}$$

 The full 7 × 7 neutrino mass matrix is of rank 6, and therefore, one active neutrino is massless.

#### **Minimal Extended Seesaw (MES)**

The model: **SM** + **three** right-handed neutrinos + **one** singlet **S** 

$$-\mathcal{L}_m = \overline{\nu_L} M_D \nu_R + \overline{S^c} M_S \nu_R + \frac{1}{2} \overline{\nu_R^c} M_R \nu_R + \text{h.c.}$$

$$M_{\nu}^{7 \times 7} = \begin{pmatrix} 0 & M_D & 0 \\ M_D^T & M_R & M_S^T \\ 0 & M_S & 0 \end{pmatrix}$$

 The full 7 × 7 neutrino mass matrix is of rank 6, and therefore, one active neutrino is massless.

 $M_{\rm S} = (\times \times \times)$ 

If  $M_R \gg M_S$ ,  $M_D$ , we can integrate out  $\nu_R$ 

 $\overline{m_{\nu}} \simeq M_D M_R^{-1} M_S^T \left( M_S M_R^{-1} M_S^T \right)^{-1} M_S \left( M_R^{-1} \right)^T M_D^T - M_D M_R^{-1} M_D^T$  $m_s \simeq -M_S M_R^{-1} M_S^T$ 

#### **Minimal Extended Seesaw (MES)**

The model: **SM** + **three** right-handed neutrinos + **one** singlet **S** 

$$-\mathcal{L}_m = \overline{\nu_L} M_D \nu_R + \overline{S^c} M_S \nu_R + \frac{1}{2} \overline{\nu_R^c} M_R \nu_R + \text{h.c.}$$

$$M_S = (\times \times \times)$$

$$M_{\nu}^{7 \times 7} = \begin{pmatrix} 0 & M_D & 0 \\ M_D^T & M_R & M_S^T \\ 0 & M_S & 0 \end{pmatrix}$$

The full  $7 \times 7$  neutrino mass matrix is of rank 6, and therefore, one active neutrino is massless.

If  $M_R \gg M_S$ ,  $M_D$ , we can integrate out  $\nu_R$ 



#### **Minimal Extended Seesaw (MES)**

The model: **SM** + **three** right-handed neutrinos + **one** singlet **S** 

$$-\mathcal{L}_m = \overline{\nu_L} M_D \nu_R + \overline{S^c} M_S \nu_R + \frac{1}{2} \overline{\nu_R^c} M_R \nu_R + \text{h.c.}$$

$$M_S = (\times \times \times)$$

$$M_{\nu}^{7 \times 7} = \begin{pmatrix} 0 & M_D & 0 \\ M_D^T & M_R & M_S^T \\ 0 & M_S & 0 \end{pmatrix}$$

The full  $7 \times 7$  neutrino mass matrix is of rank 6, and therefore, one active neutrino is massless.

If  $M_R \gg M_S$ ,  $M_D$ , we can integrate out  $\nu_R$ 

 $\overline{m_{\nu}} \simeq M_D M_R^{-1} M_S^T \left( M_S M_R^{-1} M_S^T \right)^{-1} M_S \left( M_R^{-1} \right)^T M_D^T - M_D M_R^{-1} M_D^T$  $m_s \simeq -M_S M_R^{-1} M_S^T$ 

 $\begin{array}{cccc} M_D \sim 100 \; {\rm GeV}; & & & & & \\ M_S \sim 500 \; {\rm GeV}; & M_R \sim 2 \times 10^{14} {\rm GeV} & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$ 

### **Minimal Extended Seesaw (MES)**

The model: **SM** + **three** right-handed neutrinos + **one** singlet **S** 

$$-\mathcal{L}_m = \overline{\nu_L} M_D \nu_R + \overline{S^c} M_S \nu_R + \frac{1}{2} \overline{\nu_R^c} M_R \nu_R + \text{h.c.}$$

$$M_S = (\times \ \times \ \times)$$

$$M_{\nu}^{7 \times 7} = \begin{pmatrix} 0 & M_D & 0 \\ M_D^T & M_R & M_S^T \\ 0 & M_S & 0 \end{pmatrix}$$

The full  $7 \times 7$  neutrino mass matrix is of rank 6, and therefore, one active neutrino is massless.

