Recent measurements of θ_{13} mixing angle in neutrino oscillation experiments

Paweł Przewłocki

National Centre for Nuclear Research Warsaw Neutrino Group

Layout of the presentation

- Neutrino oscillations
- How to measure θ_{13} mixing angle
- Results from reactor experiments
 - Daya Bay
 - Reno
 - Double Chooz
- Results from long baseline experiments
 - T2K
 - Minos

Neutrino oscillations

FLAVOR

PMNS mixing matrix

MASS

$$\begin{pmatrix} v_e \\ v_{\mu} \\ v_{\tau} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_{23} & \sin\theta_{23} \\ 0 & -\sin\theta_{23} & \cos\theta_{23} \end{pmatrix} \begin{pmatrix} \cos\theta_{13} & 0 & \sin\theta_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -\sin\theta_{13}e^{-i\delta} & 0 & \cos\theta_{13} \end{pmatrix} \begin{pmatrix} \cos\theta_{12} & \sin\theta_{12} & 0 \\ \sin\theta_{12} & \cos\theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$$

"atmospheric"
SK, K2K, T2K, MINOS

CHOOZ, DayaBay, Reno, DblChooz, T2K "solar"
SNO, KamLand, SK,
Borexino

$$\Delta m_{31}^2 = \begin{cases} 2.53_{-0.10}^{+0.08} \\ -(2.40_{-0.07}^{+0.10}) \end{cases} \times 10^{-3} \,\mathrm{eV}^2$$

$$\Delta m^2_{21} = (7.62 \pm 0.19) \times 10^{-5} \, \mathrm{eV^2}$$

mixing angles, squared mass differences, CP violation phase - fundamental parameters of nature

What's so interesting about θ_{13} ?

- The last unknown mixing angle
 - difficult measurement to get θ₁₃ one has to measure small effects (deficit or excess of interactions of neutrinos of certain flavor)
- If it is non-zero we have the possibility to study CP violation in neutrino sector, also matter effects (mass hierarchy!)

... and ways of measuring it

- we need to look at oscillations involving electron neutrinos or antineutrinos
- we can look at dissappearance -> reactor experiments

$$P_{\rm sur} \approx 1 - \sin^2 2\theta_{13} \sin^2 (1.267 \Delta m_{31}^2 L/E)$$
,

eading terms

Energy ~ a few MeV Distance ~ a few km $\overline{v}_e \rightarrow \overline{v}_e$

$$\overline{V}_e \rightarrow \overline{V}_e$$

• we can look at appearance -> long-baseline experiments with v_u beam

$$P(\nu_{\mu} \rightarrow \nu_{e}) = \sin^{2} 2\theta_{13} \sin^{2} \theta_{23} \sin^{2} \left(1.27 \Delta m_{23}^{2} L/E\right)$$
 Energy ~ a few GeV $\nu_{\mu} \rightarrow \nu_{e}$ Distance ~ a few hundred km

Second order terms depend on δ and mass hierarchy

 in both cases near detectors are useful to minimize systematic errors

Dàyà Bay (大亚湾) and Lǐng ào (岭澳) nuclear power plants

Daya Bay: detection mechanism

- Gadolinium-doped liquid scintillator (Gd-LS)
- Inverse beta decay
 - prompt signal: positron (its energy is correlated with neutrino energy)
 - delayed signal: neutron capture

- Systematic error minimisation:
 - Identical far and near detectors
 - Identical detection modules
 - Good background rejection (3-zone modules, water system, RPCs)

Daya Bay: detection modules

- 3-zone detection modules immersed in water, shielded by RPC plane
 - target 20t of Gd-LS (0.1% Gd)
 - gamma catcher 21t of LS
 - radiation shield 37t of mineral oil
 - 192 8inch photomultipliers on the walls (scintillation light detectors)
 - 3 calibration modules

Muon water system

 Cherenkov water shield at least 2.5m in every direction, 1200/1950t of water in two separated vessels, each equipped with photomultipliers

Detects muons that can produce spallation neutrons, attenuates gamma rays from surroundings, moderates neutrons

Results: rate only

Time variations: flux prediction + detector MC vs data in the three stations

Far to near ratio:

