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Introduction and motivation

Introduction and motivation

Motivation
Understanding the basic analytic and algebraic structure of
integrands and integrals of scattering amplitudes
Exploration of methods for obtaining theoretical predictions in
perturbative Quantum Field Theory at higher orders, required for
experiments in high-energy physics

We developed a coherent framework for the integrand decomposition
of Feynman integrals

based on simple concepts of algebraic geometry
applicable at all loops
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The integrand reduction of scattering amplitudes

Integrand reduction

Generic `-loop integral:

Mn =

∫
ddq1 . . . ddq` Ii1...in , Ii1...in ≡

Ni1...in

Di1 . . .Din

the numerator Ni1...in is polynomial in qi

the denominators Di are quadratic polynomials in qi

The integrand-reduction method leads to the decomposition:

Ii1...in =
∆i1···in

Di1 . . .Din
+ . . .+

n∑
k=1

∆ik

Dik
+ ∆∅

The residues ∆i1...ik are irreducible polynomials in qi

universal topology-dependent parametric form
the coefficients of the parametrization are process-dependent
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The integrand reduction of scattering amplitudes

From integrands to integrals

By integrating the integrand decomposition

Mn =

∫
ddq1 . . . ddq`

(
∆i1···in

Di1 . . .Din
+ . . .+

n∑
k=1

∆ik

Dik
+ ∆∅

)

some terms vanish and do not contribute to the amplitude
⇒ spurious terms
non-vanishing terms give Master Integrals (MIs)

The amplitude is a linear combination of MIs

The coefficients of this linear combination can be identified with some of
the coefficients which parametrize the polynomial residues

⇒ reduction to MIs ≡ polynomial fit of the residues
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The integrand reduction of scattering amplitudes

The one-loop decomposition

At one loop the result is well known:
the integrand decomposition
[Ossola, Papadopoulos, Pittau (2007); Ellis, Giele, Kunszt, Melnikov (2008)]

Ii1···in =
Ni1···in

Di1 · · ·Din
=

∑
j1...j5

∆j1j2j3j4j5

Dj1 Dj2 Dj3 Dj4 Dj5
+

∑
j1j2j3j4

∆j1j2j3j4

Dj1 Dj2 Dj3 Dj4

+
∑
j1j2j3

∆j1j2j3

Dj1 Dj2 Dj3
+

∑
j1j2

∆j1j2

Dj1 Dj2
+

∑
j1

∆j1

Dj1

the integral decomposition

+= c4,0 c3,0 + +c2,0 c1,0

+ + +c3,7 d+ 2 c2,9 d+ 2c4,4 d+ 4
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Integrand reduction via polynomial division

Integrand reduction and polynomials

At `-loops we want to achieve the integrand decomposition:

Ii1...in(q1, . . . , q`) ≡
Ni1...in

Di1 . . .Din
=

∆i1···in
Di1 . . .Din

+ . . .+

n∑
k=1

∆ik

Dik
+ ∆∅

The residues ∆i1...ik must be irreducible
can’t be written as a combination of denominators Di1 . . .Dik

We trade (q1, . . . , q`) with their coordinates z ≡ (z1, . . . , zm)

⇒ numerator and denominators ≡ polynomials in z

Ii1...in(z) ≡ Ni1...in(z)

Di1(z) . . .Din(z)

We can reformulate the integrand reduction as a problem of
multivariate polynomial division
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Integrand reduction via polynomial division

Residues via polynomial division

Y. Zhang (2012), P. Mastrolia, E. Mirabella, G. Ossola, T.P. (2012)

Define the Ideal of polynomials

Ji1···in ≡ 〈Di1 , . . . ,Din〉 =

{
p(z) : p(z) =

∑
j

hj(z)Dj(z), hj ∈ P[z]

}

Take a Gröbner basis GJi1···in
of Ji1···in

GJi1···in
= {g1, . . . , gs} such that Ji1···in = 〈g1, . . . , gs〉

Perform the multivariate polynomial division Ni1...in/GJi1···in

Ni1···in(z) =

n∑
k=1

Ni1···ik−1ik+1···in(z) Dik (z) + ∆i1···in(z)

The remainder ∆i1···in is irreducible⇒ can be identified with the residue
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Integrand reduction via polynomial division

Recursive Relation for the integrand decomposition

P. Mastrolia, E. Mirabella, G. Ossola, T.P. (2012)

The recursive formula

Ni1···in =
n∑

k=1

Ni1···ik−1ik+1···in Dik + ∆i1···in

Ii1···in ≡
Ni1···in

Di1 · · ·Din
=
∑

k

Ii1···ik−1ik+1···in +
∆i1···in

Di1 · · ·Din

Fit-on-the-cut approach
from a generic N , get the parametric form of the residues ∆
determine the coefficients sampling on the cuts (impose Di = 0)

Divide-and-Conquer approach
generate the N of the process
compute the residues by iterating the polynomial division algorithm
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Integrand reduction via polynomial division

Two results from algebraic-geometry techniques

The reducibility criterion

If a cut Di1 = . . . = Dik = 0 has no solutions, the associated residue
vanishes. In other words, any numerator is completely reducible.

