

Dark matter pions

S. Bhattacharya B. Melic JW

1

Introduction

DM makes ~ 23% of the mass-energy content of the universe

No direct evidence, only gravitational footprints

Enormous interest in the community:

of papers

Many models:

- SUSY based (DM = LSP)
- Higher dimensional models (a first KK mode)
- SM extensions (anything stabilized by a symmetry)

- Also: a phenomenological approach: $\mathcal{L}_{\rm DM\times SM} \sim \mathcal{O}_{\rm DM} \times \mathcal{O}_{\rm SM}$

The model

 $\mathcal{L}_{\mathrm{DM} imes\mathrm{SM}}\sim\mathcal{O}_{\mathrm{DM}} imes\mathcal{O}_{\mathrm{SM}}$

Construct the lowest dimensional operators using the DM bosons
Construct the lowest dimensional operators using the SM fields

Lowest-dimensional SM operators:

$$\phi |^2 \quad \mathsf{B}_{\mu\nu}$$

 \Rightarrow Effective Lagrangian

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{DM}} + |\phi|^2 \mathcal{O}_{\text{DM}} + B_{\mu\nu} \mathcal{O}_{\text{DM}}^{\mu\nu}$$

Non-linear σ model For simplicity: SU(N)_L × SU(N)_R

> Need a mass term for the DM pions: (dark chiral symmetry explicitly broken) to SU(N)_V

• \Rightarrow Require the dark effective operators to be SU(N)_V invariant

Dark pion field:

$$\Sigma = \exp(i\pi_a T^a/f).$$

•
$$\operatorname{tr}\{T_a T_b\} = \delta_{ab}.$$

•
$$[T_a, T_b] = i f_{ab}{}^c T_c.$$

•
$$f = \text{dark-pion decay constant (units of mass)}$$
.

Dark-pion Lagrangian

$$\mathcal{L}_{\rm DM} = f^2 \operatorname{tr} \left\{ \partial_{\mu} \Sigma^{\dagger} \partial^{\mu} \Sigma \right\} + \frac{1}{2} f^2 \left(M^2 \operatorname{tr} \Sigma + \operatorname{H.c.} \right)$$

DM-SM interactions

$$egin{aligned} \mathcal{L}_{ ext{int}} &=& rac{1}{2}\lambda_h\left(|\phi|^2-v^2
ight) ext{tr}ig\{\partial_\mu\Sigma^\dagger\,\partial^\mu\Sigmaig\}\ &+B^{\mu
u}\left(\lambda_V ext{tr}ig\{\Sigma^\dagger\partial_\mu\Sigma\,\partial_
u\Sigma^\daggerig\}+ ext{H.c.}
ight)\ &+rac{1}{2}f^2\lambda_h'\left(|\phi|^2-v^2
ight)(ext{tr}\Sigma+ ext{H.c.}) \end{aligned}$$

where
$$arepsilon$$
 = $\langle \ \phi \
angle \sim$ 174 GeV

• The first term: full $SU(N)_L \times SU(N)_R$ invariant

- The other two terms invariant under the diagonal $SU(N)_{V}$

• The π_a are triplets under SU(N)_V

- Expansion in powers of the π :
 - π -h interactions
 - π -Z/ γ interactions
 - π - π interactions

$$\mathcal{L} = \frac{1}{2} (\partial \pi)^2 - \frac{1}{2} M^2 \pi^2 + \frac{\lambda_h}{f^2} \left(\frac{vh}{\sqrt{2}} (\partial \pi)^2 + \frac{1}{4} h^2 (\partial \pi)^2 \right) + \lambda'_h \left(\frac{vh}{\sqrt{2}} \pi^2 + \frac{1}{4} h^2 \pi^2 \right) + \lambda'_h \left(\frac{vh}{\sqrt{2}} \pi^2 + \frac{1}{4} h^2 \pi^2 \right) - \frac{\lambda_V}{f^3} B^{\mu\nu} f_{abc} \partial_\mu \pi_a \partial_\nu \pi_b \pi_c + \frac{N}{16 f^2 (N^2 - 2)} \left[(\partial \pi^2)^2 - \mu^2 (\pi^2)^2 \right] + \frac{2}{16 f^2 (N^2 + 1)} M^2$$

8

Wudka - Ustron 13

Usua

portal

Thermal History

Boltzmann equation

$$egin{array}{lll} \dot{n}_{a}+3Hn_{a}&=&-\mathcal{C}_{a}\ ,\ &\mathcal{C}_{a}&=&\sum_{b,c,d}\int d\Phi |\mathcal{A}_{a+b o c+d}|^{2}(f_{a}f_{b}-f_{c}f_{d})\,,\ &d\Phi&=&d\Pi_{a}\,d\Pi_{b}\,d\Pi_{c}\,d\Pi_{d}(2\pi)^{4}\delta^{(4)}(p_{a}+p_{b}-p_{c}-p_{d})\,, \end{array}$$

- Neglect quantum statistics
- Assume SM remains in equilibrium
- Write the BE in terms of: Y = n/s (s = entropy density)
- Simplify to the case N=2: π_{\pm} , π_o
 - One conserved charge: $\mathbf{q} = \mathbf{Y}_{-} \mathbf{Y}_{+}$
 - \Rightarrow need only equation for Y₊ and Y_o

