Residual symmetries in the lepton mass matrices

Walter Grimus

Faculty of Physics, University of Vienna

"Matter to the Deepest," Ustroń September 1–6, 2013

Tri-bimaximal mixing:

 $\sin^2 \theta_{13} = 0.0227 \stackrel{+0.0023}{_{-0.0024}}$ Gonzalez-Garcia et al. (2012)

э

 $U = (U_{\alpha j}) = (u_1, u_2, u_3)$ with columns u_j

Albright, Rodejohann (2008): TM₁, TM₂ still valid!

TM₁:
$$u_1 = \frac{1}{\sqrt{6}} \begin{pmatrix} 2 \\ -1 \\ -1 \end{pmatrix}$$
, TM₂: $u_2 = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$

$$\begin{aligned} \mathsf{T}\mathsf{M}_{1}: \quad s_{12}^{2} &= 1 - \frac{2}{3c_{13}^{2}} < \frac{1}{3}, \quad \cos\delta\tan2\theta_{23} \simeq -\frac{1}{2\sqrt{2}s_{13}}\left(1 - \frac{7}{2}s_{13}^{2}\right) \\ \mathsf{T}\mathsf{M}_{2}: \quad s_{12}^{2} &= \frac{1}{3c_{13}^{2}} > \frac{1}{3}, \qquad \cos\delta\tan2\theta_{23} \simeq \frac{1}{\sqrt{2}s_{13}}\left(1 - \frac{5}{4}s_{13}^{2}\right) \end{aligned}$$

伺 ト く ヨ ト く ヨ ト

3

Fixing the notation:

Mass terms: Majorana neutrinos

$$\mathcal{L}_{\text{mass}} = -\bar{\ell}_L M_\ell \ell_R + \frac{1}{2} \nu_L^T C^{-1} \mathcal{M}_\nu \nu_L + \text{H.c.}$$

Diagonalization:

 $U_{\ell}^{\dagger} M_{\ell} M_{\ell}^{\dagger} U_{\ell} = \text{diag} \left(m_e^2, m_{\mu}^2, m_{\tau}^2 \right), \quad U_{\nu}^{T} \mathcal{M}_{\nu} U_{\nu} = \text{diag} \left(m_1, m_2, m_3 \right)$ Mixing matrix: $U = U_{\ell}^{\dagger} U_{\nu}$

$$egin{aligned} V_\ell(lpha) &\equiv U_\ell \, ext{diag} \left(e^{i lpha_1}, e^{i lpha_2}, e^{i lpha_3}
ight) U_\ell^\dagger \ V_
u(\epsilon) &\equiv U_
u \, ext{diag} \left(\epsilon_1, \epsilon_2, \epsilon_3
ight) U_
u^\dagger \quad ext{with} \quad \epsilon_i^2 = 1 \end{aligned}$$

- 4 E b 4 E b

Invariance of the mass matrices:

$$V_{\ell}(\alpha)^{\dagger} M_{\ell} M_{\ell}^{\dagger} V_{\ell}(\alpha) = M_{\ell} M_{\ell}^{\dagger}, \quad V_{\nu}(\epsilon)^{T} \mathcal{M}_{\nu} V_{\nu}(\epsilon) = \mathcal{M}_{\nu}$$

Remarks:

- $V_{\ell}(\alpha) \in U(1) \times U(1) \times U(1), V_{\nu}(\epsilon) \in \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$
- $V_{\ell}(\alpha)$, $V_{\nu}(\epsilon)$ depend on VEVs and Yukawa coupling constants
- Invariance of mass matrices V_ℓ , V_ν contains no information beyond diagonalizability

Residual symmetries

Idea of residual symmetries:

C.S. Lam (2008); Adelhart Toorop, Feruglio, Hagedorn;...