This generally happens with overdetermined systems i.e. when the
number of cut denominators is higher than the one of loop variables.

The maximum-cut theorem

We define maximum-cut, a cut where the number of cut denominators is
equal to the one of the loop variables.

In non-special kinematic configurations, the residue at the maximum-cut
is a polynomial parametrized by ns coefficients, which admits a
univariate representation of degree (ns − 1).

The fit-on-the-cut approach therefore gives a number of equations which
is equal to the number of unknown coefficients.
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Application at one-loop

One-loop decomposition from polynomial division

P. Mastrolia, E. Mirabella, G. Ossola, T.P. (2012)

Start from the most general one-loop amplitude in d = 4− 2ε

Apply the recursive formula for the integrand decomposition

⇒ it reproduces the OPP result
[Ossola, Papadopoulos, Pittau (2007); Ellis, Giele, Kunszt, Melnikov (2008)]

Drop the spurious terms

⇒ Get the most general integral decomposition (well knwon result)

+= c4,0 c3,0 + +c2,0 c1,0

+ + +c3,7 d+ 2 c2,9 d+ 2c4,4 d+ 4
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Application at one-loop

Integrand Reduction via Laurent series expansion

P. Mastrolia, E. Mirabella, T.P. (2012)
The integrand reduction via Laurent expansion:

fits residues by taking their asymptotic expansions on the cuts

yields diagonal systems of equations for the coefficients

requires the computation of fewer coefficients

pentagons are spurious and do not need to be computed
spurious terms of boxes and tadpoles do not need to be computed

subtractions of higher point residues is simplified

4-point (and 5-point) residues are not subtracted
subtractions of 3- and 2-point residues at the coefficient level

F Implemented in the semi-numerical C++ library NINJA

Laurent expansions via a simplified polynomial-division algorithm
interfaced with the package GOSAM
is a faster and more stable integrand-reduction algorithm
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Application at one-loop

Example: the coefficients of the bubbles

The residue of a bubble (4-dim for brevity)
∆ij(q) = b0 + b1 (q · e2) + b2 (q · e2)

2 + b3 (q · e3) + b4 (q · e3)
2 + b5 (q · e4)

+ b6 (q · e4)
2 + b7 (q · e2)(q · e3) + b8 (q · e2)(q · e4)

solutions of a double cut Di = Dj = 0, parametrized by the free variables
t and x

q+ = x e1 + (α0 + xα1)e2 + t e3 +
β0 + β1x + β2x2

t
e4

q− = x e1 + (α0 + xα1)e2 +
β0 + β1x + β2x2

t
e3 + t e4

in the limit t→∞
N (q±)∏
m6=i,j Dm

∣∣∣∣∣
cut

= ∆ij +
∑

k

∆ijk

Dk
+
∑

kl

∆ijkl

DkDl
+
∑
klm

∆ijklm

DkDlDm

= ∆ij +
∑

k

∆ijk

Dk
+O(1/t)

NOTE: Higher point residues are computed in previous steps of the reduction
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Application at one-loop

The coefficients of the bubbles

In the asymptotic limit t→∞
the integrand

N (q±)∏
m 6=i,j,k Dm

∣∣∣∣∣
cut

= n±0 + n±1 x + n±2 x2 +
(

n±3 + n±4 x
)

t + n±5 t2 +O(1/t)

the subtraction term
∆ijk(q±)

Dk
= b̃k,±

0 + b̃k,±
1 x + b̃k,±

2 x2 +
(

b̃k,±
3 + b̃k,±

4 x
)

t + b̃k,±
5 t2 +O(1/t)

b̃k,±
i are known functions of the triangle coefficients

the residue

∆ij(q+) = b0 + b1 x + b2x2 −
(

b5 + b8x
)

t + b6 t2 +O(1/t)