 $R = 0.944 \pm 0.007 \text{(stat.)} \pm 0.003 \text{(syst.)},$

Best fit, assuming $\Delta m_{31}^2 = 2.32 \times 10^{-3} \text{eV}^2$

 $\sin^2 2\theta_{13} = 0.089 \pm 0.010 (\text{stat.}) \pm 0.005 (\text{syst.})$

No oscillations excluded at the level of 7.7σ

Results: Chinese Physics C37:011001 (2013), new shape analysis: Soeren Jetter's slides, NuFact 2013

Results: rate+shape

- New analysis, made public just a week ago (no paper yet)
- We can take advantage of measuring energy spectra and fit energy dependence (obtaining θ_{13} as well as the relevant Δm^2)

$$\sin^2(\Delta m_{ee}^2 \frac{L}{4E}) \equiv \cos^2 \theta_{12} \sin^2(\Delta m_{31}^2 \frac{L}{4E}) + \sin^2 \theta_{12} \sin^2(\Delta m_{32}^2 \frac{L}{4E})$$

217 days of data

$$|\Delta m^2_{ee}| = 2.59^{+0.19}_{-0.20} \cdot 10^{-3} \mathrm{eV}^2$$

$$\chi^2/\textit{N}_{\mathsf{DoF}} = 162.7/153$$

Inverted MH Δm_{22}^2

From Daya Bay Δm_{ee}^2

$$2.54^{+0.19}_{-0.20}$$

$$-2.64^{+0.19}_{-0.20}$$

Reactor experiments: RENO

- Yeonggwang power plant in South Korea
- started operation in 2011
- rate results published, rate+shape analysis in progress

RENO 2013 resuts (402 days of data collection) (improved energy calibration, background estimation/reduction)

$$R = \frac{\Phi_{observed}^{Far}}{\Phi_{expected}^{Far}} = 0.929 \pm 0.006(stat) \pm 0.009(syst)$$

$$\sin^2 2\theta_{13} = 0.100 \pm 0.010(stat) \pm 0.015(syst)$$

There is still room for improvement: syst. error can be reduced to 0.05 for 3 yrs of data $(5.6\sigma->12\sigma)$

Published results: PRL 108, 191802 (2012), 2013 from NuTel conference

Reactor experiments: Double Chooz

- North border of France
- Measurements utilizing only far detector (near detector in construction, starts taking data in 2014)
- Robust results with "independent" analyses
 - Gd-capture (rate+shape): $\sin^2(2\theta_{13}) = 0.109 \pm 0.039$
 - H-capture (rate+shape): $\sin^2(2\theta_{13}) = 0.097 \pm 0.048$
 - Nuclear power variation (Gd): $\sin^2(2\theta_{13}) = 0.10 \pm 0.04$
 - Nuclear power variation (H): $\sin^2(2\theta_{13}) = 0.13 \pm 0.07$
- New Combined fit results:
 - Rate and shape: $\sin^2(2\theta_{13}) = 0.109 \pm 0.035$
 - Nuclear power variation: $\sin^2(2\theta_{13}) = 0.097 \pm 0.035$
- Currently working on improved analysis (Gd+H)
- ➤ First results with near detector in 2014 (final precision ≈ 10%)

Rate+shape analysis:

Accelerator experiments: T2K

- Tokai2Kamioka: long baseline experiment with narrow-band beam
- Neutrinos produced in J-PARC laboratory in **Tokai** (30GeV proton beam hits a graphite target)
- Near detector 280m from the production point measures nonoscillated beam
- Far detector Super-Kamiokande, large water Cherenkov detector in Kamioka mine studies effects of oscillations

Main goal: neutrino oscillation studies

- muon neutrino dissapearance
- electron neutrino appearance

The T2K Collaboration

~500 members, 59 Institutes, 11 countries

	<u> </u>		
Canada	Italy	Poland	Spain
TRIUMF	INFN, U. Bari	IFJ PAN, Cracow	IFAE, Barcelona
U. Alberta	INFN, U. Napoli	NCBJ, Warsaw	IFIC, Valencia
U.B.Columbia	INFN, U. Padova	U. Silesia, Katowice	
U. Regina	INFN, U. Roma	U. Warsaw	Switzerland
U. Toronto		Warsaw U. T.	ETH Zurich
U. Victoria	Japan	Wrocław U.	U. Bern
U. Winnipeg	ICRR Kamioka		U. Geneva
York U.	ICRR RCCN		
	Kavli IPMU	Russia	United Kingdom
France	KEK	INR	Imperial C. Londo
CEA Saclay	Kobe U.		Lancaster U.
IPN Lyon	Kyoto U.		Oxford U.
LLR E. Poly.	Miyagi U. Edu.		Queen Mary U. L.
LPNHE Paris	Osaka City U.		STFC/Daresbury

Okayama U.