Explicitly:

$$\frac{dY_r}{dx} = -\sqrt{\frac{\pi g(T)}{45G}} \frac{M}{x^2} C_r(Y) , \qquad C_r(Y) = \frac{1}{s^2} C_r , \qquad (r = o, \pm)$$

with x = M/T

Collision terms

$$C_{o}(Y) = \left(Y_{o}^{2} - Y_{o}^{(\mathrm{eq})^{2}}\right) \langle \sigma v \rangle_{\pi_{o}\pi_{o} \to SM} + \left(Y_{o}^{2} - Y_{+}Y_{-}\right) \langle \sigma v \rangle_{\pi_{o}\pi_{o} \to \pi_{+}\pi_{-}} \\ + \left[Y_{o}Y_{o}^{(\mathrm{eq})} - Y_{+}Y_{-} + (Y_{+} + Y_{-})(Y_{o} - Y_{o}^{(\mathrm{eq})})\right] \langle \sigma v \rangle_{\pi_{+}\pi_{-} \to \pi_{o}V} ,$$

$$C_{\pm}(Y) = \left(Y_{+}Y_{-} - Y_{o}^{(\mathrm{eq})^{2}}\right) \langle \sigma v \rangle_{\pi_{o}\pi_{o} \to SM} + \left(Y_{+}Y_{-} - Y_{o}^{2}\right) \langle \sigma v \rangle_{\pi_{+}\pi_{-} \to \pi_{o}\pi_{o}} + \left(Y_{+}Y_{-} - Y_{o}Y_{o}^{(\mathrm{eq})}\right) \langle \sigma v \rangle_{\pi_{+}\pi_{-} \to \pi_{o}V} ,$$

• Boundary conditions: $Y \rightarrow Y^{eq}$ as $x \rightarrow 1$

• For $q \neq 0$ use

$$\begin{array}{rcl} Y_t &=& Y_o + Y_+ + Y_- \,, \\ Y_d &=& \frac{Y_+ + Y_-}{2} - Y_o \,, \\ q &=& Y_- - Y_+ \end{array}$$

Abundance: given by Y_t ; its BE is even under $q \leftrightarrow -q$ and

$$\left. \begin{pmatrix} \frac{\partial Y_t}{\partial q^2} \end{pmatrix}_{q=0} \right|_{x=x_i} > 0 \quad \text{and} \quad \frac{d}{dx} \left(\frac{\partial Y_t}{\partial q^2} \right)_{q=0} > 0$$

$$\Rightarrow \quad Y_t(q=0,x) < Y_t(q\neq 0,x)$$

 $\Rightarrow \overline{\Omega}_{\mathrm{DM}}(f, \overline{M}, \lambda_h, \lambda_V; q = 0) < \overline{\Omega}_{\mathrm{DM}}(f, \overline{M}, \lambda_h, \lambda_V; q) \,.$

The WMAP/PLANCK constraint is then

 $\Omega_{DM}(f,M,\lambda_h,\lambda_V;q=0) < \Omega_{ ext{CDM}} \, .$

Numerically

- $q < 10^{-13}$: irrelevant
- $q > 10^{-12}$: dominates Ω_{DMP} :

$$rac{3.4 imes 10^{-10}}{M/{
m GeV}} < |q| < rac{4.7 imes 10^{-10}}{M/{
m GeV}} \qquad M < 100 {
m GeV}$$

• q: 10⁻¹² to 10⁻¹³ : same order as Y

Constraints on the model

Provide the No large deviations in Higgs decays: $\Gamma(h \rightarrow \pi \pi) < 4 \text{ MeV}$

$f > 5.9 |\lambda_h|^{1/2} |7812.5 - M^2|^{1/2} \left[1 - (M/62.5)^2\right]^{1/8}$

Perturbativity (consistency of the model)

$$f \ge \max\{\sqrt{4\pi\lambda_V}, 1\}\frac{M}{4\pi}$$

 $(M < 62.5 \, [\text{GeV}])$

 \blacksquare CMD: 0.094 $\leq \Omega$ $_{\text{DM}}$ $h^2 \leq 0.130$

$$4.04 \times 10^{-7} \cdot \left(\frac{\lambda_h M}{f^2}\right)^2 + 0.93 \left(\frac{\lambda_V M^2}{f^3}\right)^2 \cdot 5.59 \times 10^{-7} \delta_{q,0}$$

Direct detection:XENON100 sees nothing (no explanation for DAMA/LIBRA)

$$f > 562.3 |\lambda_h|^{1/2}$$

14

Combined results: colored regions allowed by XENON100 (darker: XENON1T projected allowed regions)

$$\lambda_V$$
= 0.0023 and λ_h = 0, 0.5 , … 3

Conclusions

- The model works in wide ranges of parameter space
- Y_{∞} is M-dependent
- Nice scaling behavior in Ω : depends on only on the combinations:

 $\lambda_{\rm h}$ M / f² and $\lambda_{\rm V}$ M² / f³

- Low M region require $\lambda_h \ll 1$ (and there is a Z \rightarrow 3 π constraint)
- No easy explanation for the DAMA/LIBRA effects

Some details

• χ pert theory: 4 π f \geq [max{ 4 π λ_V , 1 }]^{1/2} M

- Mild constraints from $h \rightarrow \pi\pi$ and $Z \rightarrow \pi\pi\pi$
- Ineractions w/SM via
 - $\pi \mathbf{Z} \leftrightarrow \pi \pi$
 - $\pi\pi \leftrightarrow \mathbf{h}^* \rightarrow \mathbf{WW}, \mathbf{ZZ}, \mathbf{hh}, \mathbf{ff}$
 - $\pi\pi \leftrightarrow hh$ (via t-channel π and contact interactions)
- We ignore the portal interaction (well studied already)

• $\pi\pi \to \pi \pi$ reactions

• $\pi\pi \rightarrow Z/\gamma \pi$ reactions