- Weak basis $\Rightarrow \ell_L$, ν_L in same multiplet of G
- *G* broken to different subgroups in charged-lepton and neutrino sectors:

 $\mathcal{G}_\ell \subseteq \mathcal{U}(1) imes \mathcal{U}(1) imes \mathcal{U}(1), \quad \mathcal{G}_
u \subseteq \mathbb{Z}_2 imes \mathbb{Z}_2 imes \mathbb{Z}_2$

• For simplicity:

One generator T of G_ℓ , one generator S of G_ν :

$$T^{\dagger}M_{\ell}M_{\ell}^{\dagger}T = M_{\ell}M_{\ell}^{\dagger}, \quad S^{T}\mathcal{M}_{\nu}S = \mathcal{M}_{\nu}$$

• For simplicity:

T has three different eigenvalues

• Then T and S determine one column of U independent of the parameters of the model!

Residual symmetries

Why is this so?

•
$$S^2 = \mathbb{1} \Rightarrow S = \pm (2uu^{\dagger} - \mathbb{1})$$
 with $Su = \pm u$

2
$$U_{\ell}^{\dagger}TU_{\ell}=\widetilde{T}$$
 diagonal

 $U_{\ell}^{\dagger} u \text{ column in mixing matrix}$

• Two matrices S_1 , S_2 with $S_j^T \mathcal{M}_{\nu} S_j = \mathcal{M}_{\nu}$, i.e.

$$G_{
u} = \mathbb{Z}_2 imes \mathbb{Z}_2$$
 (Klein group)

 \Rightarrow mixing matrix U completely determined

Theorem

If
$$S^T \mathcal{M}_{\nu} S = \mathcal{M}_{\nu}$$
 with $S = \pm (2uu^{\dagger} - 1)$, then $\mathcal{M}_{\nu} u \propto u^*$.

Remark: $U_{\ell}^{\dagger}u$ determined by the group! It does not contain parameters of the model.

Purpose of consideration of residual symmetries:

Attempt to determine the symmetry group in a model-independent way only from properties of the lepton mixing matrix

Two ways to tackle residual symmetries for the purpose of determination of possible flavour symmetry groups:

- Scanning finite groups
- Solving relations involving roots of unity

Holthausen, Lim, Lindner (2013):

 $G_{
u} = \mathbb{Z}_2 imes \mathbb{Z}_2$, group results within 3σ of fitted s_{ij}^2

a) Assumptions: ord G < 1536,

 G_ℓ generated by $\widetilde{T} = ext{diag}(1, \omega, \omega^2)$ with $\omega = e^{2\pi i/3}$,

n	G	<i>s</i> ² ₁₂	s_{13}^2	<i>s</i> ² ₂₃
5	$\Delta(6 imes 10^2)$	0.3432	0.0288	0.3791
		0.3432	0.0288	0.6209
9	$(\mathbb{Z}_{18} imes \mathbb{Z}_6) times S_3$	0.3402	0.0201	0.3992
		0.3402	0.0201	0.6008
16	$\Delta(6 imes16^2)$	0.3420	0.0254	0.3867
		0.3420	0.0254	0.6133

b) Assumptions: ord G < 512, G_{ℓ} Abelian \Rightarrow no candidates!

Residual symmetries and roots of unity

Basic assumption: Flavour group G finite! (finitely generated) Mixing matrix: $U = (U_{\alpha j})$ ($\alpha = e, \mu, \tau, j = 1, 2, 3$)

• G_ℓ generated by ${\cal T}$, $G_
u$ generated by ${\cal S}$

• det
$$S = 1 \Rightarrow S = 2uu^{\dagger} - 1$$

• Finiteness $\Rightarrow \exists m, n \in \mathbb{N}$ such that $T^m = S^2 = (ST)^n = \mathbb{1}$

T has eigenvalues $e^{i\phi_{\alpha}}$, ST has eigenvalues $\lambda_j \Rightarrow$ Tr (ST) = $\lambda_1 + \lambda_2 + \lambda_3$