If  $M_R \gg M_S$ ,  $M_D$ , we can integrate out  $\nu_R$ 

 $m_{\nu} \simeq M_D M_R^{-1} M_S^T \left( M_S M_R^{-1} M_S^T \right)^{-1} M_S \left( M_R^{-1} \right)^T M_D^T - M_D M_R^{-1} M_D^T$  $m_s \simeq -M_S M_R^{-1} M_S^T$ 

- ✓ No need to artificially insert tiny mass scales and Yukawa couplings
- Thermal leptogenesis works.
- ✓ Only **one** singlet *S* is allowed (minimal extension).

#### **Minimal Extended Seesaw (MES)**

How to realize the **MES** structure?

#### 1. Flavor symmetry (e.g. $A_4$ )

TABLE I: Particle assignments in the flavor  $A_4$  model.

| Field | l | $e_R$ | $\mu_R$    | $	au_R$          | H        | φ | $\varphi'$ | $\varphi''$ | ξ | ξ'               | $\chi$ | $ u_{R1} $ | $\nu_{R2}$ | $\nu_{R3}$ | S |
|-------|---|-------|------------|------------------|----------|---|------------|-------------|---|------------------|--------|------------|------------|------------|---|
| SU(2) | 2 | 1     | 1          | 1                | <b>2</b> | 1 | 1          | 1           | 1 | 1                | 1      | 1          | 1          | 1          | 1 |
| $A_4$ | 3 | 1     | <u>1</u> " | $\underline{1}'$ | 1        | 3 | 3          | 3           | 1 | $\underline{1}'$ | 1      | 1          | <u>1</u> ′ | 1          | 1 |
| $Z_4$ | 1 | 1     | 1          | 1                | 1        | 1 | i          | -1          | 1 | -1               | -i     | 1          | -i         | -1         | i |

$$\begin{aligned} \mathcal{L} &= \frac{y_e}{\Lambda} \left( \overline{\ell} H \varphi \right)_{\underline{1}} e_R + \frac{y_\mu}{\Lambda} \left( \overline{\ell} H \varphi \right)_{\underline{1}'} \mu_R + \frac{y_\tau}{\Lambda} \left( \overline{\ell} H \varphi \right)_{\underline{1}''} \tau_R \\ &+ \frac{y_1}{\Lambda} \left( \overline{\ell} \widetilde{H} \varphi \right)_{\underline{1}} \nu_{R1} + \frac{y_2}{\Lambda} \left( \overline{\ell} \widetilde{H} \varphi' \right)_{\underline{1}''} \nu_{R2} + \frac{y_3}{\Lambda} \left( \overline{\ell} \widetilde{H} \varphi'' \right)_{\underline{1}} \nu_{R3} \\ &+ \frac{1}{2} \lambda_1 \xi \overline{\nu_{R1}^c} \nu_{R1} + \frac{1}{2} \lambda_2 \xi' \overline{\nu_{R2}^c} \nu_{R2} + \frac{1}{2} \lambda_3 \xi \overline{\nu_{R3}^c} \nu_{R3} \\ &+ \frac{1}{2} \rho \chi \overline{S^c} \nu_{R1} + \text{h.c.} \;, \end{aligned}$$

**Minimal Extended Seesaw (MES)** 

How to realize the **MES** structure?

- 1. Flavor symmetry (e.g.  $A_4$ )
- charged-lepton mass matrix is diagonal  $m_{\ell} = \frac{\langle H \rangle v}{\Lambda} \operatorname{diag}(y_e, y_{\mu}, y_{\tau})$
- Dirac mass terms

$$M_D = \frac{\langle H \rangle v}{\Lambda} \begin{pmatrix} y_1 & y_2 & 0\\ 0 & y_2 & y_3\\ 0 & y_2 & -y_3 \end{pmatrix}$$
$$M_S = \begin{pmatrix} \rho u & 0 & 0 \end{pmatrix}$$

• right-handed neutrino mass matrix  $M_R = \text{diag} \left(\lambda_1 v, \lambda_2 v, \lambda_3 v\right)$ 

$$m_{\nu} = -\frac{\langle H \rangle^2 v}{\Lambda^2} \begin{pmatrix} \frac{y_2^2}{\lambda_2} & \frac{y_2^2}{\lambda_2} & \frac{y_2^2}{\lambda_2} \\ \frac{y_2^2}{\lambda_2} & \frac{y_2^2\lambda_3 + y_3^2\lambda_2}{\lambda_2\lambda_3} & \frac{y_2^2\lambda_3 - y_3^2\lambda_2}{\lambda_2\lambda_3} \\ \frac{y_2^2\lambda_3 - y_3^2\lambda_2}{\lambda_2\lambda_3} & \frac{y_2^2\lambda_3 + y_3^2\lambda_2}{\lambda_2\lambda_3} \end{pmatrix}$$
  