∆ij(q−) = b0 + b1 x + b2x2 −
(

b3 + b7x
)

t + b4 t2 +O(1/t)

by comparison, applying subtractions at the coefficient level

b0 = n±0 −
∑

k

b̃k,±
0 , b1 = n±1 −

∑
k

b̃k,±
1 , b3 = −n−3 +

∑
k

b̃k,−
3 , . . .
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Application at one-loop

Integrand Reduction with NINJA

Benchmarks: GOSAM + NINJA

sub-process # diagrams # hel. (gen./tot.) ms/event
W + 3 j dū→ ν̄ee−ggg 1 411 1/8 226

t t̄ H qq̄→ t̄tH 31 8/8 2
gg→ t̄tH 136 4/16 40

t t̄ H + 1 j qq̄→ t̄tHg 320 8/16 93
gg→ t̄tHg 1 575 4/32 2 070
dd̄ → Huū 32 4/4 1

H + 2 j in GF dd → Hdd 60 3/6 4
(higher rank) dd̄ → Hgg 179 2/8 17

gg→ Hgg 651 1/16 166
dd̄ → Hguū 467 4/7 68

H + 3 j in GF dd → Hgdd 868 3/12 157
(higher rank) dd̄ → Hggg 2 519 2/16 999

gg→ Hggg 9 325 1/32 11 266

NOTE: Timings refer to full color- and helicity-summed amplitudes
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Application at one-loop

From amplitudes to observables with GOSAM

The GOSAM collaboration:

G. Cullen, H. van Deurzen, N. Greiner, G. Heinrich, G. Luisoni, P. Mastrolia, E. Mirabella,

G. Ossola, J. Reichel , J. Schlenk, J. F. von Soden-Fraunhofen, T. Reiter, F. Tramontano, T.P.
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Application at one-loop

Application: pp→ t̄tH + jet with GOSAM + NINJA

H. van Deurzen, G. Luisoni, P. Mastrolia, E. Mirabella, G. Ossola, T.P. (2013)

Interfaced with the Monte Carlo SHERPA
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Higher loops

Extension to higher loops

The integrand-level approach to scattering amplitudes one-loop
can be used to compute any amplitude in any QFT
has been implemented in several codes, some of which public
[SAMURAI, CUTTOOLS, NGLUONS]
has produced (and is still producing) results for LHC
[GOSAM (see H. van Deurzen’s talk),
FORMCALC, BLACKHAT, MADLOOP, NJETS, OPENLOOP . . . ]

At two or higher loops
no general recipe is available
the standard and most successful approach is the Integration By
Parts (IBP) method, but it becomes difficult for high multiplicities

The integrand-level approach might be a tool for understanding the
structure of multi-loop scattering amplitudes and a method for their
evaluation.

. . . we are moving the first steps in this direction
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Higher loops

N = 4 SYM and N = 8 SUGRA amplitudes

P. Mastrolia, G. Ossola (2011); P. Mastrolia, E. Mirabella, G. Ossola, T.P. (2012)

Examples in N = 4 SYM and N = 8 SUGRA amplitudes (d = 4)
generation of the integrand

graph based [Carrasco, Johansson (2011)]
unitarity based [U. Schubert (Diplomarbeit)]

fit-on-the-cut approach for the reduction
Results:

N = 4 linear combination of 8 and 7-denominators MIs
N = 8 linear combination of 8, 7 and 6-denominators MIs
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Higher loops

Divide-and-Conquer approach

P. Mastrolia, E. Mirabella, G. Ossola, T.P. (2013)

The divide-and-conquer approach to the integrand reduction
does not require the knowledge of the solutions of the cut
can always be used to perform the reduction in a finite number of
purely algebraic operations
has been automated in a PYTHON package which uses
MACAULAY2 and FORM for algebraic operations

PYTHON

MACAULAY2 FORM⇒⇐
also works in special cases where the fit-on-the-cut approach is
not applicable (e.g. in presence of double denominators)
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Higher loops

Divide-and-Conquer approach: an explicit example

A 5-denominator integrand

I12345 ≡
N12345

D1D2D3D4D5
, D1, . . . ,D5 not necessarily distinct!