U. Tokyo

Tokyo Metropolitan U.

Germany

Aachen U.

U. Geneva Duke U. Louisiana S. U. United Kingdom Imperial C. London Lancaster U. U. C. Irvine U. Colorado U. Pittsburgh U. Rochester STFC/Daresbury U. Washington

U. Liverpool

U. Sheffield U. Warwick

USA

Boston U.

Colorado S. U.

T2K: beam

Proton beam hits the target, produces hadrons,
 mainly pions

• The pions decay:

Beam contamination:

 Detectors positioned off-axis to get favorable spectrum shape $\mu^+ \rightarrow e^+ \overline{\nu}_{\mu} \nu_e$

$$K^+ \to \pi^0 e^+ \underline{\nu_e}$$

 Hadron production measured with target replica in NA61 experiment for better predictions of neutrino flux

Off-axis angle chosen: 2.5 degrees

T2K, near detector: ND280

ND280 role:

- beam monitoring
- cross-section measurements
- Measurement of muon neutrino momentum for non-oscillated beam, electron neutrino contribution estimation

- **FGD** detectors- target for neutrino interactions, proton identification
- TPCs identification and momentum reconstruction for muons, protons, charged pions and electrons

ND280 role in neutrino oscillation analysis:

- Constrains flux estimates (external constraints from NA61 experiment)
- Constrains cross-section parameters
 These are used to calculate MC far detection

These are used to calculate MC far detector prediction

T2K: Super-Kamiokande

Large water Cherenkov detector

50 kton of water, 22.5 kton fiducial volume, >11,000 photomultipliers on the walls observe Cherenkov light

Many years of experience, very well known detection technique, systematic errors known and understood

Studies also atmospheric, solar neutrinos

Good muon/electron separation

T2K: 2013 results

- Neutrino oscillation parameters extracted in two ways:
 - using reconstructed neutrino energy distribution
 - using observed electron momentum and angle
- 28 events observed
 - for $\sin^2 2\theta_{13} = 0.1$, $\sin^2 2\theta_{23} = 1$, $\delta = 0$ we would see 20.4±1.8 events
 - expected background 4.64±0.53

T2K: 2013 results

- Electron neutrino appearance result - 2012 update
 - new data (run 4)
 - new SK reconstruction algorithm (fiTQun), better π^0 background rejection
 - near detector CC inclusive measurement improved by using new event categories
- Best fit results for δ =0 (68% C.L. error)
 - normal hierarchy $\sin^2 2\theta_{13} = 0.150^{+0.039}_{-0.034}$
 - inverted hierarchy $\sin^2 2\theta_{13} = 0.182^{+0.046}_{-0.040}$
- 7.5 σ significance for non-zero θ_{13}

First ever observation ($>5\sigma$) of an explicit v appearance channel!

NOTE: These are 1D contours for various value of δ_{cp} , not 2D contours

T2K: θ₂₃ uncertainty and reactor results

- v_e appearance contours depend on the value of θ₂₃
- This needs to be determined more precisely by studying v_µ dissapearance

$$P(\nu_{\mu} \rightarrow \nu_{e}) \approx \sin^{2} 2\theta_{13} \sin^{2} \theta_{23} \sin^{2} \left(1.27\Delta m_{23}^{2} L/E\right)$$

$$P(\nu_{\mu} \to \nu_{\mu}) \approx 1 - \sin^2 2\theta_{23} \cos^4 \theta_{13} \sin^2 (1.27 \Delta m_{23}^2 L / E)$$

Comparison with reactor results (PDG2012): $\sin^2 2\theta_{13} = 0.098 \pm 0.013$