diagonalized by TBM  
sterile parameters:  
$$m_s \simeq \frac{\rho^2 u^2}{\lambda_1 v} \qquad R \simeq \left(\frac{y_1 \langle H \rangle v}{\rho u \Lambda} & 0 & 0\right)^T$$
$$v = 10^{13} \text{ GeV}, u = 10^2 \text{ GeV}$$
$$\Lambda = 10^{14} \text{ GeV}$$
$$m_s \sim 1.2 \text{ eV} \qquad R \sim 0.16 \quad 37$$

How to realize the **MES** structure in the U(1)' extension?

**2. U(1)' model** Julian Heeck, HZ, <u>1211.0538</u>

Assuming only singlet fields  $S_i$  are charged under U(1)', the anomaly-free conditions reduce to



How to realize the **MES** structure in the U(1)' extension?

Assuming only singlet fields  $S_i$  are charged under U(1)', the anomaly-free conditions reduce to

$$\sum_{f} Y'(f) = 0$$
 and  $\sum_{f} (Y'(f))^3 = 0$ 

#### solutions for five singlets and $Z \leq 25$

| Z <sub>1</sub> | Z2  | Z <sub>3</sub> | Z4 | Z <sub>5</sub> |
|----------------|-----|----------------|----|----------------|
| -9             | -5  | -1             | 7  | 8              |
| -9             | -7  | 2              | 4  | 10             |
| -18            | -17 | 1              | 14 | 20             |
| -21            | -12 | 5              | 6  | 22             |
| -25            | -8  | -7             | 18 | 22             |

Nakayama, Takahashi, Yanagida, 11'

How to realize the **MES** structure in the U(1)' extension?

**2. U**(1)' model Julian Heeck, HZ, 1211.0538

Our principle:

- anomaly-free U(1)'
- new fermions are all massive at tree-level
- only one extra scalar is introduced
- couplings like  $\overline{L}HS$  and  $\overline{S^c}S$  are forbidden.

The model contents: in total ten "right-handed neutrinos"

|    | $\nu_{R,1}$ | $\nu_{R,2}$ | $\nu_{R,3}$ | $S_1$ | $S_2$ | <i>S</i> <sub>3</sub> | <i>S</i> <sub>4</sub> | $S_5$ | $S_6$ | <i>S</i> <sub>7</sub> | $\phi$ |
|----|-------------|-------------|-------------|-------|-------|-----------------------|-----------------------|-------|-------|-----------------------|--------|
| Y' | 0           | 0           | 0           | 11    | -5    | -6                    | 1                     | -12   | 2     | 9                     | 11     |

Lagrangian:

$$\mathcal{L}_m = (m_D)_{ij} \overline{\nu_{L,i}} \nu_{R,j} + \frac{1}{2} (M_R)_{ij} \overline{\nu_{R,i}^c} \nu_{R,j} + w_i \phi^{\dagger} \overline{S_1^c} \nu_{R,i} + y_1 \phi \overline{S_3^c} S_2 + y_2 \phi \overline{S_4^c} S_5 + y_3 \phi^{\dagger} \overline{S_6^c} S_7 + \text{h.c.},$$

How to realize the **MES** structure in the U(1)' extension?

**2. U(1)' model** Julian Heeck, HZ, 1211.0538

Our principle:

- anomaly-free U(1)'
- new fermions are all massive at tree-level
- only one extra scalar is introduced
- couplings like  $\overline{L}HS$  and  $\overline{S^c}S$  are forbidden.

The model contents: in total ten "right-handed neutrinos"

|    | $\nu_{R,1}$ | $\nu_{R,2}$ | $\nu_{R,3}$ | $S_1$ | $S_2$ | $S_3$ | $S_4$ | $S_5$ | $S_6$ | <i>S</i> <sub>7</sub> | $\phi$ |
|----|-------------|-------------|-------------|-------|-------|-------|-------|-------|-------|-----------------------|--------|
| Y' | 0           | 0           | 0           | 11    | -5    | -6    | 1     | -12   | 2     | 9                     | 11     |

mass matrix: block structure  $(13 \times 13)$ 

$$\mathcal{M} = \begin{pmatrix} (\mathcal{M}_{\text{MES}})_{7 \times 7} & 0 \\ 0 & (\mathcal{M}_{S})_{6 \times 6} \end{pmatrix} \qquad \qquad \mathcal{M}_{S} = \begin{pmatrix} y_{1} \langle \phi \rangle & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & y_{2} \langle \phi \rangle & 0 & 0 \\ 0 & 0 & y_{2} \langle \phi \rangle & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & y_{3} \langle \phi \rangle \\ 0 & 0 & 0 & 0 & y_{3} \langle \phi \rangle & 0 \end{pmatrix}$$