After division of N12345 modulo GJ12345 (quotient and remainder)

N12345 = N2345D1 +N1345D2 +N1245D3 +N1235D4 +N1234D5 + ∆12345

After division of Ni1i2i3i4 modulo GJi1 i2 i3 i4
(quotients and remainders)

N12345 = N345D1D2 +N245D1D3 +N235D1D4 +N234D1D5

+N145D2D3 +N135D2D4 +N134D2D5

+N125D3D4 +N124D3D5 +N123D4D5

+∆2345D1 + ∆1345D2 + ∆1245D3 + ∆1235D4 + ∆1234D5

+ ∆12345

. . . and so forth
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Higher loops

Examples of divide-and-conquer approach

Photon self-energy in massive QED, (4− 2ε)-dimensions

Diagrams entering gg→ H, in (4− 2ε)-dimensions
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Conclusions

Conclusions

We developed a general framework for the reduction at the
integrand level

can be applied to any amplitude in any QFT
is valid at every loop order

At one-loop
naturally reproduces the OPP result
allows to express any amplitude in terms of known MIs
leads to well established and successful techniques
can be improved with the Laurent-expansion approach (NINJA)

At higher loops
it gives a recursive formula for the integrand decomposition
generates the form of the residue for every cut

The divide-and-conquer approach
can be used to implement the whole reduction of any integrand with
purely algebraic operations
has been automated in a PYTHON package
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One-loop decomposition from polynomial division
At one loop in 4− 2ε dimensions:

5 coordinates z = (z1, z2, z3, z4, z5)

4 components (z1,z2,z3,z4) of q w.r.t. a 4-dimensional basis
z5 = µ2 encodes the (4− 2ε)-dependence on the loop momentum

we start with
In ≡ I1...n =

N1...n(z)

D1(z) . . .Dn(z)

if m > 5 any integrand Ii1...im is reducible (reducibility criterion)

Ii1...im =
∑

k

Ii1...ik−1ik+1...im , for m ≥ 5

for m ≤ 5 the polynomial-division algorithm applied to a generic
integrand, gives a non-trivial remainder ∆ijk...

one finds the already-known parametric form of the residues ∆ijk...
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One-loop boxes via Laurent expansion

The residue of a box reads

∆ijkl(q, µ2) = d0 + d2µ
2 + d4 µ

4 + (d1 + d3µ
2)(q · v⊥)

d0 via 4-dimensional 4ple cuts [Britto, Cachazo, Feng (2004)]

d4 from d-dimensional 4-ple cuts in the limit µ2 →∞ [S. Badger (2008)]

d-dimensional solutions of a 4-ple cut

q± = aµ ±

√
α+

µ2

β2 vµ⊥ = ±
√
µ2

β
vµ⊥ +O(1)

the integrand in the asymptotic limit µ2 →∞ of the cut-solutions

N (qi, µ2)∏
m6=i,j,k,l Dm

∣∣∣∣∣
cut

= d4 µ
4 +O(µ3)

d1, d2, d3 are spurious and do not need to be computed
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One-loop triangles via Laurent expansion

The residue of a triangle

∆ijk(q) = c0 + c7 µ
2 + (c1 + c8µ

2) (q · e3) + c2 (q · e3)2 + c3 (q · e3)3

+ (c4 + c9µ
2) (q · e4) + c5 (q · e4)2 + c6 (q · e4)3

solutions of a triple cut parametrized by the variables t and µ2

qµ+ = aµ + t eµ3 +
α+ µ2

2 t
eµ4 , qµ− = aµ +

α+ µ2

2 t
eµ3 + t eµ4

in the limit t→∞ [Forde (2007)]

N (q±)∏
m6=i,j,k Dm

∣∣∣∣∣
cut

= ∆ijk +
∑

l

∆ijkl

Dl
+
∑

lm

∆ijklm

DlDm

= ∆ijk + d±1 + d±2 µ2 +O(1/t)

with d+
i + d−i = 0
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One-loop triangles via Laurent expansion

In the asymptotic limit t→∞

N (q±)∏
m 6=i,j,k Dm

∣∣∣∣∣
cut

= d±1 + d±2 µ2 + ∆ijk +O(1/t) with d+
i + d−i = 0

the integrand

N (q±)∏
m6=i,j,k Dm

∣∣∣∣∣
cut

= n±0 + n±4 µ
2 + (n±1 + n±5 µ

2) t + n±2 t2 + n±3 t3 +O(1/t)

the residue

∆ijk(q+) = c0 + c7 µ
2 − (c4 + c9 µ

2) t + c5 t2 − c6 t3 +O(1/t)

∆ijk(q−) = c0 + c7 µ
2 − (c1 + c8 µ

2) t + c2 t2 − c3 t3 +O(1/t)

by comparison we get

c0 =
n+

0 + n−0
2

, c1 = −n−1 , c2 = n−2 , c3 = −n−3 , . . .
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