Trace and determinant of ST

Hernandez, Smirnov (2012)

u i-th column of $U \Rightarrow$ two equations for 6 roots of unity:

$$\sum_{\alpha=e,\mu,\tau} \left(2 \left| U_{\alpha i} \right|^2 - 1 \right) e^{i\phi_\alpha} = \lambda_1 + \lambda_2 + \lambda_3 \quad \text{and} \quad \prod_{\alpha} e^{i\phi_\alpha} = \lambda_1 \lambda_2 \lambda_3$$

Which finite group can enforce TM_1 ? Grimus (2013)

TM₁:
$$u_1 = \frac{1}{\sqrt{6}} \begin{pmatrix} 2 \\ -1 \\ -1 \end{pmatrix} \Rightarrow \begin{array}{c} 2 |U_{e1}|^2 - 1 = \frac{1}{3} \\ 2 |U_{\mu 1}|^2 - 1 = -\frac{2}{3} \\ 2 |U_{\tau 1}|^2 - 1 = -\frac{2}{3} \end{array}$$

Vanishing sum of roots of unity:

$$-e^{i\phi_e} + 2e^{i\phi_\mu} + 2e^{i\phi_\tau} + 3\lambda_1 + 3\lambda_2 + 3\lambda_2 = 0$$

Solution by theorem of Conway and Jones (1976)

TM_1 and roots of unity

Formal sums of roots of unity: ring over rational numbers $\omega=e^{2\pi i/3},\ \beta=e^{2\pi i/5},\ \gamma=e^{2\pi i/7}$

Theorem (Conway and Jones (1976))

Let S be a non-empty vanishing sum of length at most 9. Then either S involves θ , $\theta\omega$, $\theta\omega^2$ for some root θ , or S is similar to one of

$$\begin{split} 1 + \beta + \beta^{2} + \beta^{3} + \beta^{4}, \\ -\omega - \omega^{2} + \beta + \beta^{2} + \beta^{3} + \beta^{4}, \\ 1 + \beta + \beta^{2} - (\omega + \omega^{2})(\beta^{2} + \beta^{3}), \\ 1 + \gamma + \gamma^{2} + \gamma^{3} + \gamma^{4} + \gamma^{5} + \gamma^{6}, \\ -\omega - \omega^{2} + \gamma + \gamma^{2} + \gamma^{3} + \gamma^{4} + \gamma^{5} + \gamma^{6}, \\ \beta + \beta^{4} - (\omega + \omega^{2})(1 + \beta^{2} + \beta^{3}), \\ 1 + \gamma^{2} + \gamma^{3} + \gamma^{4} + \gamma^{5} - (\omega + \omega^{2})(\gamma + \gamma^{6}), \\ 1 - (\omega + \omega^{2})(\beta + \beta^{2} + \beta^{3} + \beta^{4}). \end{split}$$

Solution:

$$e^{i\phi_e} = \eta$$
, $e^{i\phi_\mu} = \eta\omega$, $e^{i\phi_\tau} = \eta\omega^2$, $\lambda_1 = \epsilon$, $\lambda_2 = -\epsilon$, $\lambda_3 = \eta$
 η is an arbitrary root of unity, $\epsilon = \pm i\eta$

In basis where charged lepton mass matrix is diagonal:

$$\begin{split} \widetilde{\mathcal{T}} &= \eta \operatorname{diag} \left(1, \omega, \omega^2 \right) \\ u_1 &= \frac{1}{\sqrt{6}} \begin{pmatrix} 2 \\ -1 \\ -1 \end{pmatrix} \Rightarrow \quad \widetilde{S} = \frac{1}{3} \begin{pmatrix} 1 & -2 & -2 \\ -2 & -2 & 1 \\ -2 & 1 & -2 \end{pmatrix} \end{split}$$

 \widetilde{T} and \widetilde{S} generate group $\mathbb{Z}_q \times S_4$ with η being a primitive root of order q.