 $(0 y_1 \langle \phi \rangle 0 0 0)$ 

0 \

### **III. Example: radiative inverse seesaw**

Dev, Pilaftsis, PRD 13

SM + 3 heavy right-handed neutrinos + 3 SM gauge singlet neutrinos

$$-\mathcal{L}_{\rm m} = \overline{\nu_{\rm L}} M_{\rm D} \nu_{\rm R} + \overline{S} M_{\rm R} \nu_{\rm R} + \frac{1}{2} \overline{S} \mu S^c + \text{H.c.}$$

$$\begin{cases} \mathbf{9x9 v} \text{-mass} \\ \{\nu_L, \nu_R^c, S^c\} & M_\nu = \begin{pmatrix} 0 & M_D & 0 \\ M_D^T & 0 & M_R^T \\ 0 & M_R & \mu \end{pmatrix} \end{cases}$$

Light neutrino mass matrix:

$$m_{\nu} \simeq M_{\rm D} M_{\rm R}^{-1} \mu (M_{\rm R}^T)^{-1} M_{\rm D}^T = F \mu F^T$$

1

### **III. Example: radiative inverse seesaw**

Dev, Pilaftsis, PRD 13

SM + 3 heavy right-handed neutrinos + 3 SM gauge singlet neutrinos

$$-\mathcal{L}_{\mathrm{m}} = \overline{\nu_{\mathrm{L}}} M_{\mathrm{D}} \nu_{\mathrm{R}} + \overline{S} M_{\mathrm{R}} \nu_{\mathrm{R}} + \frac{1}{2} \overline{S} \mu S^{c} + \mathrm{H.c.}$$

$$9 \mathbf{x} \mathbf{y} \cdot \mathbf{mass}$$

$$\{\nu_{L}, \nu_{R}^{c}, S^{c}\} \quad M_{\nu} = \begin{pmatrix} 0 & M_{\mathrm{D}} & 0 \\ M_{\mathrm{D}}^{T} & 0 & M_{\mathrm{R}}^{T} \\ 0 & M_{\mathrm{R}} & \mu \end{pmatrix} \quad \clubsuit \quad \begin{pmatrix} \mathbf{0} & M_{D} & \mathbf{0} \\ M_{D}^{T} & \mu_{R} & M_{N}^{T} \\ \mathbf{0} & M_{N} & \mu_{S} \end{pmatrix}$$

active neutrino mass (1-loop):

 $M_D \mu_R^{-1} x_R f(x_R) M_D^{\mathsf{T}}$ 

sterile neutrino mass (seesaw):  $M_N \mu_R^{-1} M_N^{\mathsf{T}}$ 



43

## **III. Example: non-standard models**

**Non-standard Approaches** 

**Mirror model** 

Berezhiania, Mohapatra 95; Foot, Volkas, 95; Berezinsky, Narayan, Vissani 02

 $SU(3)' \times SU(2)' \times U(1)'$  $SU(3) \times SU(2) \times U(1)$  $\bigotimes$ Quarks (B'=1/3) & Leptons (L'=1)Quarks (B=1/3) & Leptons (L=1)Yukawa interactions Yukawa interactions  $-L = Y \overline{f_L} H f_R$  $-L = Y' \overline{f_L}' H' f_R'$  $\langle H \rangle = v$  $\langle H' \rangle = v'$ LL'HH' mvs  $m_{\nu} \sim v^2/M$  $m_s \sim v'^2/M$ APL Different inflation, reheating temp

# V. Summary

Light sterile neutrinos present in: short-baseline neutrino oscillation experiments; effective mass measured in neutrinoless double beta decays; keV Warm Dark Matter; ...

Mechanisms are needed to understand the smallness light sterile neutrinos

- a) suppress  $M_D$  and  $M_R$  simultaneously via flavor symmetries, warped extra dimensions; FN mechanism;
- b) non-standard approaches: mirror models; SUSY; ...
- c) extended seesaw models; U(1)'; radiative seesaw...

Thanks