Accelerator exps: MINOS

- LB (735km) experiment in USA, started in 2005
- NuMl beam from FermiLab - mainly muon (anti)neutrinos
- Near detector in FermiLab, far detector in Soudan mine (3.8kT fiducial) - magnetized tracking calorimeters
- Neutrino (10.6* 10²⁰
 POT) and antineutrino (3.3* 10²⁰ POT) beam data collected
- Result:

 $2\sin^2(2\theta_{13})\sin^2(\theta_{23}) = 0.093^{+0.054}_{-0.049}$

Summary

- θ₁₃ mixing angle has been succesfully measured in reactor and long-baseline experiments
- more precise measurements coming soon
- we can now study
 CP violation effects

Best Fit +

Accelerator

Plot taken from Soeren Jetter's Daya Bay talk (NuFact 2013)

backup

Reactor experiments

 probability for electron antineutrino dissapearance

$$P_{ee} \approx 1 - \sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E_v} \right) - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \left(\frac{\Delta m_{21}^2 L}{4E_v} \right)$$

$$E_{\overline{v}} \cong T_{e^+} + T_n + (M_n - M_p) + m_{e^+}$$

10-40 keV

1.8 MeV: threshold

Long baseline experiments

 Probability of electron neutrino appearance

 $\alpha \sim \rho^* E_v$

$$P(\nu_{\mu} \rightarrow \nu_{e}) = 4C_{13}^{2}S_{13}^{2}S_{23}^{2} \cdot \sin^{2}\Delta_{31} \quad \text{leading term} \\ +8C_{13}^{2}S_{12}S_{13}S_{23}(C_{12}C_{23}\cos\delta - S_{12}S_{13}S_{23}) \cdot \cos\Delta_{32} \cdot \sin\Delta_{31} \cdot \sin\Delta_{21} \\ -8C_{13}^{2}C_{12}C_{23}S_{12}S_{13}S_{23}\sin\delta \cdot \sin\Delta_{32} \cdot \sin\Delta_{31} \cdot \sin\Delta_{21} \quad \text{CP violating} \\ +4S_{12}^{2}C_{13}^{2}(C_{12}^{2}C_{23}^{2} + S_{12}^{2}S_{23}^{2}S_{13}^{2} - 2C_{12}C_{23}S_{12}S_{23}S_{13}\cos\delta) \cdot \sin^{2}\Delta_{21} \\ -8C_{13}^{2}S_{13}^{2}S_{23}^{2} \cdot \frac{aL}{4E_{\nu}}(1 - 2S_{13}^{2}) \cdot \cos\Delta_{32} \cdot \sin\Delta_{31} \quad \text{solar term} \\ +8C_{13}^{2}S_{13}^{2}S_{23}^{2} \cdot \frac{a}{\Delta m_{31}^{2}}(1 - 2S_{13}^{2}) \cdot \sin^{2}\Delta_{31}, \quad \text{matter effects} \\ +8C_{13}^{2}S_{13}^{2}S_{23}^{2} \cdot \frac{a}{\Delta m_{31}^{2}}(1 - 2S_{13}^{2}) \cdot \sin^{2}\Delta_{31}, \quad C_{ij}, S_{ij}, \Delta_{ij} \\ \end{array}$$

for $|\overline{\nu}_{\mu} \to \overline{\nu}_{e}|$ $\delta \to -\delta$ $a \to -a$. $\cos \theta_{ij}, \sin \theta_{ij}, \Delta m_{ij}^2 L/4E_{\nu}$

Oscillation parameter values

$$\Delta m_{31}^2 = \begin{cases} 2.53^{+0.08}_{-0.10} \\ -(2.40^{+0.10}_{-0.07}) \end{cases} \times 10^{-3} \,\text{eV}^2$$

$$\sin^2 \theta_{23} = \begin{cases} 0.49^{+0.08}_{-0.05} & \text{for } \Delta m_{31}^2 > 0 \\ 0.53^{+0.05}_{-0.07} & \text{for } \Delta m_{31}^2 < 0 \end{cases}$$

$$\sin^2 \theta_{12} = 0.320^{+0.015}_{-0.017}$$

 $\Delta m_{21}^2 = (7.62 \pm 0.19) \times 10^{-5} \,\text{eV}^2$