TM_1 and roots of unity

Another basis:

$$U_{\omega} = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 1 & 1\\ 1 & \omega & \omega^{2}\\ 1 & \omega^{2} & \omega \end{pmatrix} \text{ with } \omega = e^{2\pi i/3} = \frac{-1 + i\sqrt{3}}{2}$$
$$S = U_{\omega}\tilde{S}U_{\omega}^{\dagger} = \begin{pmatrix} -1 & 0 & 0\\ 0 & 0 & 1\\ 0 & 1 & 0 \end{pmatrix}, \quad T = U_{\omega}\tilde{T}U_{\omega}^{\dagger} = \eta \begin{pmatrix} 0 & 1 & 0\\ 0 & 0 & 1\\ 1 & 0 & 0 \end{pmatrix}$$
$$T \equiv \eta E$$

$$E^{\dagger}\left(M_{\ell}M_{\ell}^{\dagger}
ight)E=M_{\ell}M_{\ell}^{\dagger}\ \Rightarrow\ U_{\omega}^{\dagger}\left(M_{\ell}M_{\ell}^{\dagger}
ight)U_{\omega}$$
is diagonal

TM_1 and roots of unity

$$Su = u \quad \Rightarrow \quad u = \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\ 1\\ 1 \end{pmatrix}$$

Mechanism for TM₁:

Lavoura, de Madeiros Varzielas (2012); Grimus (2013)

 U_{ω} diagonalizes $M_{\ell}M_{\ell}^{\dagger}$ and u eigenvector of $\mathcal{M}_{
u}$ \Rightarrow

$$U_{\omega}^{\dagger} u = \frac{1}{\sqrt{6}} \begin{pmatrix} 2\\ -1\\ -1 \end{pmatrix}$$
 is column in mixing matrix

ゆ ト イヨ ト イヨト

Example: S_4 and type II seesaw mechanism Needs 7 scalar gauge doublets in $\mathbf{1} \oplus \mathbf{3} \oplus \mathbf{3}'$ and 4 gauge triplets in $\mathbf{1} \oplus \mathbf{3}' + \text{VEV}$ alignment

$$M_{\ell} = \begin{pmatrix} a & b+c & b-c \\ b-c & a & b+c \\ b+c & b-c & a \end{pmatrix}, \quad \mathcal{M}_{\nu} = \begin{pmatrix} A & B & -B \\ B & A & C \\ -B & C & A \end{pmatrix}$$

Notation:

- G = flavour symmetry group of the Lagrangian
- $ar{G}=$ group determined by residual symmetries in $M_\ell M_\ell^\dag$ and $\mathcal{M}_
 u$
 - Restriction:
 - Symmetry group G of Lagrangian is finitely generated
 - Neutrinos have Majorana nature
 - Possible relationship between G and \overline{G} :
 - $\overline{G} \subset U(3)$ due to 3 families
 - Method is purely group-theoretical and uses only information contained in the mass matrices $\Rightarrow \overline{G}$ can at most yield D(G)
 - Accidental symmetries in the mass matrices $\Rightarrow \overline{G}$ not even a subgroup of D(G)
 - Total breaking of G:

Method not applicable

Conclusions

- Residual symmetries in M_ℓM[†]_ℓ and M_ν: Model-independent method for determination of flavour symmetry group from mixing matrix U
- Only very few groups with relatively high order allow full determination of U with mixing parameters within 3σ ranges of fit values.
- These three groups which have been found have TM₂ and, therefore, $s_{12}^2 = 1/(3c_{13}^2) > 1/3$
- There are more viable groups which do not fully determine *U*; for instance *S*₄ gives TM₁.
- Relation between groups G
 , determined by residual symmetries, and G, flavour symmetry groups of a Lagrangian, not straightforward!

伺 ト イ ヨ ト イ ヨ ト

Thank you for your attention!